Eng Ru
Отправить письмо

Развитие и размещение традиционной электроэнергетики. Крупнейшие в стране по мощности тэс гэс аэс


Страны-лидеры по производству электроэнергии | VivaReit

Производство электроэнергии человеком началось в конце 1870-х гг., когда баварский инженер З. Шуккерт построил в городе Этталь первую электростанцию. Местом ее расположения стал дворовой сад Линдерхофа. Там находился грот, который необходимо было осветить. Свеч для этого было недостаточно, и Шуккерт решился на эксперимент. Его электростанция состояла из 24 динамоэлектрических генераторов, соединенные между собой приводом от парового двигателя.

Сейчас в мире электроэнергия производится разными путями – тепловыми двигателями, гидродинамикой, силой ветра и солнца, приливами и отливами, расщеплением атома. Генерируется электричество на ТЕС, ГЭС, АЭС, которые помогают получить электроэнергию традиционными способами.

Но, все чаще, распространение получают и альтернативные методы по производству энергии. В частности, уже много лет практикуется установка в полях ветряков, солнечных батарей на крышах зданий, сжигание мусора и других отходов жизнедеятельности человека на заводах.

Лидерами по производству электрической энергии являются Китай (на первом месте), США (на втором) и Индия (на третьем).

10. Южная Корея, 517 млрд кВт/час в год

Станция в Южной Корее

В этой стране сосредоточено огромное количество тепловых станций, на которые приходится более половины производства электричества. Появление ТЭС было вызвано тем, что правительство Южной Кореи недостаточно использует возможности рек. В результате чего, гидроэнергетика плохо развивается и не оказывает серьезного влияния на энергетический сектор.

Быстро восполнить потребности в энергии, в которой нуждались промышленные предприятия, жители страны, армия, производство, помогло строительство атомных электрических станций. Сейчас правительство стремится развивать возобновляемые источники электроэнергии, чтобы снизить загрязнение атмосферы и уровень применения АЭС.

9. Бразилия, 582 млрд кВт/час в год

Станция в Бразилии

Энергетический сектор государства формируется из самых различных видов источников и ресурсов. Это и ветровая энергия, и применение природного газа, угля, масла, биотоплива, и атомная энергетика, и водоемы.

В основном, электричество производится с помощью ГЭС (более 80%). Проблемы начинаются в период засухи, которая может длиться несколько месяцев подряд. В такие моменты правительство выдает распоряжение использовать другие ресурсы получения электроэнергии. В частности, запускаются на полную мощность АЭС, ТЭС, где в качестве топлива используют уголь, биотопливо, мусор.

Гидросистема Бразилии очень развитая, поэтому руководство страны старается максимально использовать ее возможности, создавая новые ГЭС. Бразилия экспортирует часть получаемой энергии в соседние южноамериканские государства.

8. Франция, 555 млрд кВт/час в год

АЭС во Франции

Долгое время данное европейское государство было лидером по производству и экспорту электроэнергии на всем Европейском континенте. Но последние лет пять уступает свои позиции Германии.

Ежегодно Франция производит больше 550 миллиардов киловатт-часов чистого «продукта». На территории страны сосредоточено огромное количество АЭС, с помощью которых изготавливается 75% всей электроэнергии Франции.

«Атомный» прорыв начался после Второй мировой войны, обеспечив производство и население дешевым электричеством.

7. Германия, 614 млрд кВт/час в год

Станция в Германии

Отличительной особенностью самого крупного государства в ЕС является наличие, как традиционных источников производства энергии, так и альтернативных. В частности, в Германии очень много ветряков, позволяющих получать ветровую энергию. Есть и станции, работающие на солнечных батареях. Также правительство огромные суммы бюджета вкладывают в то, чтобы развивать так называемые неводные и возобновляемые источники энергии.

Станции страны работают на ветре и биотопливе, что позволяет получать экологически чистую электроэнергию. Это помогает уменьшить выбросы в атмосферу, делает более безопасным производство энергии в стране, снижает риск аварий на атомных станциях.

6. Канада, 615 млрд кВт/час в год

Станция в Канаде

Основными источниками получения электроэнергетики считаются АЭС, ГЭС и ТЕС. Большое внимание уделяется тому, чтобы развивать возобновляемые ресурсы электроэнергии. Поэтому правительство старается максимально использовать особенности географического расположения Канады, ее климата, специфику водного и ветрового режима.

В частности, в регионах, где постоянно дуют ветра, устанавливаются ветряки и ветровые станции. На горных реках и более крупных водных артериях строятся ГЭС. Дополнительно используются природные ископаемые – уголь, древесный газ, древесина, кокс, нефть и нефтепродукты.

5. Япония, 1061 млрд кВт/час в год

Станция в Японии

Такое огромное количество чистой электроэнергии уже давно сделало Японию энергетически независимой от других стран мира и Тихоокеанского региона. Правительство страны полностью обеспечивает производственные мощности, поддерживает работу инфраструктурных объектов, жилые дома, транспорт и т.д. Часть японских энергетических ресурсов экспортируется за границу, в том числе, в страны Азии. В другие государства

Япония также отправляет оборудование, которое очень необходимо для энергетического сектора. Его большую часть составляют АЭС и ядерная энергетика. Но после аварии на Фукусима-1 в 2011 году и масштабных загрязнений природы, практически все атомные станции были закрыты. Поэтому акцент в получении энергии был перемещен на развитие системы гидроэнергетики, а также использование возобновляемых источников энергии.

4. Россия, 1064 млрд кВт/час в год

АЭС в России

На территории Российской Федерации находится много разных станций, производящих энергию. Более 60% – это тепловые станции, которые работают с помощью угля и природного газа. Еще 40% приходится на альтернативные ресурсы, а также ГЭС (чему способствует развитая водная система) и АЭС. Получают электроэнергию в России и с помощью ветровых, солнечных станций. Экспортируются энергоресурсы в Польшу, Турцию, Финляндию.

3. Индия, 1200 млрд  кВт/час в год

Станция в Индии

Государство замыкает тройку лидеров стран-производителей энергии в мире. 50% электричества поступают от ТЭС, которые работают от угля. Гораздо меньше ресурсов поступает от гидростанций и других источников.

Производящие мощности постоянно увеличиваются, что позволило Индии занять первое место в Азии по количеству энергетических ресурсов. Данный сектор экономики постоянно стимулируется спросом и потребностями фирм, компаний, заводов, самих индусов.

2. США, 4300 млрд. кВт/час в год

Электростанция в США

На благосостояние этой страны работают разные виды станций, способных производить электроэнергию. Благодаря климатическим условиям, разветвленной гидросистеме, близости океана, разной розе ветров, богатым природным ископаемым, по всей территории Соединенных Штатов были установлено огромное количество ГЭС, ТЭС, АЭС.

К основным источникам, которые занимаются производством энергии, относятся тепловая, ядерная, геотермальная, ветровая, атомная и гидроэнергетика. Правительством разрабатываются специальные программы развития альтернативных энергетических ресурсов, чтобы развивать энергокомплекс США. Возобновляемые источники включают использование биотоплива, солнечной энергетики, сжигание мусора, установку на домах и фирмах солнечных батарей.

1. Китай, 5600 млрд. кВт/час в год

Производство энергии в Китае

КНР богата природными запасами угля, что позволяет наладить бесперебойную работу тепловых станций. Значительную помощь в их работе оказывают гидроэнергетические ресурсы, строительство и запуск АЭС.

Чтобы правильно распределять полученный продукт и ресурсы, в 1996 году был принят специальный закон об электроэнергии. Его суть состоит в том, чтобы регулировать производство энергии, защищать инвесторов, которые вкладывают средства в развитие энергокомплекса.

vivareit.ru

Развитие и размещение традиционной электроэнергетики

Электроэнергетика, основанная на различных видах невозобновимого минерального топлива (химическая энергия > тепловая энергия > электрическая энергия) и использующая силу падающей воды рек относится к традиционной. На долю ТЭС, ГЭС и АЭС приходится 99 % вырабатываемой в России энергии (табл. 38).

Таблица 38

Динамика и структура выработки электроэнергии в России

 
Динамика выработки, млрд. кВт/ч
  30,8 470,2 1040,4
Структура выработки по типам станций, %
ТЭС 95,1 79,3 77,3 73,6 66,2
ГЭС 4,9 15,4 18,8
АЭС - 0,7 6,7

Теплоэлектростанции. Всего на территории России действует около 600 тепловых станций. Они вырабатывают электрическую и тепловую энергию за счет сжигания природного газа (67 %), угля (28 %) и мазута (5 %).

Тепловая электроэнергетика представлена станциями двух типов, а именно: работающими в режиме конденсации (вырабатывается только электрическая энергия) и работающими в режиме теплофикации (вырабатывается электрическая и тепловая энергия).

Конденсационные электростанции (КЭС) в свою очередь подразделяются на районные (ГРЭС) и центральные (ЦЭС). ГРЭС - самые мощные и, значит, потребляют значительное количество минерального топлива, являются зависимыми от транспортных издержек по перевозке топлива и поэтому их выгодно размещать у сырьевых баз (буроугольные разрезы, НПЗ, ГПЗ). ЦЭС – строятся на площадках энергоемких промышленных предприятий, т.е. непосредственно у пиков энергопотребления, с целью снижения расходов предприятий.

Теплофикационные электростанции (ТЭЦ) строят только в крупных городах, поскольку передача теплоносителя (горячей воды) может осуществляться в радиусе не более 10 – 15 км от станции. Например, Челябинск обслуживается тремя ТЭЦ. В стране построено и эксплуатируется более 260 тыс. км теплосетей.

В малых городах функцию теплоснабжения выполняют котельные установки. Их общее число приближается к 190 тыс.

Гидроэлектростанции. На территории России функционирует около 100 гидроэлектростанций (ГЭС). ГЭС характеризуются самой низкой себестоимостью вырабатываемой электроэнергии, поэтому к ним тяготеют самые энергоемкие отрасли промышленности (выплавка легких цветных металлов, производство синтетических волокон и нитей и др.).

На территории Восточной Сибири и Дальнего Востока сосредоточено 80 % технического гидроэнергопотенциала страны.

Различают такие типы ГЭС как равнинные, горные, деривационные и гидроаккумулирующие.

Самые мощные равнинные и горные ГЭС образуют каскады на крупных реках. В состав Ангаро-Енисейского каскада входят станции: Саяно-Шушенская (6,4 млн. кВт), Красноярская (6 млн. кВт), Иркутская (4 млн. кВт), Братская (4,5 млн. кВт), Усть-Илимская (4,3 млн. кВт), Богучанксая ГЭС (3 млн. кВт). Волжско-Камский каскад образован такими станциями как: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, две Волжские (возле Самары и Волгограда), Саратовская, Камская, Воткинская, Нижнекамская.

Строительство ГЭС требует длительных сроков и значительных капиталовложений (фондоемкая отрасль). Главное их предназначение – покрытие пиковых энергонагрузок в сети.

Атомные электростанции. Всего на территории страны функционирует 10 гражданских атомных электростанций (АЭС). Каждая станция состоит из отдельных энергоблоков – реакторов. Их общее количество – 31.

Таблица 39

Некоторые характеристики эксплуатируемых АЭС России

  Размещение Мощность, МВт Тип реакторов Людность ближайшего крупного города (тыс. чел., 2000) Расстояние от АЭС до города (км)
Кольская   Мурманская обл., Полярные Зори 1 760 ВВЭР Мурманск (376)  
Ленинградская Ленинградская обл., Сосновый Бор 2 000 РБМК СПб (4 694)  
Смоленская Смоленская обл., Десногорск 3 000 РБМК Смоленск (353)  
Калининская Тверская обл., Удомля 2 000 ВВЭР Тверь (455)
Курская Курская обл., Курчатов 4 000 РБМК Курск (444)
Балаковская Саратовская обл., Балаково 4 000 ВВЭР Балаково (206)
Нововоронежская Воронежская обл., Нововоронеж 2 400 ВВЭР Воронеж (908)
Белоярская Свердловская обл., Заречный БН Екатеринбург (1 266)
Билибинская АТЭЦ Чукотский АО, Билибино ЭПГ Магадан (121) 1 250
Ростовская Ростовская обл., Волгодонск 1 000 ВВЭР Ростов-на-Дону (1 013)

Примечание:экспериментальная АЭС РАН - Обнинская (Обнинск, Калужская обл., ГНЦ РФ «ФЭИ») остановлена в 2002 г.

 

Помимо них для гражданских нужд также используются мощности атомных реакторов в Димитровграде (Ульяновская область) и Северске (Томская область). Первая в мире АЭС введена в эксплуатацию в 1954 году – Обнинская (Калужская область).

Ранее утверждалось, что АЭС наиболее экономичный способ энергоснабжения топливо - и энергодефицитных районов страны, но при этом забывали о том, что 75 % суммарных затрат в ядерном топливном цикле приходится на переработку и захоронение отходов, которые не брались во внимание при расчете себестоимости.

Срок службы одного атомного реактора – около 30 лет, после чего его необходимо выводить из эксплуатации. В России в гражданских целях эксплуатируются ядерные реакторы трех типов: 1) водо-водяные (ВВЭР), 2) большой мощности канальные (РБМК) – с 1986 года именуются реакторами «чернобыльского типа», 3) на быстрых нейтронах (БН). Реакторы ВВЭР и РБМК в качестве топлива используют низкообогащенный уран (изотоп 235 U). Реакторы БН в качестве топлива используют 238 U. В стране пока только одна станция использует передовую технологию БН – Белоярская (Свердловская область, город Заречный).

АЭС используют транспортабельное топливо – тепловыделяющие элементы из низкообогащенного урана. При расходе 1 кг урана выделяется теплота, эквивалентная сжиганию 2.5 тыс. т лучшего угля. Эта особенность исключает зависимость АЭС от сырьевого фактора и обеспечивает маневренность в их размещении. Вот почему их целесообразно строить в первую очередь в тех районах страны, где замыкающие затраты на энергоснабжение посредством ТЭС наиболее высоки, а предпосылок для создания мощных каскадов ГЭС практически нет (Северо-Запад, Центр, Юг).

АЭС ориентируются на потребителей, расположенных в районах с напряженным топливно-энергетическим балансом или в местах, где выявленные ресурсы минерального топлива ограничены. Площадки под их строительство отводятся не ближе 30 км от крупных городов, в сейсмически спокойных зонах. Например, Ленинградская АЭС, размещена на берегу Финского залива у города Сосновый Бор.

Предполагается, что к 2025 году доля вырабатываемой на АЭС энергии вырастет до 22 %. Для этого в стране необходимо построить около 40 новых энергоблоков. Некоторые из старых проектов уже реанимированы. В частности возобновлено строительство Южноуральской АЭС.

Обсуждается идея строительства плавучих АЭС (на базе реакторов атомных подлодок) для электроснабжения прибрежных районов Российской Зоны Севера (Певек).

Похожие статьи:

poznayka.org

11.2.5. География электроэнергетики - Экономическая география

11.2.5. География электроэнергетики

 

По производству электроэнергии (840—850 млрд кВт-ч) Россия занимает ведущие позиции в мире, усту­пая только США, Японии и Китаю. Около 70% выраба­тываемой в стране электроэнергии дают тепловые электростанции. Преимущественное развитие тепловой элек­троэнергетики объясняется высокой обеспеченностью страны топливными ресурсами и рядом особенностей, характерных для этого вида электростанций.

Тепловые электростанции в отличие от гидроэлект­ростанций размещаются более свободно, вырабатывают электроэнергию без сезонных колебаний, строятся зна­чительно быстрее и дешевле. Среди тепловых электро­станций различают конденсационные и теплоэлектро­централи.

Конденсационные электростанции (КЭС) размеща­ют или у источников топлива (уголь, газ, мазут, слан­цы, торф), или в местах потребления электроэнергии.

При выборе места для строительства КЭС учитывают сравнительную эффективность транспортировки топли­ва и электроэнергии. Если затраты на перевозку топли­ва превышают издержки на передачу электроэнергии, то электростанции целесообразно размещать непосред­ственно у источников топлива, при более высокой эф­фективности транспортировки топлива электростанции размещают вблизи потребителей электроэнергии.

Среди тепловых электростанций в России основную роль играют мощные (более 2 млн кВт) ГРЭС — государствен­ные районные электростанции. Они широко представле­ны в местах наибольшего потребления электроэнергии - Центральном (Конаковская, Костромская, Рязанская ГРЭС и др.), Уральском (Рефтинская, Троицкая, Ирклинская, Пермская ГРЭС), Северо-Западном (Киришская ГРЭС), Северо-Кавказском (Ставропольская ГРЭС и др.) районах и в местах добычи дешевого топлива (в основном в восточ­ных районах) — в Западной Сибири (на попутном нефтя­ном газе - Сургутские ГРЭС), Восточной Сибири (на уг­лях открытой добычи Канско-Ачинского бассейна - Назаровская, Березовская, Ирша-Бородинская ГРЭС), на Дальнем Востоке (на углях открытой добычи - Южно-Якутского бассейна - Нерюнгринская ГРЭС).

Теплоэлектроцентрали (ТЭЦ) — предприятия ком­бинированного типа, производят наряду с электроэнер­гией теплоту (пара, горячей воды). В отличие от КЭС теплоэлектроцентрали размещаются только у потреби­телей, так как радиус передачи тепла невелик (макси­мум 20—25 км). В России действует несколько сотен крупных и средних ТЭЦ, мощность самых крупных превышает 1 млн кВт.

Главные недостатки в работе тепловых электростан­ций — использование невозобновляемых топливных ре­сурсов, крайне неблагоприятное воздействие на окру­жающую среду (выбрасывают в атмосферу огромное количество золы, вредных веществ, поглощают громад­ные порции кислорода и др.). Несмотря на это, в перс­пективе доля ТЭС в производстве электроэнергии в Рос­сии может увеличиться.

Атомные электростанции (АЭС) производят элект­роэнергию более дешевую, чем ТЭЦ, работающие на угле или мазуте, в отличие от последних, не дают выбросов в атмосферу (при нормальной безаварийной работе). Их доля в суммарной выработке электроэнергии в России не превышает 11% (в Литве - 76%, Франции — 76, Бельгии - 65, Швеции — 51, Словакии 49, ФРГ — 34, Японии - 30, США- 20%).

Главный фактор размещения атомных электростанций, использующих в своей работе высокотранспортабельное, ничтожное по весу топливо (для полной годовой загрузки АЭС требуется всего несколько килограммов урана), — по­требительский. Крупнейшие АЭС в нашей стране в основ­ном расположены в районах с напряженным топливно-энергетическим балансом: Северо-Западном (Ленинградс­кая - 4 млн кВт), Центральном (Смоленская — 3 млн кВт, Калининская — 2 млн кВт), Центрально-Черноземном (Кур­ская - 4 млн кВт, Нововоронежская -1,8 млн кВт), Се­верном (Кольская в г. Кандалакша — 1,8 млн кВт), Повол­жском (Балаковская в Саратовской области — 4 млн кВт).

Менее мощные АЭС созданы на Урале (Белоярская в Свердловской области - 0,6 млн кВт), Дальнем Востоке (Билибинская в Чукотском автономном округе — 0,048 млн кВт), в Центральном районе (Обнинская в Калужской области — опытная АЭС). На Северном Кав­казе запущена Ростовская АЭС (г. Волгодонск Ростовс­кой области).

Гидравлические электростанции (ГЭС) используют возобновляемые ресурсы, обладают простотой управле­ния, очень высоким КПД полезного действия (80%)[37], высокой маневренностью в работе. В результате себе­стоимость производимой на ГЭС энергии в 5-6 раз ниже, чем на ТЭС. Доля ГЭС в суммарной выработке электро­энергии в России составляет примерно 19%.

Определяющее влияние на размещение гидроэлект­ростанций оказывают размеры запасов гидроресурсов, природные (рельеф местности, характер реки, ее режим и др.) и хозяйственные (размер ущерба от затопления территории, связанного с созданием плотины и водо­хранилища ГЭС, ущерба рыбному хозяйству и др.), ус­ловия их использования.

Запасы гидроресурсов и эффективность использования водной энергии в районах России различны. Большая часть гидроэнергоресурсов страны (более 2/3 запасов) со­средоточена в Восточной Сибири и на Дальнем Востоке. В этих же районах исключительно благоприятны при­родные условия для строительства и функционирования ГЭС — многоводность, естественная зарегулированность рек (например, реки Ангары озером Байкал), позволяю­щие вырабатывать электроэнергию на мощных ГЭС рав­номерно, без сезонных колебаний, наличие скальных оснований для возведения высоких плотин и др.

Эти и другие особенности обусловливают здесь более высокую экономическую эффективность строительства ГЭС (удельные капиталовложения в 2-3 раза ниже, а стоимость электроэнергии в 4-5 раз дешевле), чем в районах европейской части страны. Поэтому самые круп­ные в стране ГЭС построены на реках Восточной Сиби­ри (Ангара, Енисей). На Ангаре, Енисее и других реках России строительство ГЭС ведется, как правило, каска­дами, которые представляют собой группу электростан­ций, расположенных ступенями по течению водного потока, для последовательного использования его энер­гии. Крупнейший в мире Ангаро-Енисейский гидроэнер­гетический каскад имеет общую мощность около 22 млн кВт. В его состав входят гидроэлектростанции: Саяно-Шушенская (мощность 6,4 млн кВт) и Красноярская (6,0) на Енисее; Иркутская (0,7), Братская (4,5%), Усть-Илимская (4,3) на Ангаре. Сооружается Богучанская ГЭС (4 млн кВт).

Каскад из мощных электростанций создан также в европейской части страны на Волге и Каме (Волжско-Камский каскад): Волжская (вблизи Самары) имеет мощность 2,5 млн кВт, Волжская (вблизи Волгограда) - 2,3 млн кВт, Саратовская - 1,4 млн кВт, Чебоксарс­кая - 1,4 млн кВт, Боткинская - 1 млн кВт и др. Всего Волжско-Камский каскад состоит из 13 гидроузлов об­щей мощностью 11,5 млн кВт.

Менее мощные ГЭС созданы на Дальнем Востоке, в Западной Сибири, на Северном Кавказе и в других рай­онах России. В европейской части страны, испытыва­ющей острый дефицит в электроэнергии, весьма перс­пективно строительство особого вида гидроэлектростан­ций - гидроаккумулиругощих (ГАЭС). Одна из таких электростанций уже построена — Загорская ГАЭС (1,2 млн. кВт) в Московской области. Строится Централь­ная ГАЭС (3,6 млн кВт).

Доля нетрадиционных производителей электроэнер­гии в России - геотермальных электростанций (Паужетская ГРЭС в Камчатской области), приливных (Кислогубская ПЭС в Мурманской области), ветровых, сол­нечных в производстве электрической энергии крайне мала — менее 1% .

Среди экономических районов больше всех электро­энергии производят Центральный (150 млрд кВт-ч), Уральский (около 130 млрд кВт-ч), Восточно-Сибир­ский (более 130), Западно-Сибирский (110) и Поволж­ский (около 100 млрд кВт-ч). На них приходится около 75% производства электроэнергии России.

Центральный и Уральский районы не только в боль­шом количестве электроэнергию производят, но и боль­ше всех ее потребляют, поэтому на производстве элек­троэнергии специализируются только Восточно-Сибир­ский, Западно-Сибирский и Поволжский экономичес­кие районы.

Многочисленные тепловые, атомные и гидроэлектро­станции России объединены линиями высоковольтных электропередач в единую энергетическую систему (ЕЭС).

ЕЭС России — крупнейшая в мире энергосистема. Она охватывает более 700 электростанций (общей мощнос­тью свыше 250 млн кВт), имеет в своем составе 70 рай­онных энергосистем и образуемых ими несколько Объе­диненных энергетических систем (ОЭС) — Северо-Запа­да, Центра, Поволжья, Северного Кавказа, Урала и Си­бири. Последние объединены такими высоковольтны­ми магистралями, как Самара - Москва (500 кВт), Са­мара - Челябинск, Волгоград - Москва (500 кВт), Вол­гоград - Донбасс (800 кВт), Москва - Санкт-Петербург (750 кВт), Иркутск - Братск - Красноярск - Кузбасс (500 кВт). ОЭС Дальнего Востока к другим ОЭС пока не присоединена и функционирует автономно.

ЕЭС России, сформировавшаяся в рамках бывшего СССР, имеет через линии электропередач (Экибастуз — Урал, Экибастуз - Центр, Донбасс - Западная Украина и др.) непосредственные контакты с энергосистемами почти всех стран СНГ (Казахстаном, Украиной, Белоруссией, Республиками Закавказья). По существу, это ЕЭС бывшего СССР, преобразованная в межгосударствен­ную систему.

Энергосистемы обеспечивают возможность полного и бесперебойного удовлетворения потребителей в элек­троэнергии. Энергосистемы позволяют с нивелировать недостатки, присущие режиму работы электростанций разных типов (ТЭС и ГЭС), и в полной мере реализо­вать их достоинства. Чем крупнее энергосистема по мощности и охвату территории, тем больше проявля­ются ее технико-экономические преимущества. Осо­бенно это относится к энергосистемам, распространя­ющим свое влияние на районы с разным поясным вре­менем, а также с неодинаковой продолжительностью светового дня. В этом случае достигается возможность переброски электроэнергии из одного района в дру­гой в зависимости от пика ее потребления в том или ином районе.

 

 

71

bookwu.net

Электроэнергетика

Электроэнергетика

Электроэнергетика — отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии.

Основная часть электроэнергии вырабатывается крупными электростанциями: тепловыми (ТЭС), гидравлическими (ГЭС), атомными (АЭС).

Тепловая электростанция — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

Тепловые электростанции работают на угле, мазуте и природном газе. В мировом производстве электроэнергии их доля составляет 64%. По размерам выработки электроэнергии на ТЭС лидируют США, Китай, ФРГ, Россия, Япония.

Недостатки: Загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти. Более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями.

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Примерно 18% мирового производства электроэнергии обеспечивают гидроэлектростанции (ГЭС). Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии, Канаде и Швеции. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии.

В Китае размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

Недостатки:

К недостаткам гидроэлектростанций можно отнести то, что их строительство занимает очень длительный период и стоит очень дорого. Создание крупных водохранилищ ведет к затоплению ценных земель, а строительство плотин препятствует естественной миграции рыб. Вода, использованная в турбинах гидроэлектростанций, становится «мертвой», в ней погибают все микроорганизмы.

Атомная электростанция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками.

Мировыми лидерами в производстве ядерной электроэнергии являются: США (836,63 млрд. кВт·ч/год), Франция (439,73 млрд. кВт·ч/год), Япония (263,83 млрд. кВт·ч/год), Россия (160,04 млрд. кВт·ч/год), Корея (142,94млрд кВт·ч/год) и Германия (140,53 млрд. кВт·ч/год). В мире действует 441 энергетический ядерный реактор общей мощностью 374,692 ГВт, российская компания «ТВЭЛ» поставляет топливо для 76 из них (17% мирового рынка)

Недостатки:

Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;

Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Расположение АЭС

Альтернативная энергетика — совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района.

Направления альтернативной энергетики

Ветроэнергетика:
  • Автономные ветрогенераторы. Ветрогенераторы, работающие параллельно с сетью.

Гелиоэнергетика:
  • Солнечный водонагреватель. Солнечный коллектор. Фотоэлектрические элементы.

Альтернативная гидроэнергетика:
  • Приливные электростанции. Волновые электростанции. Мини и микро ГЭС (устанавливаются в основном на малых реках). Водопадные электростанции

Геотермальная энергетика:
  • Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле). Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена).

Космическая энергетика:
  • Получение электроэнергии в фотоэлектрических элементах, расположенных на орбите Земли. Электроэнергия будет передаваться на землю в форме микроволнового излучения.

Водородная энергетика и сероводородная энергетика:
  • Водородные двигатели (для получения механической энергии). Топливные элементы (для получения электричества).

Биотопливо:
  • Получение биодизеля. Получение метана и синтез-газа. Получение биогаза.

Самые крупные электростанции России: 1) Тепловые: Сургутская ГРЭС-2 (4800 МВт), Рефтинская (3800 МВт), Костромская (3600 МВт) 2) Атомные:

Ленинградская, Балаковская и Курская АЭСы по 4000 МВт.

3)ГЭС:

Саяно-Шушенская (6400 МВт), Красноярская (6000 МВт) и Братская (4515 МВт) Крупнейшая в мире ГЭС находится в Китае на реке Янцзы. 

rpp.nashaucheba.ru

Самая мощная в мире гидроэлектростанция

Самая мощная электростанция в мире

 

Самая мощная электростанция в мире

 Панорама электростанции "Три ущелья"

 

Абсолютным рекордсменом по мощности существующих в мире электростанций, является гидроэлектростанция, расположенная в Китае на реке Янцзы – "Три ущелья”.К сожалению, эта электростанция является одной из самых трагичных в мире.В чем заключается трагичность этой громадной и мощнейшей в мире электростанции?- переселено в иные районы более 1 200 000 человек- более 150 городов было затоплено- более 1350 деревень было затоплено- были затоплены свалки, предприятия и склады промышленных отходов, что сказалось негативно на окружающей среде.Строительство началось в 1992 году, завершение строительства и официальный полный пуск состоялся в 2008 году, окончательное завершение строительства и ввод  последнего тридцать второго блока в 2012 году.В ноябре 2009 было окончено строительство дамбы, которая составила 181 метров в высоту.Длинна резервуара для накопления воды – примерно 680 км.Резервуар позволяет заходить океанским судам. Для этого предусмотрен специальный шлюз.На строительстве дамбы круглосуточно работали более 20 000 человек.На строительство плотины ушло 27 200 000 кубических метров бетона.Возникает вопрос, а зачем строить такие громадные сооружения, нельзя ли проблему решить иным образом?Правительство Китая, принимая решение о строительстве крупнейшей гидроэлектростанции, исходило из следующего. Эта электростанция обеспечит 1/9 всех потребностей Китая в электроэнергии. Китай ежегодно сжигает на тепловых электростанциях более 50 000 000 тонн угля. Соответственно, вред причиненный природе, при строительстве водохранилища – существенно перекроет пользой экологи за счет снижения выбросов в атмосферу. Так, если бы пришлось строить тепловые электростанции такой мощности, то нужно было бы сжигать дополнительно еще 5 500 000 тонн угля.  "Три ущелья” заменяет 9 атомных электростанций средней мощности.

Три ущелья - вид со спутника

Гидроэлектростанция "Три ущелья" - вид со спутника.

 

 

Технические характеристики гидроэлектростанции "Три ущелья”:Высота плотины: 181 метрДлина плотины: 2335 метровШирина плотины: 40 метровВодосброс: 11600 м3/секОбъем воды в водохранилище: 39,3 км3Площадь водохранилища: 1045 км2Длинна водохранилища: 600 кмМаксимальная ширина водохранилища: 1,1 кмТурбины: 32Х700МВт, 2Х50 МВтПроектная мощность: 22,5 ГВт

Выработано электроэнергии на начало 2012 года: 556 млрд. кВт-час.

 

Три Ущелья - электростанция

 Проход кораблей через шлюзы гидроэлектростанции "Три ущелья"

 

Похожие статьи:

mostinfo.su

Электростанции бывают различных типов

В современном мире для выработки большого количества энергии используются электростанции. Область эксплуатации электрических станций достаточно широкая, в частности, они могут применяться для снабжения энергий удаленных зданий и сооружений во множестве отраслей промышленности.

Типы электростанций

Электростанции бывают различных типов, наиболее распространенными из которых являются:

  • Тепловые
  • Гидравлические
  • Атомные

Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.

Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.

Электростанции бывают различных типовАтомные станции функционируют на ядерном топливе и чаще всего размещаются в тех местах, где требуется электрическая энергия, но отсутствуют прочие источники сырья. Около 25 тонн топлива позволяют станции работать на протяжении нескольких лет. Действие АЭС не становится причиной увеличения парникового эффекта, а процесс выработки энергии осуществляется без загрязнения окружающей среды.

Основы функционирования электростанций

Вне зависимости от того, какие бывают электростанции, они по большей части используют энергию вращения вала генератора. Назначение генератора заключается в том, что он:

  1. Должен обеспечивать продолжительную стабильную параллельную работу с энергосистемами различной мощности, а также функционирование на автономную нагрузку
  2. Претерпевает моментальный сброс и наброс нагрузки, сопоставимой с его номинальной мощностью
  3. Выполняет защитную функцию благодаря наличию специальных устройств
  4. Запускает двигатель, обеспечивающий функционирование станции

Электростанции являются наиболее оптимальным способом выработки энергии по ряду факторов. На сегодняшний день не существует аналогичных методов, которые смогут обеспечить производство электроэнергии в настолько больших масштабах.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта