Eng Ru
Отправить письмо

Международный термоядерный экспериментальный реактор. Международный экспериментальный термоядерный реактор


Международный термоядерный экспериментальный реактор | События

Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта.

В 2020-х годах заработает самый мощный в мире токамак

Сейсмоизоляция установки токамака проекта ИТЭР

ИТЭР (ITER, International Thermonuclear Experimental Reactor — Международный термоядерный экспериментальный реактор) — проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Вид на стройплощадку токамака сверху, полученный 29 апреля 2014 года

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения — вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа — JET — объем равен ста кубическим метрам.Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров — под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

Токамак JET из Оксфордшира в Великобритании с внешним радиусом 2,96 метра позволяет разогревать плазму объемом до ста кубических метров

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек — в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина — около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.Токамак

Игорь Тамм

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (тороидальная камера с магнитными катушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода — дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Лев Арцимович

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом, и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные их которых находятся в Европе, Японии, США и России.

Основные участники проекта: ЕС, Индия, Китай, Республика Корея, Россия, США и Япония

Управление ИТЭР

В 1985 году Евгений Велихов предложил Михаилу Горбачеву объединить усилия США и СССР в области термоядерной энергетики и начать работу над созданием международного термоядерного реактора на основе токамака. В 1988 начались первые проектные работы, и уже в 1992 году было подписано международное соглашение о разработке технического проекта реактора ИТЭР. Полная стоимость на этапе разработки проекта составила около двух миллиардов долларов. Участие России и США в финансировании этого этапа составило примерно по 17 процентов; остальная часть была поделена примерно поровну между ЕС и Японией.Сейчас основными учредителями ИТЭР являются Евросоюз, Индия, Китай, Южная Корея, Россия, США и Япония. В проекте прямо или косвенно заняты около 35 стран, составляющие более половины населения земного шара. По квоте России с 1994 года в проекте ИТЭР участвует и Казахстан. Ученые планируют уже в 2020 году начать эксперименты на ИТЭР. Однако начало работ часто откладывается; к настоящему времени запаздывание оценивается в два-три года.

После подписания соглашения о ИТЭР 24 октября 2007 года

Где что находится

Расположение Карадаша отмечено красной точкой, расстояние до ближайшего грузового порта — более ста километров

В самом начале проекта между Японией и Францией шла борьба за возможность размещения установок ИТЭР на своих территориях. В результате победила Франция: в 2005 году было принято решение о строительстве реактора на юге страны, в 60 километрах от Марселя в исследовательском центре Карадаш. Комплекс занимает общую площадь около 180 гектаров. На ней размещены установки реактора, системы энергообеспечения, газохранилище, водонасосная станция, градирня, административные и другие здания. В 2007 году началось строительство комплекса и закладка фундамента, а совсем недавно, 19 марта 2014 года, произведена заливка бетона для установки для получения трития.Реактор и топливоВ основе работы реактора ИТЭР лежит термоядерная реакция слияния изотопов водорода дейтерия и трития с образованием гелия с энергией 3,5 мегаэлектронвольт и высокоэнергетического нейтрона (14,1 мегаэлектронвольт). Для этого дейтерий-тритиевая смесь должна быть нагрета до температуры более ста миллионов градусов Цельсия, что в пять раз больше температуры Солнца. При этом смесь превращается в плазму из положительно заряженных ядер водорода и электронов. В такой разогретой плазме энергии дейтерия и трития достаточно, чтобы начались термоядерные реакции слияния с образованием гелия и нейтрона.

Термоядерная реакция синтеза гелия

На один акт реакции выделяется энергия в 17,6 мегаэлектронвольт, которая включает в себя кинетическую энергию нейтрона и ядра гелия. Нейтрон из плазмы попадает в теплоноситель, которым окружена плазма, и его энергия движения переходит в тепловую энергию. Энергия гелия используется для поддержания стационарного температурного режима в плазме.

Макет комплекса ИТЭР 2010 года

Дейтерий содержится в обычной воде; его ученые научились добывать сравнительно легко. В природном водороде содержится около 0,01 процента этого изотопа. С тритием сложнее — его почти нет на Земле. Однако, ученые планируют получать его в рамках проекта ИТЭР, используя реакции взаимодействия нейтрона с изотопами лития Li-6 и Li-7, который может быть введен в состав теплоносителя бланкета — оболочки, окружающей плазму. Продуктами такого взаимодействия являются гелий, тритий и нейтрон (в случае изотопа Li-7).Суммируя, можно сказать, что топливом для реактора ИТЭР являются дейтерий и литий. При этом содержание дейтерия в воде океана практически не ограничены, а лития в земной коре почти в 200 раз больше, чем урана; при использовании дейтерия, содержащегося в бутылке воды, выделится столько же энергии, сколько при сжигании бочки бензина: калорийность термоядерного топлива в миллион раз выше любого из современных неядерных источников энергии.

Параметры реактора

Для энергетической выгоды реактор должен функционировать со значением параметра Q, большего пяти. Этот параметр показывает соотношение высвобождаемой в процессе реакции энергии к энергии, затраченной на создание и нагрев плазмы. Кроме того, необходим нагрев плазмы до температуры, большей ста миллионов градусов Цельсия, и такая нагретая плазма в реакторе должна быть устойчивой более одной секунды.Так, на установке TFTR в Нью-Джерси в США была осуществлена термоядерная реакция с мощностью около десяти мегаватт с импульсом длительностью 0,3 секунды. На установке JET в Великобритании была получена мощность 17 мегаватт с Q=0,6.

Схема реактора ИТЭР

В реакторе размерами 40 на 40 метров: 1 — центральный соленоид, 2 — катушки полоидального магнитного поля, 3 — катушка тороидального магнитного поля, 4 — вакуумная камера, 5 — криостат, 6 — дивертор.В ИТЭР в первой фазе эксперимента планируется удержать плазму до тысячи секунд с Q более десяти при температуре около 150 миллионов градусов и выделяемой мощностью в 500 мегаватт. Во второй фазе ученые хотят перейти к непрерывному режиму работы токамака, и, в случае успеха, к первой коммерческой версии токамака DEMO. DEMO будет устроен существенно проще и не будет носить исследовательской нагрузки, а для его работы не потребуется значительного числа датчиков, так как необходимые параметры работы реактора будут отработаны уже на экспериментальном реакторе ИТЭР.

Участие России

Участие Россия в проекте ИТЭР в настоящее время составляет около десяти процентов. Это позволяет стране получать доступ ко всем технологиям проекта. Основной задачей, которая стоит перед Россией в рамках проекта, является производство сверхпроводящих магнитов, а также разнообразных диагностических датчиков и анализаторов структуры плазмы.

«Лента.ру» побеседовала с российским участником проекта ИТЭР Владимиром Аносовым, начальником группы в отделе экспериментальной физики токамаков ГНЦ РФ ТРИНИТИ.

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты… поживем — увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

А есть пример?

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то — Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше… Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор — уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя — это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете — мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

xstyles.ru

Зачем нам ITER | Журнал Популярная Механика

Ни один твердый материал во Вселенной не может напрямую контактировать с такой температурой. Так что просто построить печку для приготовления гелия не получится. Решить проблему помогает та самая тороидальная камера с магнитными катушками, или токамак. Идея создания токамака осенила светлые головы ученых из разных стран в начале 1950-х, при этом первенство однозначно приписывается советскому физику Олегу Лаврентьеву и его именитым коллегам Андрею Сахарову и Игорю Тамму.

Вакуумная камера в форме тора (пустотелого «бублика») окружается сверхпроводящими электромагнитами, которые создают в ней тороидальное магнитное поле. Именно это поле удерживает раскаленную до десяти солнц плазму на некотором расстоянии от стенок камеры. Вместе с центральным электромагнитом (индуктором) токамак представляет собой трансформатор. Изменяя ток в индукторе, порождают течение тока в плазме — движение частиц, необходимое для синтеза.

Февраль 2012. Установлено 493 1,7-метровых колонны с сейсмоизолирующими подушками из резинометаллического сэндвича.

Токамак можно по праву считать образцом технологического изящества. Электрический ток, протекающий в плазме, создает полоидальное магнитное поле, опоясывающее плазменный шнур и поддерживающее его форму. Плазма существует при строго определенных условиях, и при их малейшем изменении реакция немедленно прекращается. В отличие от реактора АЭС, токамак не может «пойти вразнос» и неконтролируемо наращивать температуру.

В маловероятном случае разрушения токамака не происходит радиоактивного заражения. В отличие от АЭС, термоядерный реактор не производит радиоактивных отходов, а единственный продукт реакции синтеза — гелий — не является парниковым газом и полезен в хозяйстве. Наконец, токамак очень бережно расходует топливо: во время синтеза в вакуумной камере находится всего несколько сотен граммов вещества, а расчетный годовой запас горючего для промышленной электростанции составляет всего 250 кг.

Апрель 2014. Завершено строительство здания криостата, залиты стенки фундамента токамака 1,5-метровой толщины.

Зачем нам ITER?

Токамаки классической схемы, описанные выше, строились в США и Европе, России и Казахстане, Японии и Китае. С их помощью удалось доказать принципиальную возможность создания высокотемпературной плазмы. Однако постройка промышленного реактора, способного отдавать больше энергии, чем потреблять, — задача принципиально иного масштаба.

В классическом токамаке течение тока в плазме создается за счет изменения тока в индукторе, а этот процесс не может быть бесконечным. Таким образом, время существования плазмы ограничено, и реактор может работать только в импульсном режиме. На разжигание плазмы требуется колоссальная энергия — шутка ли, нагреть что-либо до температуры в 150 000 000 °C. А значит, необходимо добиться такого времени жизни плазмы, которое даст выработку энергии, окупающую розжиг.

Термоядерный реактор — это элегантная техническая концепция с минимумом негативных побочных эффектов. Течение тока в плазме само собой образует полоидальное магнитное поле, поддерживающее форму плазменного шнура, а образующиеся высокоэнергетические нейтроны в сочетании с литием вырабатывают драгоценный тритий.

К примеру, в 2009 году в ходе эксперимента на китайском токамаке EAST (части проекта ITER) удалось удержать плазму с температурой 107 К в течение 400 секунд и 108 К в течение 60 секунд.

Чтобы дольше удерживать плазму, необходимы дополнительные нагреватели нескольких видов. Все они будут испытаны на ITER. Первый способ — инжекция нейтральных атомов дейтерия — предполагает, что атомы будут поступать в плазму предварительно разогнанными до кинетической энергии в 1 МэВ с помощью дополнительного ускорителя.

Этот процесс изначально противоречив: ускорять можно только заряженные частицы (на них действует электромагнитное поле), а вводить в плазму — только нейтральные (в противном случае они повлияют на течение тока внутри плазменного шнура). Поэтому от атомов дейтерия предварительно отнимается электрон, и положительно заряженные ионы попадают в ускоритель. Затем частицы попадают в нейтрализатор, где восстанавливаются до нейтральных атомов, взаимодействуя с ионизированным газом, и вводятся в плазму. В настоящее время мегавольтный инжектор ITER разрабатывается в итальянской Падуе.

Второй метод нагрева имеет что-то общее с разогревом продуктов в микроволновке. Он предполагает воздействие на плазму электромагнитным излучением с частотой, соответствующей скорости движения частиц (циклотронной частотой). Для положительных ионов эта частота равняется 40−50 МГц, а для электронов — 170 ГГц. Для создания мощного излучения столь высокой частоты используется прибор под названием гиротрон. Девять из 24 гиротронов ITER производятся на предприятии Gycom в Нижнем Новгороде.

Классическая концепция токамака предполагает, что форма плазменного шнура поддерживается полоидальным магнитным полем, которое само собой образуется при течении тока в плазме. Для длительного удержания плазмы такой подход неприменим. В токамаке ITER предусмотрены специальные катушки полоидального поля, назначение которых — держать раскаленную плазму подальше от стенок реактора. Эти катушки относятся к самым массивным и сложным элементам конструкции.

Чтобы иметь возможность активно управлять формой плазмы, своевременно устраняя колебания по краям шнура, разработчики предусмотрели небольшие маломощные электромагнитные контуры, расположенные непосредственно в вакуумной камере, под обшивкой.

Топливная инфраструктура для термоядерного синтеза — это отдельная интересная тема. Дейтерий содержится практически в любой воде, и его запасы можно считать неограниченными. А вот мировые запасы трития исчисляются от силы десятками килограммов. 1 кг трития стоит порядка $30 млн. Для первых запусков ITER понадобится 3 кг трития. Для сравнения, около 2 кг трития в год необходимо для поддержания ядерного потенциала армии Соединенных Штатов.

Однако в перспективе реактор будет сам обеспечивать себя тритием. В процессе основной реакции синтеза образуются высокоэнергетические нейтроны, которые способны превращать ядра лития в тритий. Разработка и испытание первой стенки реактора, содержащей литий, — одна из важнейших целей ITER. В первых испытаниях будут использоваться бериллиево-медные обшивки, цель которых сводится к защите механизмов реактора от тепла. Согласно расчетам, даже если перевести всю энергетику планеты на токамаки, мировых запасов лития хватит на тысячу лет эксплуатации.

Подготовка 104-километрового «Пути ITER» обошлась Франции в 110 миллионов евро и четыре года работы. Дорога от порта Фос-Сюр-Мер до Кадараша была расширена и усилена, чтобы по ней можно было доставить на площадку самые тяжелые и габаритные детали токамака. На фото: транспортер с тестовым грузом массой 800 тонн.

С миру по токамаку

Для прецизионного управления термоядерным реактором необходимы точные диагностические инструменты. Одна из ключевых задач ITER — выбрать наиболее подходящие из пяти десятков инструментов, которые сегодня проходят испытания, и дать старт разработке новых.

Не менее девяти диагностических аппаратов будет разработано в России. Три — в московском Курчатовском институте, в их числе нейтронно-лучевой анализатор. Ускоритель посылает сквозь плазму сфокусированный поток нейтронов, который претерпевает спектральные изменения и улавливается приемной системой. Спектрометрия с частотой 250 измерений в секунду показывает температуру и плотность плазмы, силу электрического поля и скорость вращения частиц — параметры, необходимые для управления реактором с целью продолжительного удержания плазмы.

www.popmech.ru

Международный экспериментальный термоядерный реактор — Википедия © ru.wikipedia.org

Материал из Википедии — свободной энциклопедии

Макет термоядерного реактора (сечение)

ITER (ИТЭР; изначально англ. International Thermonuclear Experimental Reactor; в настоящее время название связывается с латинским словом iter — путь) — проект международного экспериментального термоядерного реактора. Задача ИТЭР заключается в демонстрации возможности коммерческого использования термоядерного реактора и решении физических и технологических проблем, которые могут встретиться на этом пути.

Проектирование реактора полностью закончено и выбрано место для его строительства — исследовательский центр Кадараш (фр. Cadarache) на юге Франции, в 60 км от Марселя. Подготовка строительной площадки в Кадараш на юге Франции началась в январе 2007 года. Сооружения ITER расположены на 180 га земли коммуны Сен-Поль-ле-Дюранс (Прованс-Альпы-Лазурный Берег, регион южной Франции), которая уже стала домом для французского ядерного научно-исследовательского центра СЕА (Commissariat à l'énergie atomique, Комиссариат атомной энергетики).

Стройку, стоимость которой первоначально оценивалась в 5 миллиардов евро, планировалось закончить в 2016 году, однако постепенно предполагаемая сумма расходов выросла до 19 миллиардов, и затем срок начала экспериментов сдвинулся к 2025 году[1].

Место расположения исследовательского центра «Кадараш»
  • Курчатовский институт,
  • госкорпорация «Росатом»,
  • НИИ ЭФА им. Д. В. Ефремова,
  • НИКИЭТ,
  • Институт прикладной физики РАН,
  • ТРИНИТИ,
  • ФТИ им. А. Ф. Иоффе,
  • ВНИИНМ,
  • ВНИИКП,
  • управляющая компания «Наука и инновации»,
  • ИЯФ СО РАН.

1985—2012 годы[править | править код]

Перечень событий 1985—2012

  • Ноябрь 1985 года — СССР предложил создать токамак нового поколения с участием стран, наиболее продвинувшихся в изучении термоядерных реакций.
  • 1988—1990 годы — силами советских, американских, японских и европейских учёных и инженеров была проведена успешная концептуальная проработка проекта термоядерного реактора, получившего современное обозначение ITER.
  • 21 июля 1992 года в Вашингтоне было подписано четырёхстороннее (ЕС, Россия, США, Япония) межправительственное соглашение о разработке инженерного проекта ITER.
  • 28 июля 1994 года в рамках Решения 6 сессии Совета ITER по квоте Российской Федерации в проект присоединилась Республика Казахстан.
  • 1996 год — США вышли из проекта.
  • 2001 год — технический проект реактора ITER был успешно завершён.
  • 2001—2003 годы — к участию в проекте присоединяется Канада.
  • 2003 год — США вернулись к участию в проекте, а также к ним присоединились Китай и Южная Корея.
  • 28 июня 2005 года в Москве министры шести сторон-участниц проекта ИТЭР подписали протокол, который определяет место строительства. Международный экспериментальный термоядерный реактор будет построен на юге Франции в исследовательском центре Кадараш (43°41′ с. ш. 5°45′ в. д.HGЯO)[6]
  • 6 декабря 2005 года к консорциуму присоединилась Индия.
  • 25 мая 2006 года в Брюсселе участниками консорциума подписано соглашение о начале практической реализации проекта в 2007 году.
  • 1 сентября 2006 года правительство России приняло решение подписать соглашение о создании Международной организации по реализации проекта исследовательского термоядерного экспериментального реактора (ITER), которая будет обладать правами юридического лица способного заключать соглашения с государствами и международными организациями.
  • Декабрь 2006 года — подписано 40 первых контрактов с персоналом, объявлено о ещё 56 открытых рабочих местах.
  • С 2010 года по май 2011 года — начало подготовки котлована под фундамент[7]. Работы по подготовке котлована под реакторный комплекс. Длина котлована 130 м, ширина 90 м, глубина 17 м. Извлечено 210 000 м³ скальной породы. Общая масса будущего комплекса токамака 360 000 т, включая токамак весом 23 000 т.
  • С мая 2011 года по апрель 2012 года уложен первый слой стальной арматуры, площадка залита слоем бетона толщиной 1,5 м. На этом слое сформировано 493 железобетонных колонны, каждая высотой 1,7 м[8]. На вершине каждой колонны установлена антисейсмическая прокладка[9][10][11]. Поверх этих колонн будет сформирована ещё одна плита толщиной 1,5 м. Эту плиту на сайте ITER называют Slab B2. На этой плите и будет покоиться токамак.
  • В декабре 2012 года руководством ITER был подписан гражданско-правовой договор с французско-испанским консорциумом VFR на строительство комплекса зданий токамака.

2013 год[править | править код]

Перечень событий 2013 г.

  • Февраль 2013 года — начало работ по формированию нижней опалубки плиты Slab B2[12]. Возводятся стены котлована[13].
  • С 19 по 20 июня в Токио состоялось очередное — двенадцатое — заседание Совета ИТЭР, руководящего органа Международной организации ИТЭР, в котором приняли участие представители всех семи участников Проекта ИТЭР: ЕС, Китая, Индии, Японии, Республики Корея, России и США. Делегаты Совета отметили, что Проект ИТЭР полностью перешёл на стадию сооружения.
  • К августу построены два вспомогательных здания и энергетическая подстанция.
  • Сентябрь — появились сведения о первой успешной репетиции по транспортировке крупногабаритных частей токамака из порта Bere l’Etang[14]до строительной площадки в Кадараше. Этот порт расположен на озере Этан-де-Берр. Озеро соединено 4-километровым каналом со Средиземным морем). Общая длина пути от порта до строительной площадки составляет 104 км[15]. Автомобильная дорога была расширена и модернизирована, в частности, построено несколько новых мостов, а некоторые мосты были разобраны[16], и на их месте построены более прочные. Транспортировка будет осуществляться на специально сконструированном для этой задачи 352-колесном автотрейлере[17]. Эта машина[18] способна перемещать груз массой 800 т, длиной 40 м, высотой 11 м, шириной 9 м со скоростью 3,5 км/ч. Репетиция заключалась в перевозке весогабаритного макета (бетонные блоки плюс стальная рама)[19] наиболее впечатляющих компонентов реактора из точки назначения в точку прибытия.
  • В ноябре были сформированы дренажные и вспомогательные туннели, окружающие комплекс токамака[20].
  • В начале декабря началась заливка бетоном 1,5-метровой плиты (Slab B2) основания Здания трития. На сайте ITER комплекс токамака (Tokamak Complex)[21] условно разделен на три здания, вплотную примыкающие друг к другу: здание Трития слева (на юго-западной стороне строительной площадки), в центре находится здание Токамака и справа здание Диагностики (на северо-восточной стороне). Заливка ведётся секциями размером 21×26 м и продлится шесть месяцев. Плита В2 разбита на пятнадцать секций, из них три являются фундаментом здания Трития, три — фундаментом здания Диагностики и девять — фундаментом здания Токамака. Заливка секции длится десять часов, затем месяц идет схватывание и отвердевание бетона[22].

2014 год[править | править код]

Перечень событий 2014 г.

  • Февраль 2014 года — залито три секции фундамента будущего здания Трития. Таким образом, фундамент здания Трития готов[23].
  • С февраля на сайте проекта стали появляться фотографии изготовленных странами-участницами проекта отдельных частей токамака. Европа приступила к изг

ru.wikipedia.org.mevn.net

Запущен экспериментальный термоядерный реактор ITER

Искусственно созданная термоядерная реакция уже демонстрировалась в малом масштабе. Существовала задача отыскать способ увеличить его масштаб до уровня коммерческого использования эффективно, экономично и без нанесения вреда окружающей среде.

Реактор ITER, известный ранее как Международный термоядерный экспериментальный реактор, будет первым проектом, удовлетворяющим данным условиям. Он был построен на юге Франции за 20 миллиардов евро за десять лет, это один из самых грандиозных когда-либо предпринимаемых научных проектов, занимающий второе место после Международной космической станции. Это совместный исследовательский проект США, ЕС, Японии, России, Китая, Индии и Южной Кореи.

Чтобы продемонстрировать чистую термоядерную мощь в большом масштабе, реактор должен воспроизвести условия, аналогичные условий в центре Солнца. Для достижения данной цели используется устройство под названием токамак, удерживающее плазму магнитным полем. Это тороидальная вакуумная камера генерирует мощное магнитное поле, не дающее жару достигать стен реактора. Небольшие дозы топлива впрыскиваются и втягиваются в камеру. Здесь они разогреваются до температуры 100 миллионов градусов, формируя плазму. При такой высокой температуре легкие атомные ядра водорода сплавляются вместе, создавая более тяжелые соединения водорода, такие как дейтерий и тритий. Что высвобождает нейтроны и огромное количество энергии

После операционного запуска в 2019 году можно надеяться, что ITER в результате будет производить более 500 мегаватт мощи, порциями в 400 секунд и больше. Его можно сравнить с «Общим европейским тором» (JET), предыдущим рекордсменом по пиковой термоядерной мощи (16МВ), длившейся всего несколько секунд в 1997 году.

Потребуется еще несколько десятилетий, пока реактор ITER будет в достаточной степени усовершенствован. Для того чтобы генерировать продолжительное напряжение для коммерческих нужд, потребуется создать способ задержки плазмы в условиях критической плотности и температур. Для этого понадобится улучшить конструкцию камеры, применить усовершенствованные сверхпроводящие магниты и продвинутые вакуумные системы.

Однако это может привести к конечному прорыву в области энергетики. Если проект окажется удачным, человечество получит доступ к практически неограниченному запасу экологически чистой энергии.

futurenow.ru

ТЕРМОЯДЕРНЫЙ РЕАКТОР - это... Что такое ТЕРМОЯДЕРНЫЙ РЕАКТОР?

-разрабатываемое в 1990-х гг. устройство для получения энергии за счёт реакций синтеза лёгких атомных ядер, происходящих в плазме при очень высоких темп-pax (108 К). Осн. требование, к-рому должен удовлетворять T. р., заключается в том, чтобы энерговыделение в результате термоядерных реакций(TP) с избытком компенсировало затраты энергии от внеш. источников на поддержание реакции.

Различают два типа T. р. К первому относятся реакторы, к-рым энергия от внеш. источников необходима только для зажигания TP. Далее реакции поддерживаются за счёт энергии, выделяющейся в плазме при TP, напр. в дейтерий-тритиевой смеси на поддержание высокой темп-ры расходуется энергия a-частиц, образующихся в ходе реакций. В смеси дейтерия с 3He энергия всех продуктов реакций, т. е. a-частиц и протонов, расходуется на поддержание необходимой темп-ры плазмы. В стационарном режиме работы T. р. энергия, к-рую несут заряж. продукты реакций, компенсирует энергетич. потери из плазмы, обусловленные в осн. теплопроводностью плазмы и излучением. Такие реакторы наз. реакторами с зажиганием самоподдерживающейся термоядерной реакции (см. Зажигания критерий). Пример такого T. р.: токамак, стелларатор.

К др. типу T. р. относятся реакторы, в к-рых для поддержания горения реакций недостаточно энергии, выделяющейся в плазме в виде заряж. продуктов реакций, а необходима энергия от внеш. источников. Такие реакторы принято называть реакторами с поддержанием горения термоядерных реакций. Это происходит в тех T. р., где велики энергетич. потери, напр. открытая магн. ловушка, токамак, работающий в режиме по плотности и темп-ре плазмы ниже кривой зажигания TP. Эти два типа реакторов включают все возможные виды T. р., к-рые могут быть построены на основе систем с магн. удержанием плазмы (токамак, стелларатор, открытая магн. ловушка и др.) или систем с инерциальным удержанием плазмы.

Международный термоядерный экспериментальный реактор ИТЭР: 1 - центральный соленоид; 2 - бланкет - защита; 3 - плазма; 4 - вакуумная стенка; 5 - трубопровод откачки; 6- криостат; 7- катушки активного управления; 8 - катушки тороидального магнитного поля; 9 - первая стенка; 10 - диверторные пластины; 11 - катушки полоидального магнитного поля.

Реактор с инерциальным удержанием плазмы характеризуется тем, что в него за короткое время (10 -8-10-7 с) с помощью либо излучения лазера, либо пучков релятивистских электронов или ионов вводится энергия, достаточная для возникновения и поддержания TP. Такой реактор будет работать только в режиме коротких импульсов, в отличие от реактора с магн. удержанием плазмы, к-рый может работать в квазистационарном или даже стационарном режимах.

T. р. характеризуется коэф. усиления мощности (добротностью) Q, равным отношению тепловой мощности реактора к мощности затрат на её производство. Тепловая мощность реактора складывается из мощности, выделяющейся при TP в плазме, мощности, к-рая вводится в плазму для поддержания темп-ры горения TP или поддержания стационарного тока в плазме в случае токамака, и мощности, выделяющейся в т.

Разработка T. р. с магн. удержанием более продвинута, чем систем с инерциальным удержанием. Схема Международного термоядерного эксперим. реактора-токамака ИТЭР, проект к-рого разрабатывается с 1988 четырьмя сторонами - СССР (с 1992 Россия), США, странами Евратома и Японией,-представлена на рисунке. T. р. имеет след. параметры: большой радиус плазмы 8,1 м; малый радиус плазмы в ср. плоскости 3 м; вытянутость сечения плазмы 1,6; тороидальное магн. поле на оси 5,7 Тл; номинальный ток плазмы 21 MA; номинальная термоядерная мощность с DT топливом 1500 МВт. Реактор содержит след. осн. узлы: центр. соленоид I, электрич. поле к-рого осуществляет пробой газа, регулирует нарастание тока и поддерживает его вместе со спец. системой дополнит. нагрева плазмы; первая стенка 9, к-рая непосредственно обращена к плазме и воспринимает потоки тепла в виде излучения и нейтральных частиц; бланкет - защита 2, к-рые явл. неотъемлемой частью T. р. на дейтерий-три-тиевом (DT) топливе, т. к. в бланкете воспроизводится сгоревший в плазме тритий. T. р. на DT топливе в зависимости от материала бланкета может быть "чистым" или гибридным. Бланкет "чистого" T. р. содержит Li; в нём под действием термоядерных нейтронов получается тритий: 6Li +nT+ 4He+ 4,8 МэВ, и происходит усиление энергии TP с 17,6 МэВ до 22,4 МэВ. В бланкете гибридного термоядерного реактора не только воспроизводится тритий, но имеются зоны, в к-рые помещается отвальный 238U для получения 239Pu. Одновременно в бланкете выделяется энергия, равная 140 МэВ на один термоядерный нейтрон. T. о., в гибридном T. р. можно получать примерно в шесть раз больше энергии на один исходный акт синтеза, чем в "чистом" T. р., но наличие в первом случае делящихся радиоакт. веществ создаёт радиац. обстановку, близкую той, к-рая существует в ядерных реакторах деления.

В T. р. с топливом на смеси D с 3He бланкет отсутствует, т. к. нет необходимости воспроизводить тритий: D + 3He4He (3,6 МэВ) + р(14,7 МэВ), и вся энергия выделяется в виде заряж. продуктов реакции. Радиац. защита предназначена для поглощения энергии нейтронов и радиоакт. излучения и уменьшения потоков тепла и излучений на сверхпроводящую магн. систему до приемлемого для стационарной работы уровня. Катушки тороидального магн. поля 8 служат для создания тороидального магн. поля и изготавливаются сверхпроводящими с использованием сверхпроводника Nb3Sn и медной матрицы, работающих при темп-ре жидкого гелия (4,2 К). Развитие техники получения высокотемпературной сверхпроводимости может позволить исключить охлаждение катушек жидким гелием и перейти на более дешёвый способ охлаждения, напр. жидким азотом. Конструкция реактора при этом существенно не изменится. Катушки полоидального поля 11 являются также сверхпроводящими и вместе с магн. полем тока плазмы создают равновесную конфигурацию полоидального магн. поля с одно или двухну-левым полоидальным д и в е р т о р о м 10, служащим для отвода тепла из плазмы в виде потока заряж. частиц и для откачки нейтрализованных на диверторных пластинах продуктов реакции: гелия и протия. В T. р. с D 3He топливом диверторные пластины могут служить одним из элементов системы прямого преобразования энергии заряж. продуктов реакции в электроэнергию. Криостат 6 служит для охлаждения сверхпроводящих катушек до темп-ры жидкого гелия или более высокой темп-ры при использовании более совершенных высокотемпературных сверхпроводников. Вакуумная камера 4 и средства откачки 5 предназначены для получения высокого вакуума в рабочей камере реактора, в к-рой создаётся плазма 3, и во всех вспомогательных объёмах, включая криостат.

В качестве первого шага на пути создания термоядерной энергетики представляется T. р., работающий на DT смеси за счёт большей скорости протекания реакций, чем при др. реакциях синтеза. В перспективе рассматривается возможность создания малорадиоактивного T. р. на смеси D с 3He, в к-ром осн. энергию несут заряж. продукты реакции, а нейтроны возникают лишь в DD и в DT реакциях при выгорании рождающегося в DD реакциях трития. В результате биол. опасность T. р. может быть, по-видимому, снижена на четыре-пять порядков величины по сравнению с ядерными реакторами деления, отпадает необходимость промышл. обработки радиоакт. материалов и их транспортировки, качественно упрощается захоронение радиоакт. отходов. Впрочем, перспективы создания в будущем экологически чистого T. р. на смеси D с 3 Не осложняются проблемой сырья: естеств. концентрации изотопа 3He на Земле составляют миллионные доли от изотопа 4He. Поэтому возникает трудный вопрос получения исходного сырья, напр. путём доставки его с Луны.

Лит.: Пистунович В. И., Шаталов Г. E., Термоядерный реактор на основе токамака, в сб.: Итоги науки и техники, сер. Физика плазмы, т. 2, M., 1981; Кадомцев Б. Б., Пистунович В. И., Международный токамак-реактор ИНТОР. Фаза 1, "Атомная энергия", 1983, т. 54, в. 2, с. 83; Kadomtsev B. В. [е. a.], OTR-experimental fusion-fission tokamak-reactor concept, в кн.: Fusion reactor design and technology 1986, Vienna, 1987; Report of the International tokamak reactor workshop, organized by Atomic eneargy Agency. Phase 2A, pt. 3, v. 1, Vienna, 1988; ITER Concept Definition, v. 2, Vienna, 1990; Proceedings of Second Wisconsin Symposium on helium-3 and fusion power Madison, Wisconsin, 19-21 July 1993; Головин И. H., Энергетика 21-го века и термоядерные реакторы, сжигающие гелий-3, препринт ИАЭ-5522/8, M., 1992.

В. И. Пистунович.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

dic.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта