Eng Ru
Отправить письмо

Доклад: Экологические аспекты энергетики и энергосбережения. Реферат экология и энергосбережение

$direct1

-Влияние энергосбережения на экологию -Энергосбережение в котельных, Экология

Пример готового реферата по предмету: Экология

Содержание

Введение

1.Значение котельных и их влияние на окружающую среду

2.Мероприятия по энергосбережению в котельных

Заключение

Список литературы

Содержание

Выдержка из текста

Составление режимных картэкономия топлива, тепловой энергииуменьшение себестоимости тепловой энергиипроизводственные объекты, котельныеРеконструкция котельной с установкой паровой винтовой машиныэкономия электрической и тепловой энергиипозволяет обеспечивать собственные нужды отопительных и производственных котельных в электрической энергии, сократить расходы на приобретение сетевой электроэнергии, снизить себестоимость произведенной тепловой энергии и получить дополнительную прибыльпроизводственные объекты, электрические сети, подстанции, котельныеСвоевременное устранение повреждений изоляции паропроводов и конденсатопроводов в с помощью современных технологий и материаловэкономия тепловой энергииснижение энергопотерьпроизводственные объекты, котельные, тепловые сетиУстановка подогревателя воздуха или воды в котельнойэкономия тепловой энергииповышение КПД установок, качественное и надежное теплоснабжениепроизводственные объекты, котельныеУстановка частотно-регулируемых приводов на насосыэкономия тепловой энергии, экономия водыэкономия электроэнергии для привода насосов, надежная и автоматизированная подача тепловой энергии, теплоносителя и водыпроизводственные объекты, насосные станции, тепловые сети, котельныеУстранение присосов воздуха в газоходах и обмуровках котловэкономия топлива, тепловой энергииулучшение качества и надежности теплоснабженияпроизводственные объекты, котельныеПриводимый перечень мероприятий не является исчерпывающим.

Но даже частичное их внедрение позволит обеспечить экономию тепловой энергии и снизить затраты на их оплату. В данном перечне приводятся как малозатратные мероприятия, так и нововведения, требующие значительных инвестиций. Часть мероприятий может быть реализована без капитальных вложений, за счёт устранения явных перерасходов топлива и энергии, утечек энергоносителей и т. п. При этом все приведённые мероприятия могут иметь малые сроки окупаемости. К общим рекомендациям по повышению энергосбережению котельных можно отнести: доведение показателей функционирования оборудования до нормативного уровня;внедрение новой энергосберегающей техники и технологии;совершенствование техники учета: внедрение автоматизированного коммерческого учета отпуска тепловой энергии, расхода газа, повышение точности оперативного и технического учета угля и мазута и т. д.;расширение энергетического анализа путем совершенствования нормативно-технической документации, повышения достоверности расчета показателей, своевременного выявления и устранения причин нерационального использования энергоресурсов. Таким образом, следуя вышеуказанным рекомендация, минимизируются внешние потери, стимулируется вторичное использование энергоресурсов, и тем самым уменьшается риск выплат штрафов за негативное влияние на окружающую среду и ликвидацию последствий загрязнений. ЗаключениеЭнергосбережение — должно стать неотъемлемой частью современного мира.

Ведь оно оказывает непосредственное влияние на экологию, при снижении расхода топлива уменьшаются выбросы в окружающую среду. Таким образом, энергосбережение это не просто метод борьбы с загрязнениями природной среды, а способ устранения причины, вызывающей его. Внедрять те или иные технические мероприятия для энергосбережения в котельных стоит только после проведения энергетического обследования объекта. Но даже их частичное внедрение типовых мероприятий позволит обеспечить экономию тепловой энергии и снизить затраты на их оплату. Энергосбережение должно быть отнесено к стратегическим задачам государства, так как оно является одновременно основным методом обеспечения энергетической и экологической безопасности, а так же единственным реальным способом сохранения высоких доходов от экспорта углеводородного сырья. Список литературы

1. Евстратов И.В. Методы повышения конкурентоспособности продукции машиностроения. // Интернет проект «Корпоративный менеджмент"http://www.cfin.ru/management/practice/reserves.shtml. Дата публикации 26.11.20 132. Мансуров В.А. Основы энергосбережения: Учеб.-метод. Пособие. Мн: БГМУ, 2010. — 79 с. 3. Яворский М.И. Энергосбережение на промышленных предприятиях: Учебное пособие. Томск: Изд. ТПУ, 2000. — 134 с.

Список литературы

1. Евстратов И.В. Методы повышения конкурентоспособности продукции машиностроения. // Интернет проект «Корпоративный менеджмент» www.cfin.ru/management/practice/reserves.shtml. Дата публикации 26.11.2013

2. Мансуров В.А. Основы энергосбережения: Учеб.-метод. Пособие. Мн: БГМУ, 2010. — 79 с.

3. Яворский М.И. Энергосбережение на промышленных предприятиях: Учебное пособие. Томск: Изд. ТПУ, 2000. — 134 с.

список литературы

referatbooks.ru

Реферат - Облик энергосбережения - Экология

Облик энергосбережения

Виталий ПРОХОРОВ, профессор кафедры отопления и вентиляции МГСУ

Проблема энергосбережения всегда сопутствовала энергопотреблению

Все последние годы в России интенсивно обсуждается проблема энергосбережения, в том числе в системах отопления и других системах инженерного оснащения зданий.

Принимаются решения, утверждаются нормативные документы как всероссийского, так и регионального предназначения. Принят закон РФ об энергосбережении. Проводятся бесчисленные совещания и научно-технические советы, «круглые столы» и академические чтения, съезды и симпозиумы, научно-практические конференции и выставки, ну и конечно, «саммиты». Во множестве выпускаются журналы, публикуются статьи и книги. Защищаются диссертации. Привлекаются зарубежные организации и эксперты.

И само собой разумеется, создаются многочисленные новые контролирующие органы и организации, с большими правами, например, по части запретов и штрафов, и одновременно — проведения работ по «хоздоговорам» между контролирующими и контролируемыми, вооруженные импортными дорогостоящими приборами, транспортом, обучающим персоналом, консультантами, экспертами, компьютерами, программами, специальными методиками, предписаниями и … непреодолимыми психологическими установками.

А кто из специалистов, или просто пытливых обывателей, засомневается в обоснованности, к примеру утвержденных СНиПов или региональных норм по энергосбережению в зданиях, или энергетического паспорта здания, того объявляют ретроградом, его работы – не соответствующими «перспективным интересам государства и общества» и опирающимися на «устаревшие технические решения» и зовущими «вернуться в прошлое» и «оставаться в плену отсталых представлений».

У авторов означенных определений в публикациях не возникает сомнения насчет качества нового, а именно, что оно может быть ухудшенным старым или просто ошибочным, т.е. наносить энерго-экономический ущерб государству.

Рассмотрим некоторые попытки решения обозначенной проблемы, начиная с прошлого и не проходя мимо «новизны» и «полезности» настоящего.

Человек заботится об экономии энергии с первых дней своего зарождения, а об экономии топлива – с момента обретения огня.

В первые тысячелетия тепловая энергия тратилась исключительно на обогрев людей и их жилища (отопление совместно с естественной вентиляцией), приготовление пищи и горячей воды. И было, конечно, небезразлично сколько носить дров для этих целей.

При этом сами жилища оборудовались в соответствии с природно-климатическими воздействиями на них окружающей среды и ресурсными возможностями обитающих в конкретном географическом месте людей.

Поэтому, как мы теперь говорим, удельная тепловая характеристика жилищ, конструкции, энергосберегающие и гигиенические свойства ограждений, источников и передатчиков тепла, топливных устройств, систем греющих и вентилирующих каналов с их регулирующими органами подчинялись не только общим закономерностям но и всегда несли отпечаток климатической обстановки расположения и сложившихся технологических традиций.

С появлением промышленности потребность в энергоносителях высокого качества и одновременно в их экономном расходовании резко возросла, поскольку в разумном обществе объем потребления и экономия энергии сущностно едины. Это вызвало к жизни новые научные разработки.

Еще в 18 веке, в 1745 году М.В. Ломоносов пишет диссертацию «О причине теплоты и холода», а через три года формулирует «всеобщий закон природы»- закон сохранения материи и движения.

Вслед за этим он же исследовал баланс действующих сил и расход энергии при «вольном» т.е. гравитационном, естественном «движении» вентиляционного воздуха «на шахтах и рудниках примеченном». Таким образом он оставил последователям научные основы естественной (наиболее энергоэкономичной) вентиляции, энергетика которой покоится на разностях температур, влажности и высот неразрывного потока воздуха.

Важный вклад в топливо сбережение при отоплении зданий был сделан Н.А. Львовым, обобщенный (в работе 1795 года «Русская пиростатика или употребление испытанных уже печей и каминов»). В первой половине 19 века массированные потребности в энергии и ее экономии вызвали разработку теории тепловых машин (С. Карно), описание закона сохранения энергии (Ю.Р. Майер, Дж. Джоуль, Г. Гельмгольц). Возникло ответвление науки – Термодинамика. Были сформулированы три ее фундаментальных принципа («начала»), имеющие непосредственное отношение к инженерным системам.

«Первое» — выражение закона сохранения энергии в виде балансов тепла и потоков энергоносителей.

«Второе» (Р. Клаузиус, У. Томсон) – учет необратимых потерь даже в идеализированных процессах передачи тепла (теплопотери в зданиях), Дж. Гиббс – метод термодинамических потенциалов (передача влаги в материалах и конструкциях).

И «третье» (В. Нернст) – свойство вырождения термодинамических функций и тепловой энергии тел в области температур вблизи абсолютного нуля.

Все это позволило точно вычислять как полезно потребляемую, так и безвозвратно теряемую доли тепловой энергии (за счет внешнего рассеивания и за счет необратимых внутренних потерь при любом теплообмене), т.н. эксергию и анергию.

Уже в конце 19 – начале 20 веков Д.И. Менделеев сделал научно обоснованные выводы о необходимости беречь ископаемое топливо, особенно газ, утверждая, что «сжигать газ это все равно, что топить печи ассигнациями». После Д.И. Менделеева, уже в наше время, как известно, нашими «ассигнациями» отапливается Запад.

А В.И. Вернадским были оценены экологические последствия тепловых и газовых выбросов в атмосферу, тепловых и химических выбросов в воды и грунт и найдены допустимые границы промышленной и добывающей деятельности человека, не вредящие самому его будущему, а строго регламентированные и находящиеся в согласии с природой.

И ни у кого из великих предков не было волюнтаристски составленных формул и коэффициентов.

Так что наше научно-техническое прошлое в части культуры потребления и сбережения энергии, так же, как и природы представляется отнюдь не темным царством.

И было бы хорошо, чтобы все современные инженеры, а также чиновники с их скорыми послушниками и помощниками, сбросили рекламную повязку с глаз, изучили его в силу своих возможностей, обратясь к объективной ситуации, и стремились бы из «зияющих высот» настоящего к новым научным «сияющим вершинам», по своему уровню хотя бы напоминающим уже отдаленные временем научные вершины прошлого.

Оптимизировать тепловые процессы в системах отопления и вентиляции, где главным критерием является минимум энергозатрат у нас обучены со студенческой скамьи все специалисты. Занимаются этим все и всегда. Поэтому разработанные и введенные нормы по строительной теплотехнике выглядят согласно народной поговорке: «Кто умеет, тот делает, кто не умеет – тот учит, как надо делать».

Энергетический кризис, имевший место на Западе в 70-х — начале 80-х годов до нас не дошел, мощная государственная программа по энергосбережению в СССР была выполнена: были разработаны все необходимые общепромышленные системы и оборудование для утилизации тепла вентиляционного выбросного воздуха, а в каждой отрасли промышленности, буквально для каждого цеха – конструктивные схемы и оборудование утилизации тепла, выделяемого технологическими аппаратами и печами. Были также разработаны теплонасосные системы, а также системы теплоснабжения с использованием солнечной, геотермальной и ветровой энергии.

К сожалению, все эти результаты оказались заброшенными. Отдельные исключения держатся на энтузиастах. Так вентиляционные теплоутилизаторы чаще всего не применяются в строительстве и реконструкции зданий, как в государственном, так и в частном секторах экономики. Даже в Москве.

Новый энергетический кризис, произошедший на Западе в последние 10 лет, уже ощущается и в России. Реакцией на него у нас стало, в частности, массовое и не всегда добровольное применение дорогостоящего зарубежного оборудования, автоматики, приборов учета тепловой энергии и теплоизоляционных материалов.

В подкрепление этого процесса были разработаны: измененный, по существу новый СНиП «Строительная теплотехника», Московские нормы «Энергосбережение в зданиях» и многие другие документы и публикации, неоднозначно воспринятые научной и инженерной общественностью. В первую очередь вследствие своей антирыночной, волюнтаристской сущности.

Развернувшаяся дискуссия, казалось, завершится большой и аргументированной публикацией, в которой в числе ряда положений показано, что традиционные, образованные тысячелетней эволюцией, выверенные климатом, геологией и географией естественные материалы для стен, в том числе массовые отечественные местные и наиболее экологичные дерево (рубленный дом) и кирпич из обожженной глины, поставлены измененным СНиП вне закона.

Но сей результат знаменателен тем, что он уже выходит за рамки только энергосбережения – это цивилизационное отторжение материалов и конструкций русского национального зодчества. Что для всякого здравомыслящего гражданина России странно. Результат этот, безусловно, требует более тщательного изучения задачи, во всей ее полноте. Следует либо отыскать доказательства и объяснения правомерности таковых нормативов, либо наоборот, их неправомерности и тогда найти аргументы, выстраивающие логику необходимости их отмены. Иначе и мы попадем под классическое определение А.С. Пушкина: «Дикость, подлость и невежество не уважают прошедшего, пресмыкаясь перед одним настоящим».

К чему относить понятие «экономия энергии в зданиях».

Какой бы жаркой ни была дискуссия вокруг энергосбережения в зданиях, она до сих пор ведётся в основном по вопросу принятия в заранее заданных значений (нигде не указывается кем и почему именно таких) минимальных термических сопротивлений ограждающих конструкций здания и тех или иных величин инфильтрации наружного воздуха, неизбежно участвующего в естественной вентиляции помещений. На чем и построен ряд нормативных документов.

Эти данные, полученные в результате расчетов теплопотерь в процессе проектирования по фрагментам ограждающих конструкций, суммируются и приводят к определению тепловой мощности систем отопления зданий.

Изначально предначертаны и возможные проценты «энергосбережения», которыми авторы норм активно оперируют и в литературе, и на уровнях управленческих.

Однако теряется факт, что сама система отопления – лишь одна из нескольких теплопотребляющих систем здания, к тому же потребляющих и электроэнергию.

Даже в простейшем примере здания – жилом доме городского типа существует, по крайней мере, еще система горячего водоснабжения с соизмеримым годовым потреблением тепла. Имеют место также затраты энергии на пищеприготовление (газ, электроэнергия ), электроосвещение, электропривод бытовой техники, электропитание информационной техники и др.

В гражданских и промышленных зданиях добавляются не менее крупные слагаемые затрат энергии на механическую вентиляцию и кондиционирование воздуха.

Поэтому оперировать процентами только на одно слагаемое, говоря, что это экономия энергии в здании в целом, есть подмена тезиса в дискуссии и некорректность математическая.

На самом деле проценты экономии энергии в зданиях от повышения их теплозащиты будут совсем другими.

Наглядным примером этой подмены является предписанная в МГСН форма энергетического паспорта здания. Она никак не обоснована, и не логична, если учесть весь комплекс энергопотребляющих систем. Форма паспорта построена на раздутом, многочисленном дроблении теплопотерь на мелкие составляющие (что является лишь предметом проектного расчета). Это создает избыток второстепенной информации и не дает аналитически полного представления об энергозатратах и энергосбережении в системах обеспечения воздушно-теплового микроклимата, системах светового микроклимата и санитарно-технических системах (горячее водоснабжение, пылеуборка, влажная уборка помещений).

Скороговоркой намеченные в энергопаспорте строчки по составляющим энергозатрат (кроме теплопотерь) также мало что дают, хотя бы по отсутствию связи с паспортами на вентиляционные системы, практикуемые у нас с начала 20 века.

Задача более полного представления энергопотребления зданием достаточно трудоемка и требует как постановочно-методических, так и серьезных научно-исследовательских работ, например в части интегрированного вычисления и отображения расходов разнородных энергоносителей, а также единого и энергоэкономичного управления физически разными энергопотоками.

Общетеоретическая постановка задачи и соответствующие формулы были представлены автором настоящих строк.

На этой основе, в качестве первого приближения, считаем возможным ограничиться только доступными данными по отоплению, механической вентиляции, кондиционированию воздуха и горячему водоснабжению, которые можно получить в процессе их реального проектирования и проектной оптимизации. При оценках годовых расходов энергии используем достаточно простой и освоенный аппарат расчета по ГСОП. В действительности интегральные значения величин потребления тепла описываются более сложными зависимостями и требуют более громоздких исходных данных и вычислительных процедур.

Список литературы

Для подготовки данной работы были использованы материалы с сайта www.stroyca.ru/

www.ronl.ru

Доклад - Экологические аспекты энергетики и энергосбережения

Экологические аспекты энергетики и энергосбережения

Новыми источниками энергии, которые позволили бы заменить существующие, являются энергия солнца, ветра, вод, термоядерного синтеза и других источников.

Солнце как источник тепловой энергии — это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавливания техническими устройствами) или опосредствованно через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, которые обусловливаются солнечными явлениями.

Использование солнечного тепла — наиболее простой и дешевый путь решения отдельных энергетических проблем. Подсчитано, что в США для обогрева помещений и горячего водоснабжения расходуется около 25% производимой в стране энергии. В северных странах, в том числе и в Латвии, эта доля заметно выше. Между тем значительная доля тепла, необходимого для этих целей, может быть получена посредством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой солнечной радиации поступает на поверхность земли.

Наиболее распространено улавливание солнечной энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое. Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды.

Еще более просты нагревательные системы пассивного типа. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимаются вверх, а их место занимают более охлажденные теплоносители. Примером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способными длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления. В данном случае проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и идеально чистой энергии.

Целенаправленное использование солнечной энергии пока не велико, но интенсивно увеличивается производство различного рода солнечных коллекторов. В США сейчас действуют тысячи подобных систем, хотя обеспечивают они пока только 0,5% горячего водоснабжения.

Очень простые устройства используют иногда в парниках или других сооружениях. Для большего накопления тепла в солнечное время суток в таких помещениях размещают материал с большой поверхностью и хорошей теплоемкостью. Это могут быть камни, крупный песок, вода, щебенка, металл и т.п. Днем они накапливают тепло, а ночью постепенно отдают его. Такие устройства широко используются в тепличных хозяйствах.

Преобразование солнечной энергии в электрическую возможно посредством использования фотоэлементов, в которых солнечная энергия индуцируется в электрический ток безо всяких дополнительных устройств. Хотя КПД таких устройств невелик, но они выгодны медленной изнашиваемостью вследствие отсутствия каких-либо подвижных частей. Основные трудности применения фотоэлементов связаны с их дороговизной и занятием больших территорий для размещения. Проблема в какой-то мере решаема за счет замены металлических фотопреобразователей энергии эластичными синтетическими, использования крыш и стен домов для размещения батарей, выноса преобразователей в космическое пространство и т.п.

В тех случаях, когда требуется получение небольшого количества энергии, использование фотоэлементов уже в настоящее время экономически целесообразно. В качестве примеров такого использования можно назвать калькуляторы, телефоны, телевизоры, кондиционеры, маяки, буи, небольшие оросительные системы и т.п.

В странах с большим количеством солнечной радиации имеются проекты полной электрификации отдельных отраслей хозяйства, например сельского, за счет солнечной энергии. Получаемая таким путем энергия, особенно с учетом ее высокой экологичности, по стоимости оказывается более выгодной, чем энергия, получаемая традиционными методами.

Солнечные станции подкупают также возможностью быстрого ввода в строй и наращивания их мощности в процессе эксплуатации простым присоединением дополнительных батарей-солнцеприемников. В Калифорнии построена гелиостанция, мощность которой достаточна для обеспечения электроэнергией 2400 домов.

Второй путь преобразования солнечной энергии в электрическую связан с превращением воды в пар, который приводит в движение турбогенераторы. В этих случаях для энергонакопления наиболее часто используются энергобашни с большим количеством линз, концентрирующих солнечные лучи, а также специальные солнечные пруды. Сущность последних заключается в том, что они состоят из двух слоев воды: нижнего с высокой концентрацией солей и верхнего, представленного прозрачной пресной водой. Роль материала, накапливающего энергию, выполняет солевой раствор. Нагретая вода используется для обогрева или превращения в пар жидкостей, кипящих при невысоких температурах.

Солнечная энергия в ряде случаев перспективна также для получения из воды водорода, который называют «топливом будущего». Разложение воды и высвобождение водорода осуществляется в процессе пропускания между электродами электрического тока, полученного на гелеустановках. Недостатки таких установок пока связаны с невысоким КПД (энергия, содержащаяся в водороде, лишь на 20% превышает ту, которая затрачена на электролиз воды) и высокой воспламеняемостью водорода, а также его диффузией через емкости для хранения.

В биомассе концентрируется ежегодно меньше 1% потока солнечной энергии. Однако эта энергия существенно превышает ту, которую получает человек из различных источников в настоящее время и будет получать в будущем.

Самый простой путь использования энергии фотосинтеза — прямое сжигание биомассы. В отдельных странах, не вступивших на путь промышленного развития, такой метод является основным. Более оправданной, однако, является переработка биомассы в другие виды топлива, например в биогаз или этиловый спирт. Первый является результатом анаэробного (без доступа кислорода), а второй аэробного (в кислородной среде) брожения.

Имеются данные, что молочная ферма на 2 тысячи голов способна за счет использования отходов обеспечить биогазом не только само хозяйство, но и приносить ощутимый доход от реализации получаемой энергии. Большие энергетические ресурсы сконцентрированы также в канализационном иле, мусоре и других органических отходах.

Спирт, получаемый из биоресурсов, все более широко используют в двигателях внутреннего сгорания. Так, Бразилия с 70-х годов значительную часть автотранспорта перевела на спиртовое горючее или на смесь спирта с бензином — бензоспирт. Опыт использования спирта как энергоносителя имеется в США и других странах.

Для получения спирта используется разное органическое сырье. В Бразилии это в основном сахарный тростник, в США — кукуруза. В других странах — различные зерновые культуры, картофель, древесная масса. Ограничивающими факторами для использования спирта в качестве энергоносителя являются недостаток земель для получения органической массы и загрязнение среды при производстве спирта (сжигание ископаемого топлива), а также значительная дороговизна (он примерно в 2 раза дороже бензина).

Для России, где большое количество древесины, особенно лиственных видов (береза, осина), практически не используется (не вырубается или оставляется на лесосеках), весьма перспективным является получение спирта из этой биомассы по технологиям, в основе которых лежит гидролиз. Большие резервы для получения спиртового горючего имеются также на базе отходов лесопильных и деревообрабатывающих предприятий.

В последнее время в литературе появились термины «энергетические культуры», «энергетический лес». Под ними понимаются фитоценозы, выращиваемые для переработки их биомассы в газ или жидкое горючее. Под «энергетические леса» обычно отводятся земли, на которых по интенсивным технологиям за короткие сроки (5-10 лет) выращивается и снимается урожай быстрорастущих видов деревьев (тополя, эвкалипты и др.).

В целом же биотопливо можно рассматривать как существенный фактор решения энергетических проблем если не в настоящее время, то в будущем. Основное преимущество этого ресурса — его постоянная и быстрая возобновимость, а при грамотном использовании и неистощимость.

Ветер, как и движущаяся вода, являются наиболее древними источниками энергии. В течение нескольких столетий эти источники использовались как механические на мельницах, пилорамах, в системах подачи воды к местам потребления и т.п. Они же использовались и для получения электрической энергии, хотя доля ветра в этом отношении оставалась крайне незначительной.

Интерес к использованию ветра для получения электроэнергии оживился в последние годы. К настоящему времени испытаны ветродвигатели различной мощности, вплоть до гигантских. Сделаны выводы, что в районах с интенсивным движением воздуха ветроустановки вполне могут обеспечивать энергией местные потребности. Оправдано использование ветротурбин для обслуживания отдельных объектов (жилых домов, неэнергоемких производств и т.п.). Вместе с тем стало очевидным, что гигантские ветроустановки пока не оправдывают себя вследствие дороговизны сооружений, сильных вибраций, шумов, быстрого выхода из строя. Более экономичны комплексы из небольших ветротурбин, объединяемых в одну систему.

Гидроресурсы продолжают оставаться важным потенциальным источником энергии при условии использования более экологичных, чем современные, методов ее получения. Например, крайне недостаточно используются энергетические ресурсы средних и малых рек (длина от 10 до 200 км). В прошлом именно малые и средние реки являлись важнейшим источником получения энергии. Небольшие плотины на реках не столько нарушают, сколько оптимизируют гидрологический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обусловленного природопользования, мягкого вмешательства в природные процессы. Водохранилища, создававшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колебания воды в реках и стабилизируют уровни грунтовых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных экосистем.

Имеются расчеты, что на мелких и средних реках можно получать не меньше энергии, чем ее получают на современных крупных ГЭС. В настоящее время имеются турбины, позволяющие получать энергию, используя естественное течение рек, без строительства, плотин. Такие турбины легко монтируются на реках и при необходимости перемещаются в другие места. Хотя стоимость получаемой на таких установках энергии заметно выше, чем на крупных ГЭС, ТЭС или АЭС, но высокая экологичность делает целесообразным ее получение.

Большими энергетическими ресурсами обладают водные массы морей и океанов. К ним относится энергия приливов и отливов, морских течений, а также градиентов температур на различных глубинах. В настоящее время эта энергия используется в крайне незначительном количестве из-за высокой стоимости получения. Это, однако, не означает, что и в дальнейшем ее доля в энергобалансе не будет повышаться.

В мире пока действуют две-три приливно-отливные электростанции. Однако, кроме высокой стоимости энергии, электростанции такого типа нельзя отнести к высокоэкологичным. При их строительстве плотинами перекрываются заливы, что резко изменяет экологические факторы и условия обитания организмов.

В океанических водах для получения энергии можно использовать разности температур на различных глубинах. В теплых течениях, например в Гольфстриме, они достигают 20°С. В основе принципа лежит применение жидкостей, кипящих и конденсирующихся при небольших разностях температур. Теплая вода поверхностных слоев используется для превращения жидкости в пар, который вращает турбину, холодные глубинные массы — для конденсации пара в жидкость. Трудности связаны с громоздкостью сооружений и их дороговизной. Установки такого типа находятся пока на стадии испытаний.

Несравнимо более реальны возможности использования геотермальных ресурсов. В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров. Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества.

Ведутся также опыты по использованию тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды.

Уже в настоящее время отдельные города или предприятия обеспечиваются энергией геотермальных вод. Это, в частности, относится к столице Исландии — Рейкьявику. В начале 80-х годов в мире производилось на геотермальных электростанциях около 5000 МВт электроэнергии (примерно 5 АЭС). Из стран бывшего СССР значительные ресурсы геотермальных вод имеются лишь в России на Камчатке, но используются они пока в небольшом объеме. В бывшем СССР за счет этого вида ресурсов производилось только около 20 МВт электроэнергии.

Современная атомная энергетика базируется на расщеплении ядер атомов на два более легких с выделением энергии пропорционально потере массы. Источником энергии и продуктами распада при этом являются радиоактивные элементы. С ними связаны основные экологические проблемы ядерной энергетики.

Еще большее количество энергии выделяется в процессе ядерного синтеза, при котором два ядра сливаются в одно более тяжелое, но также с потерей массы и выделением энергии. Исходными элементами для синтеза является водород, конечным — гелий. Оба элемента не оказывают отрицательного влияния на среду и практически неисчерпаемы.

Результатом ядерного синтеза является энергия солнца. Человеком этот процесс смоделирован при взрывах водородных бомб. Задача состоит в том, чтобы ядерный синтез сделать управляемым, а его энергию использовать целенаправленно. Основная трудность заключается в том, что ядерный синтез возможен при очень высоких давлениях и температурах около 100 млн. °С. Отсутствуют материалы, из которых можно изготовить реакторы для осуществления сверхвысокотемпературных (термоядерных) реакций. Любой материал при этом плавится и испаряется.

Ученые пошли по пути поиска возможностей осуществления реакций в среде, не способной к испарению. Для этого в настоящее время испытываются два пути. Один из них основан на удержании водорода в сильном магнитном поле. Установка такого типа получила название ТОКАМАК (Тороидальная камера с магнитным полем). Такая камера разработана в российском институте им. Курчатова. Второй путь предусматривает использование лазерных лучей, за счет которых обеспечивается получение нужной температуры, в места концентрации которых подается водород.

Несмотря на некоторые положительные результаты по осуществлению управляемого ядерного синтеза, высказываются мнения, что в ближайшей перспективе он вряд ли будет использован для решения энергетических и экологических проблем. Это связано с нерешенностью многих вопросов и с необходимостью колоссальных затрат на дальнейшие экспериментальные, а тем более промышленные разработки.

В заключение можно сделать вывод, что современный уровень знаний, а также имеющиеся и находящиеся в стадии разработок технологии дают основание для оптимистических прогнозов: человечеству не грозит тупиковая ситуация ни в отношении исчерпания энергетических ресурсов, ни в плане порождаемых энергетикой экологических проблем. Есть реальные возможности для перехода на альтернативные источники энергии (неисчерпаемые и экологически чистые). С этих позиций современные методы получения энергии можно рассматривать как своего рода переходные. Вопрос заключается в том, какова продолжительность этого переходного периода и какие имеются возможности для его сокращения.

Список использованных источников

1. Барышев В., Трутаев В. Источник энергии — в ее экономии // Белор. думка. 1997.

2. Герасимов В.В. Основные направления развития энергетики Республики Беларусь // Нестор-вестник-НВ. 1997.

3. Основы энергосбережения: Учеб. пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев.2-е изд., стереотип. — Мн.: БГЭУ, 2002. — 198 с.

4. Стандартизация энергопотребления — основа энергосбережения / П.П. Безруков, Е.В. Пашков, Ю.А. Церерин, М.Б. Плущевский // Стандарты и качество. 1993.

www.ronl.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта