Eng Ru
Отправить письмо

Полярные и неполярные конденсаторы - в чем отличие. Конденсатор неполярный и полярный


Михаил Николаенко - Самоучитель по радиоэлектронике

1.2.2. Электролитический конденсатор

Конденсаторы могут применяться в цепях как постоянного, так и переменного тока. Для цепей постоянного тока используют в основном электролитические конденсаторы. При монтаже конденсатора его плюсовой вывод присоединяют к положительному полюсу цепи с учетом соответствия напряжений участков цепи, а минусовой вывод (обычно корпус конденсатора) присоединяется к металлическому корпусу устройства. Следует учесть, что могут быть и неполярные электролитические конденсаторы.

Если полярный конденсатор включить в сеть переменного напряжения, то через него пойдет переменный ток, нагревая конденсатор, и он может выйти из строя. В крайнем случае при отсутствии нужного конденсатора на переменное напряжение вместо него можно применить полярный конденсатор при условии, что его напряжение много больше напряжения сети. Например, полярный конденсатор с напряжением 250 В может работать в сети переменного напряжения 50 В при частоте 50 Гц.

1.2.3. Качество диэлектрика

Качество диэлектрика характеризует сопротивление изоляции или ток утечки. В некоторых цепях существуют высокие требования к сопротивлению изоляции, например к конденсаторам связи между соседними каскадами. Наиболее высокое сопротивление изоляции имеют фторопластовые, стирольные и полипропиленовые конденсаторы, несколько ниже оно у слюдяных, керамических и поликарбонатных.

Для электролитических конденсаторов задается ток утечки, значение которого пропорционально емкости и напряжению. Наименьший ток утечки имеют танталовые конденсаторы (от единиц до десятков микроампер), а у алюминиевых конденсаторов он на один-два порядка больше.

1.2.4. Неполярный конденсатор

Довольно трудно найти неполярные конденсаторы (с изоляцией из слюды, бумаги или пленки) большой емкости с низким рабочим напряжением (менее 25 В). Однако иногда нужны именно такие компоненты, в частности при построении импульсных генераторов на логических вентилях с очень большим периодом (например, при разработке таймера для часов). Получение большой постоянной времени RC-цепи за счет увеличения сопротивления имеет определенный предел для каждого типа схем.

Для формирования конденсатора большой емкости можно соединить два полярных (электролитических) конденсатора, чтобы получить один неполярный (рис. 1.6). При этом надо выбрать два компонента одинакового номинала и включить их последовательно, соединив между собой отрицательные электроды. Результирующая емкость будет равна половине емкости каждого конденсатора.

Рис. 1.6.Получение одного неполярного конденсатора из двух полярных

1.2.5. Ионистор

В последние годы появился новый класс приборов, функционально близких к конденсаторам очень большой емкости, по существу, занимающих положение между конденсаторами и источниками питания. Это ионисторы, конденсаторы с двойным электрическим слоем.

Номинальное напряжение ионистора зависит от вида используемого в нем электролита и является для него максимально допустимым. Для получения более высокого рабочего напряжения ионисторы соединяют последовательно. Но делать это самостоятельно не рекомендуется - параметры ионисторов в такой связке должны быть очень близкими.

В принципе, ионистор - неполярный прибор. Вывод + (плюс) указывают для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.

Долговечность ионистора зависит от условий эксплуатации. Так, при работе под напряжением Uном при температуре окружающей среды +70 "С гарантированная долговечность составит 500 ч. При работе под напряжением 0,8Uномона увеличивается до 5000 ч. Если же напряжение на ионисторе не превышает 0,6Uном, а температура окружающей среды менее +40 °C, то ионистор будет исправно работать 40000 ч и более.

Важнейший параметр ионистора - ток утечки. Это особенно важно при использовании его в качестве резервного источника питания. Весьма перспективен ионистор в качестве накопителя энергии при работе совместно с солнечными батареями. Здесь особенно ценна его некритичность к режиму заряда, практически неограниченное число циклов заряд-разряд. Ионистор не требует ухода в течение всего срока службы.

1.3. Намоточные компоненты

1.3.1. Воздушный дроссель

Дроссели (катушки индуктивности) не пользуются большой популярностью среди любителей. Их применяют довольно редко, и если они используются в публикуемых схемах, то в списках компонентов приводятся хорошо известные и доступные типы. При разработке импульсных источников питания иногда нужно изготовить нестандартный дроссель. Такая же потребность может возникнуть при изготовлении фильтра низких частот для подавления высокочастотных гармоник, например в схемах с широтно-импульсной модуляцией.

На при… гаже чертежах (рис. 1.7) представлены воздушные (то есть не имеющие ферромагнитного стержня) дроссели, которые достаточно просто изготовить самостоятельно.

Рис. 1.7.Изготовление дросселя с однослойной (а) и многослойной (б) намоткой

Для расчета индуктивности однослойных и многослойных катушек в зависимости от их размеров и числа витков используются несложные формулы, которые легко найти в учебниках или справочниках. Экспериментальную проверку индуктивности дросселя можно выполнить с помощью небольшой схемы измерения резонансной частоты колебательного контура, состоящего из конденсатора и изготовленного дросселя. Для этого потребуются генератор соответствующего диапазона частот и осциллограф.

Наконец, при выборе сечения провода для обмотки следует учитывать значение тока, который будет проходить через катушку.

1.3.2. Соединение обмоток трансформатора

Силовые трансформаторы радиоэлектронных устройств имеют, как правило, две одинаковые вторичные обмотки. В зависимости от предполагаемого применения их можно соединять либо последовательно - для удвоения напряжения, либо параллельно - для удвоения тока. Небольшие трансформаторы, закрепляемые непосредственно на печатной плате, обычно имеют стандартное расположение выводов. Соединение обмоток выполняется по схеме, приведенной на рис. 1.8.

Рис. 1.8.Последовательное (а) и параллельное (б) соединение вторичных обмоток трансформатора

Для некоторых моделей (например, с тороидальным сердечником) при отсутствии документации необходимо с помощью осциллографа исследовать напряжения на обмотках во избежание соединения их в противофазе. Иначе возникает риск перегрева и выхода из строя трансформатора и находящихся рядом деталей (не говоря уже об отсутствии напряжения на выходе).

1.3.3. Монтаж тороидальных трансформаторов

Тороидальные трансформаторы обычно используются в устройствах высокой мощности, поскольку занимают значительно меньше места, чем классические модели с Ш-образным сердечником. Во время их монтажа необходимо точно следовать указаниям производителя и применять для крепления только рекомендуемые кольца (из металла или неопрена). Если два тороидальных трансформатора располагаются в одном корпусе, нельзя использовать для них общий крепежный болт, проходящий по центру. В соответствии с законами магнетизма трансформаторы обязательно будут взаимодействовать, что приведет к нарушению работы устройства в целом.

1.3.4. Крепление трансформатора

Когда трансформатор (даже небольшого размера) монтируется на печатной плате, следует в дополнение к припаиванию выводов предусмотреть его механическое крепление. Если мощность трансформатора превышает 10 ВА, его весом уже нельзя пренебречь. Классические модели трансформаторов с наборным сердечником начиная с определенных размеров снабжены специальными монтажными скобами. Необходимо крепко стянуть набор с помощью болтов и надежно закрепить трансформатор на плате.

При проектировании размещения элементов нужно оставить достаточно места для выводов и крепежных отверстий.

Залитые трансформаторы часто имеют крепежные лапки или сквозные отверстия для крепления. Иногда они снабжены пластмассовыми вставками с отверстиями, которые предназначены для крепления с помощью винтов.

1.3.5. Особенности залитых трансформаторов

Залитые трансформаторы соответствуют более высоким стандартам по изоляции, чем обычные модели. Но у них есть свои недостатки: худшие условия теплоотвода и высокая цена. Некоторые из них снабжены встроенной термозащитой. Следует помнить о том, что такая защита необратима, то есть если она срабатывает, трансформатор просто выходит из строя.

1.3.6. Маркировка отечественных трансформаторов

При выборе необходимого трансформатора радиолюбители иногда сталкиваются с проблемой маркировки магнитопроводов. Некоторые особенности обозначений типоразмеров приведены ниже.

profilib.net

Как проверить конденсатор мультиметром - Практическая электроника

В этой статье я поведу речь о том, как проверить конденсатор с помощью мультиметра, если у вас нет прибора для проверки емкости конденсаторов и катушек индуктивности — LC — метра. Думаю, все знают, что такое конденсатор. Кто не знает, тому сюда. Но не все могут его проверить на работоспособность.

В основном, по конструктивному исполнению конденсаторы делятся на два типа: полярные и неполярные.

К полярным конденсаторам относятся конденсаторы которые имеют полярность, грубо говоря, плюс и минус. К ним чаще всего относятся электролитические конденсаторы, но бывают также и электролитические неполярные конденсаторы. Полярные конденсаторы надо паять в схемы только определенным образом: плюсовый контакт конденсатора к плюсу схему, минусовый контакт — к минусу схемы. Если полярность такого конденсатора нарушить, то он может серьезно пострадать и даже взорваться. Поверьте мне, взрыв конденсатора — это очень зрелищно, но электролит, который там находится, может серьезно повредить вас и ваше окружение. В основном, это только касается советских конденсаторов.

 

У импортных конденсаторов сверху имеется небольшое вдавление в виде крестика или какой-нибудь другой фигурки. Их толщина меньше, чем остальная толщина крышечки конденсатора. Как мы с вами знаем, где тонко, там и рвется. Это предусмотрено в целях безопасности.  Поэтому, если все-таки импортный конденсатор желает взорваться, то его верхняя часть просто-напросто превратится в розочку.

На фото ниже вздутый конденсатор на материнской плате компьютера. Разрыв идет ровно по линии.

 

Для того, чтобы проверить конденсатор, надо вспомнить общее свойство всех конденсаторов: конденсатор пропускает только переменный ток, постоянный ток он пропускает только в самом начале на несколько долей секунд ( это время зависит от его емкости), а потом —  не пропускает. Более подробно про это свойство можно прочитать в этой статье. Для того, чтобы  проверить конденсатор с помощью мультиметра, должно соблюдаться условие, что его емкость должна быть  от 0,25 мкФ.

Как проверить полярный конденсатор

Ну что же, давайте проверим нашего подопечного. Вот собственно и он, самый настоящий импортный электролитический полярный конденсатор:

Для того, чтобы разобраться, где у него минус, а где плюс, производители нанесли маркировку. Минус конденсатора указывает галочка на самом корпусе. Видите эту черную галочку на золотой толстой линии  конденсатора? Она указывает на минусовый вывод.

Давайте узнаем, жив или мертв наш пациент? Для начала его надо разрядить металлическим предметом. Я использовал пинцет.

Следующим шагом берем мультиметр и ставим его крутилку на прозвонку или на измерение сопротивления, и щупами дотрагиваемся до выводов конденсатора. Так как у  нас мультиметр на прозвонке и на измерении сопротивления  выдает постоянный ток, значит, в какой-то момент времени ток будет течь, следовательно, в этот момент сопротивление конденсатора будет минимальным.  Далее мы продолжаем держать щупы на выводах конденсатора и, сами того не понимая, заряжаем его. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое. Давайте глянем на практике, как все это выглядит.

Вот в этом момент мы только-только  коснулись щупами выводов конденсатора.

Держим и видим, что сопротивление у нас растет

и пока не станет очень большим

Очень удобен в проверке конденсаторов аналоговый мультиметр, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультике.

Если же у нас при прикасании щупов к конденсатору мультиметр начинает пищать и показывать нулевое сопротивление, значит, в конденсаторе произошло короткое замыкание. А если сразу же показывается единичка на мультиметре, значит внутри конденсатора произошел обрыв. Конденсаторы с такими деффектами считаются нерабочими и их можно смело выбрасывать.

Как проверить неполярный конденсатор

Неполярные конденсаторы проверяются еще проще. Ставим предел измерения на мультиметре на Мегаомы и касаемся щупами выводов конденсатора. Если сопротивление меньше 2 МегаОм, то скорее всего конденсатор неисправен.

Конденсаторы полярные  и неполярные номиналом меньше, чем 0,25мкФ могут с помощью мультика проверяться только на КЗ. Чтобы проверить все-таки их на работоспособность, нужен специальный прибор — LC — метр или универсальный R/L/C/Transistor-metr, но  и некоторые мультиметры могут также измерять емкость конденсаторов, имея внутри себя такую функцию. Например, мой мультиметр может без труда определить емкость конденсатора до 200 мкФ. Имейте ввиду, что внутри мультиметра есть плавкий предохранитель. Если он перегорает, то некоторые функции мультиметра теряются. На моем мультике при перегорании внутреннего предохранителя у меня не работала функция измерения силы тока и измерение емкости конденсатора.

В заключении хотелось бы рассказать еще об одном способе проверки конденсатора, но он действует только на конденсаторы большой емкости. Для этого способа используется замечательное свойство конденсатора — заряжаться и копить заряд. Заряжаем конденсатор приличным напряжением, но не более чем написано на его маркировке, в течение пару секунд, и потом аккуратно замыкаем выводы каким-нибудь металлическим предметом. Железка должна быть изолирована от рук, а то испытаете всю мощь разряда конденсатора на себе))). При замыкании вы должны увидеть искру. Честно говоря, этот способ не желателен и лучше его не использовать, так как есть возможность повредить конденсатор.

www.ruselectronic.com

Полярный конденсатор - Большая Энциклопедия Нефти и Газа, статья, страница 2

Полярный конденсатор

Cтраница 2

Если максимальное значение переменного напряжения, приложенного к полярному конденсатору, невелико, по сравнению с тем напряжением, при котором проводилась формовка оксидного слоя, то в течение некоторого времени конденсатор может работать без заметного ухудшения своих характеристик. Тем не менее применять полярные конденсаторы даже при малых значениях переменного напряжения для длительной работы не рекомендуется, если вместе с переменным напряжением к конденсатору не прикладывается одновременно поляризующее постоянное напряжение, превышающее по величине амплитуду переменного напряжения.  [16]

Сухие неполярные электролитические конденсаторы имеют две анодные фольги, заформованные в одном электролите при одинаковом напряжении. Технология изготовления таких конденсаторов ничем не отличается от изготовления полярных конденсаторов. Некоторое изменение в технологии имеет место при намотке секций, так как вместо катодной фольги закладывается вторая анодная пластина.  [17]

Емкости двух оксидных слоев в таком конденсаторе соединены последовательно, а потому его удельная емкость соответственно снижена; при равной емкости объем неполярного конденсатора будет в два раза больше, чем полярного. Следует отметить, что неполярный конденсатор обладает свойствами системы из двух встречно-последовательно включенных полярных конденсаторов, но при одном и том же размере анодов объем его будет в два раза меньше, чем в этой системе, так как в нем отсутствуют две лишних волокнистых прокладки.  [18]

Для предельных рабочих напряжений эти конденсаторы имеют средние габариты и массы десятки - сотни грамм. Конденсатор К50 - 6 имеет форму цилиндра с двумя односторонними выводами ( для полярных конденсаторов положительный вывод укорочен), а К52 - 2 - специфичную форму ЭТО.  [19]

Таким образом, во внешнюю цепь может уходить только половина всего того заряда, который был связан на границах оксидного слоя, когда напряжение на конденсаторе имело максимальное значение. Это обстоятельство приводит к тому, что емкость неполярного электролитического конденсатора в два раза меньше, чем емкость полярного конденсатора, имеющего такую же поверхность анода, какую имеет каждая обкладка неполярного конденсатора.  [21]

Таким образом, во внешнюю цепь может уходить только половина всего того заряда, который был связан на границах оксидного слоя, когда напряжение на конденсаторе имело максимальное значение. Это обстоятельство приводит: к тому, что емкость неполярного электролитического конденсатора в два раза меньше, чем емкость полярного конденсатора, имеющего такую же поверхность анода, какую имеет каждая обкладка неполярного конденсатора.  [23]

Конденсаторы К50 - 15 выпускают полярными и неполярными. Последние допускают периодическое, непродолжительное включение их в цепь переменного тока. Полярные конденсаторы изготовляют с номинальными напряжениями от 6 3 до 250 В и емкостями от 2 2 до 680 мкФ, неполярные - от 25 до 100 В и от 4 7 до 100 мкФ соответственно. Диапазон рабочих температур этих конденсаторов от - - 60 до 85 С, срок службы 10000 ч, хранения - 12 лет.  [24]

Основные недостатки электролитических конденсаторов состоят в том, что они являются полярными и имеют низкое сопротивление утечки. Полярность выводов обычно указывается на корпусе конденсатора. Так как полярные конденсаторы нормально работают только при одной полярности напряжения, то их применение ограничено цепями постоянного тока с ограниченным значением пульсаций напряжения. Специальные типы электролитических конденсаторов иногда используются в цепях переменного тока, например, в качестве пусковых конденсаторов электродвигателей. Емкости конденсаторов с сухим электролитом лежат в пределах от единиц до тысяч микрофарад, а рабочие напряжения достигают 500 В.  [25]

Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, и он может выйти из строя. Например, полярный конденсатор с напряжением 250 В может работать в сети переменного напряжения 50 В при частоте 50 Гц. Внешними признаками выхода из строя бумажных и электролитических конденсаторов являются вздутие корпуса, отрыв торцевых изолирующих частей у выводов, отрыв выводов.  [26]

Одной из обкладок электролитического конденсатора является вентильный металл, на котором создан оксидный слой. Только для системы вентильный металл - оксидный слой - электролит считалось возможным получить высокую электрическую прочность; нри анодном включении вентильного металла можно было обеспечивать Ера5 до 400 - 500 кв / мм, что значительно превышает кратковременные значения Епр для большинства других типов диэлектриков. Вместе с тем, при изменении полярности напряжения электрическая прочность резко падала и при катодном включении обычный электролитический конденсатор пропускал большой ток. Таким образом, приходилось считать, что для оксидного слоя характерна униполярная проводимость и что электролитический конденсатор является полярным конденсатором.  [27]

Основная особенность устройств конденсаторной защиты, выполненных указанными способами, а также описанных выше выключателей характеризуется использованием тиристоров в качестве ключевого управляющего элемента. Это означает, что конденсатор не только является источником противотока, необходимого для запирания тиристоров преобразователя, но также выполняет функции элемента, осуществляющего ограничение и отключение аварийного тока и запирание тиристорного ключа. Практически вся электромагнитная энергия контура при этом переходит в энергию заряда конденсатора. Следствием этого является ряд недостатков, резко выраженных при защите преобразователей большой мощности. Во-первых, необходимы неполярные конденсаторы большой емкости, которая при напряжении заряда 1000 В может достигать 104 мкФ и более. Применение же полярных конденсаторов по специальной схеме приводит к существенному в 3 - 4 раза) дополнительному увеличению емкости. По сравнению с емкостью конденсаторов, необходимых лишь для снижения тока в цепи тиристоров преобразователя до нуля, емкость увеличивается по меньшей мере в 3 - 5 раз. Кроме того, из-за большой емкости коммутирующего конденсатора задерживается достижение максимума разрядным током конденсатора, что вызывает задержку начала ограничения аварийного тока до 2 - 3 мс. Таким образом, значительно снижается эффективность этого метода защиты.  [28]

Страницы:      1    2

www.ngpedia.ru

Нужно сделать неполярный конденсатор из двух полярных

Ничего не выйдет. Покупайте неполярный или ставьте пусковую кнопку вместо конденсатора. Поберегите здоровье, такое на самом деле невозможно (они взрываются).

Поддерживаю предыдущего оратора. Как это напряжение увеличивается? И даже, допустим, это так, то всё равно для электролитических конденсаторов указывается предельное ПОСТОЯННОЕ напряжение на нём, а пульсирующее, или переменное, может составлять от 10 до 50 % от указанного на конденсаторе; только очень редкие и дефицитные конденсаторы рассчитаны на большие переменные токи и напряжения.

да с какого перепуга оно увеличится? ты 2 диода воткнешь и каждый кондер на свое напряжение и будет. Ему пишешь- как это правильно делается, он рот подымает

Такое соединение подойдет только на очень непродолжительное время, например я ставил два электролита последовательно, минусами вместе, без диодов, для запуска мотора . Можно диоды поставить . Но все равно на переменке оно работать не будет, максимум пара секунд .<img src="//otvet.imgsmail.ru/download/bf8534bfe1247f77777b8d9864da27a8_i-689.jpg">

Напряжение не изменится, потому что один из кондеров будет по-любому под обратным напряжением, а допустимое обратное напряжение близко к нулю. Соединить можно, обычно соединяют плюсами и включают защитные диоды, как показано на рисунке в предыдущем сообщении (рисунок 6, б) . Однако не соглашусь с тем, что напряжения складываются. Через диод к конденсатору будет приложена полная амплитуда напряжения, а не половина. В советском справочнике читал, что при таком соединении напряжение переменного тока на соединённых конденсаторах должна быть много ниже номинального напряжения каждого из конденсаторов. То есть, на вашу цепочку 470,0х100В + 470,0х100В лучше больше 50-60 вольт переменки не подавать. Ёмкость будет равна 470/2=235 мкФ.

диоды ставить необходимо чтобы конденсаторы не заряжались обратной полярностью. Упоминание МБГО не к месту, т. к. они и так неполярные.

Делай по схеме "б" Как пишет "Оракул" Это необходимо для поляризации конденсаторов, такая схема отлично работает на переменном токе!

GT, K700 <a rel="nofollow" href="https://www.asutpp.ru/osnovy-elektrotexniki/kak-sdelat-iz-nepolyarnogo-kondensatora-polyarnyj.html" target="_blank">https://www.asutpp.ru/osnovy-elektrotexniki/kak-sdelat-iz-nepolyarnogo-kondensatora-polyarnyj.html</a> - здесь полная инструкция. Посмотрите. Сделать из неполярного конденсатора полярный возможно!

touch.otvet.mail.ru

Полярный конденсатор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Полярный конденсатор

Cтраница 1

Полярные конденсаторы работоспособны при условии, что на их положительный электрод ( анод) подается положительный потенциал источника. Электролитические конденсаторы выпускают с большим интервалом емкости ( от десятых долей до десятков тысяч микрофарад) и напряжением от 3 до 500 В.  [2]

Если полярный конденсатор включить в сето переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, который может выйти из строя.  [3]

Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, и он может выйти из строя.  [4]

Для различных применений изготовляются полярные конденсаторы как с гладкими, так и с травлеными анодами, а также неполярные конденсаторы.  [6]

Как уже говорилось, АЭК - полярные конденсаторы, поэтому напряжение обратной полярности предотвращается там, где это необходимо, подключением диода параллельно конденсатору. Падение на диоде порядка 0 8 В является допустимым. Обратные напряжения 1 5 В допустимы для конденсатора за время до 1 с при условии, что такой режим работы не является повторяющимся.  [7]

Использование полупроводниковой сегнетокерамики позволяет получить и полярные конденсаторы с одним омическим и одним неомическим контактами, обладающие в несколько раз большей емкостью, чем неполярные конденсаторы.  [8]

Если максимальное значение переменного напряжения, приложенного к полярному конденсатору, невелико, по сравнению с тем напряжением, при котором проводилась формовка оксидного слоя, то в течение некоторого времени конденсатор может работать без заметного ухудшения своих характеристик. Тем не менее применять полярные конденсаторы даже при малых значениях переменного напряжения для длительной работы не рекомендуется, если вместе с переменным напряжением к конденсатору не прикладывается одновременно поляризующее постоянное напряжение, превышающее по величине амплитуду переменного напряжения.  [9]

Конденсаторы этого типа обладают большой емкостью и относятся к виду полярных конденсаторов. В качестве наполнителя в них используется электролит в жидком или порошкообразном виде. Конденсаторы с жидким электролитом в настоящее время почти не используются из-за необходимости соблюдения осторожности в обращении с электролитом.  [10]

Вторичная формовка неполярных конденсаторов выполняется в том же режиме, что и для полярных конденсаторов, с той разницей, что она производится последовательно для каждой обкладки конденсатора, вследствие чего требует в два раза больше времени.  [11]

Полярность или условные обозначения выводов микроэлементов на схеме сборки указывают около соответствующих точек: для диодов или полярных конденсаторов - знаки или -; для транзисторов - Б; Э; К; для трансформаторов - номера выводов.  [12]

В зависимости от материала диэлектрика конденсаторы бывают бумажные, вакуумные, воздушные, керамические, слюдяные, стекло-керамические, стеклянные, оксидные и др. В зависимости от материала электродов и вида конструкции конденсаторы делятся на фольговые, с металлизированными обкладками, с герметичной конструкцией корпуса, с уплотненной конструкцией корпуса, с изолированным корпусом ( неполярный конденсатор), с неизолированным корпусом ( полярный конденсатор) и др. По признаку функциональной принадлежности конденсаторы бывают импульсные, поме-хоподавляющие, защитные, проходные и др. Малыми размерами при относительно большой номинальной емкости до 1 мкФ обладают керамические конденсаторы, получившие в связи с этим наибольшее распространение. Наибольшую номинальную емкость ( до 22 000 мкФ) при относительно малых размерах имеют оксидные ( электролитические) конденсатеоы.  [13]

В зависимости от материала диэлектрика конденсаторы бывают бумажные, вакуумные, воздушные, керамические, слюдяные, стеклокерамические, стеклянные, оксидные и др. В зависимости от материала электродов и вида конструкции конденсаторы делят на фольговые, с металлизированными обкладками, с герметичной конструкцией корпуса, с уплотненной конструкцией корпуса, с изолированным корпусом ( неполярный конденсатор), с неизолированным корпусом ( полярный конденсатор) и др. По признаку функциональной принадлежности конденсаторы бывают импульсные, помехоподавляющие, защитные, проходные и др. Малыми размерами при относительно большой номинальной емкости до 1 мкФ обладают керамические конденсаторы, получившие в связи с этим наибольшее распространение. Наибольшую номинальную емкость ( до 470 000 мкФ) при относительно малых размерах имеют оксидные ( электролитические) конденсаторы.  [14]

В Советском Союзе выпускаются сухие полярные и неполярные танталовые электролитические конденсаторы с анодами из гладкой фольги. Полярные конденсаторы обозначаются - тип ЭТ, неполярные - тип ЭТН.  [15]

Страницы:      1    2

www.ngpedia.ru

Полярные и неполярные конденсаторы - в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

конденсатор

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Электролитический конденсатор

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) - просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Схема алюминиевого электролитического конденсатора

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

Неполярный и два полярных конденсатора

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Неполярный электролитический конденсатор

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Смотрите также: Конденсаторы в электронных схемах

Андрей Повный

elektruk.elektruk.info


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта