Eng Ru
Отправить письмо

Электрическая мощность. Мощность электрического тока. Как обозначается мощность


Единицы измерения мощности. Мощность тока: единица измерения

Мощность в физике понимается как отношение совершаемой за определенное время работы к тому промежутку времени, за который она выполняется. Под механической работой подразумевается количественная составляющая воздействия силы на тело, из-за чего последнее перемещается в пространстве.

Можно выразить мощность и как скорость передачи энергии. То есть она показывает работоспособность автоматического аппарата. Благодаря измерению мощности становится понятным, как быстро делается работа.

единицы измерения мощности

Единицы измерения мощности

Мощность измеряют в ваттах или джоулях в секунду. Автомобилистам известно измерение мощности в лошадиных силах. Кстати, до появления паровых машин эту величину не измеряли вообще.

Однажды, используя механизм в шахте, инженер Дж. Уайт взялся за его улучшение. Для доказательства своего усовершенствования двигателя он сравнил его с работоспособностью лошадей. Люди использовали их в течение веков. Поэтому любому было нетрудно представить работу тягловой лошади за какой-то промежуток времени.

Наблюдая за ними, Уайт сравнивал модели паровых машин в зависимости от количества лошадиных сил. Он экспериментально вычислил, что мощность одной лошади равна 746 ваттам. Сегодня все уверены, что такое число является явно завышенным, но единицы измерения мощности решили не изменять.

единица измерения мощности электрического тока

Посредством названной физической величины узнают о производительности, так как при ее увеличении возрастает работа за тот же промежуток времени. Такая стандартизированная единица измерения стала очень распространенной. Ее стали применять в самых разных механизмах. Поэтому, хоть ватты и применяются уже давно, лошадиные силы для многих являются более понятными, чем другие единицы измерения мощности.

Как понимают мощность в бытовых электрических приборах

Мощность, конечно, указывают и в бытовых электрических механизмах. В светильниках используют ее определенные значения, например шестьдесят ватт. Лампочки с большим показателем мощности устанавливать тогда нельзя, так как в противном случае они быстро испортятся. Зато если приобретать не лампы накаливания, а светодиодные или люминесцентные, то они смогут светить с большей яркостью, потребляя при этом маленькую мощность.

Потребление энергии, естественно, прямо пропорционально величине мощности. Поэтому для производителей лампочек всегда есть поле для совершенствования продукта. В настоящее время потребители все больше предпочитают другие варианты, кроме ламп накаливания.

Спортивная мощность

приборы измерения

Единицы измерения мощности известны не только в связи с использованием механизмов. Понятие мощности можно отнести и к животным, и к людям. К примеру, можно посчитать эту величину, когда спортсмен кидает мяч или другой инвентарь, получая ее в результате установления прикладываемой силы, расстояния и времени ее применения.

Можно воспользоваться даже компьютерными программами, с помощью которых показатель вычисляется в результате сделанного определенного количества упражнений и введения параметров.

Приборы измерения

единицы измерения

Динамометры — это специальные устройства, с помощью которых измеряется мощность. Их используют также для определения силы и вращающего момента. Приборы применяют в самых разных областях промышленности. К примеру, именно они покажут мощность двигателя. Для этого мотор извлекают из автомобиля и подсоединяют к динамометру. Но есть устройства, которые способны вычислить искомое даже через колесо.

В спорте и медицине динамометры тоже находят широкое распространение. На тренажерах часто имеются датчики, которые подключены к компьютеру. С помощью них и производятся все измерения.

Мощность в ваттах

мощность тока единицы измерения

Джеймс Ватт изобрел паровую машину, и с 1889 года единица измерения мощности электрического тока стала ваттом, а в международную систему измерений величину включили в 1960 году.

В ваттах может измеряться не только электрическая, но и тепловая, механическая или любая другая мощность. Также нередко образуются кратные и дольные единицы. Их называют с добавлением к исходному слову различных префиксов: "кило", "мега", "гига" и др.:

  • 1 киловатт равен тысяче ватт;
  • 1 мегаватт равен миллиону ватт и так далее.

Киловатт-час

В международной системе СИ нет такой еденицы измерения, как киловатт-час. Этот показатель является внесистемным, введенным для учета израсходованной электрической энергии. В России действует ГОСТ 8.417-2002 с регламентацией, где единица измерения мощности электрического тока непосредственно обозначается и применяется.

Данную единицу измерения рекомендуется использовать для учета израсходованной электрической энергии. Она является самой удобной формой, с помощью которой получают приемлемые результаты. Кратные единицы здесь также могут применяться при необходимости. Они выглядят аналогично ваттам:

  • 1 киловатт-час равен 1000 ватт-час;
  • 1 мегаватт-час равен 1000 киловатт-час и так далее.

Полное наименование пишется, как уже видно, через дефис, а краткое — через точку (Вт·ч, кВт·ч).

единица измерения электрической мощности

Как обозначается мощность в электроприборах

Общепринято указывать упомянутый показатель прямо на корпусе электрического прибора. Возможными обозначениями являются:

  • ватт и киловатт;
  • ватт-час и киловатт-час;
  • вольт-ампер и киловольт-ампер.

Наиболее универсальным обозначением является использование таких единиц, как ватт и киловатт. При их наличии на корпусе прибора можно сделать вывод о том, что на данном оборудовании развивается указанная мощность.

Часто в ваттах и киловаттах измеряют механическую мощность электрических генераторов и моторов, тепловую мощность электрических нагревательных приборов и т. д. Так обозначается в основном мощность тока, единица измерения в приборе которого ориентирована в первую очередь на количество полученного тепла, а расчеты принимаются во внимание уже вслед за ним.

Ватт-час и киловатт-час показывают потребляемую мощность за данную единицу времени. Часто эти обозначения можно увидеть на бытовых электрических приборах.

В международной системе СИ есть единицы измерения электрической мощности, являющиеся эквивалентными ватту и киловатту - это вольт-ампер и киловольт-ампер. Такое измерение приводится для показания мощности переменного тока. Их применяют в технических расчетах тогда, когда важны электрические показатели.

Такое обозначение больше всего соответствует требованиям электротехники, где приборы, работающие с переменным током, имеют как активную, так и реактивную энергию. Поэтому электрическая мощность определяется суммой этих составляющих. Часто в вольт-амперах обозначают мощность таких приборов, как трансформаторы, дроссели, и других преобразователей.

При этом производитель самостоятельно выбирает, какие единицы измерения ему указывать, тем более что в случае маломощного оборудования (коим являются, например, бытовые электрические приборы) все три обозначения, как правило, совпадают.

fb.ru

Расчёт мощности генератора

Для начала вспомним школу.

Что такое электрическая мощность?Электрическая мощность обозначается при написании формул латинской буквой Р и измеряется в ваттах Вт или на латинице W, киловаттах (кВт или kW), мегаваттах (МВт или MW) и так далее.Электрическая мощность равна произведению напряжения и тока:

P (Вт) = U (В) * I (А)

Различают следующие виды электрической мощности, которые, соответственно, по-разному обозначаются:

Активная мощность:Обозначение: PЕдиница измерения: Вт (W)

Это мощность, отдаваемая при подключении к источнику тока (генератору) нагрузки, имеющей активное (омическое) сопротивление. Если нагрузка, имеет только активное сопротивление и не содержит реактивных сопротивлений, то активная мощность будет равна полной мощности.

Расчёт производится по формуле: P = U * I * cos φПримеры: лампы накаливания, нагревательные приборы и т. п.

Реактивная мощность:Обозначение: QЕдиница измерения: вар или VAr (вольт-ампер реактивный)

Это мощность, отдаваемая при подключении к источнику тока компонента сети или нагрузки, имеющей индуктивные (электродвигатель) или ёмкостные (конденсатор) элементы.

Расчёт производится по формуле: Q = U * I * sin φ

Примеры: Потребители, придающие нагрузке индуктивный характер: электродвигатели, сварочные трансформаторы и т.п.Потребители, придающие нагрузке ёмкостной характер: конденсаторы в компенсаторных устройствах, конденсаторы, создающие реактивную мощность в цепи возбуждения генераторов и т.п.

Полная мощность:Обозначение: SЕдиница измерения: В·A или VA (вольт-ампер)

Полная электрическая мощность равна произведению сдвинутых по фазе напряжения и тока. Полная мощность непосредственно связана с активной и реактивной мощностями. Её расчёт производится по формуле, выражающей закон Пифагора. Полная электрическая мощность представляет собой максимальную мощность электрического тока, которая может быть выработана генератором или использована.

Расчёт производится по формуле: S = U * I  или S = P + Q

Изображенный на рисунке треугольник отображает взаимосвязь между электрическими мощностями или соответствующими им напряжениями.

Теперь о расчёте мощности генератора.

Для точного определения области применения и пригодности любого электроагрегата для выполнения поставленных задач необходимо прежде всего определить суммарную мощность потребителей тока. Только таким образом можно определить, какой электроагрегат может быть использован для данных целей. При выборе необходимой мощности электроагрегата можно использовать приведённые ниже эмпирические формулы.

1. Потребители, являющиеся только активной нагрузкой (например, электронагреватели, лампы накаливания и подобные им приборы с чисто омическим сопротивлением).Суммарную мощность можно расчитать путём простого сложения мощностей отдельных потребителей, которые могут быть подключены к генератору. В данном случае полная электрическая мощность, измеряемая в ВА или VA (Вольт-ампер) равна активной мощности, измеряемой в Вт или W (Ватт). Необходимая мощность электроагрегата определяется путём увеличения суммарной мощности подключаемых потребителей на 10% (т.е. с учётом определённых технических факторов).

Пример: Суммарная мощность потребителей * 110% = Мощность, требуемая от электроагрегата.

Если суммарная мощность всех потребителей 2000 Вт (в данном случае 2000 Вт = 2000 ВА ), то требуемая мощность электроагрегата будет: 2000 ВА * 110% = 2200ВА

2. Потребители, имеющие индуктивную составляющую мощности (компрессоры, насосы и прочие электродвигатели). Эти нагрузки потребляют очень большой ток при пуске и выходе на рабочий режим. В данном случае, сначала необходимо определить точное значение мощности одновременно подключаемых потребителей. Далее следует выбрать мощность электроагрегата.

Полная мощность такого электроагрегата должна быть не менее, чем в 3,5 раза больше суммарной мощности потребителей. В исключительных случаях она должна превышать мощность потребителей в 4—5 раз.

Пример: Суммарная мощность потребителей * 3,5 = Мощность, требуемая от электроагрегата.

Если суммарная мощность всех потребителей 2000 ВА, то требуемая мощность электроагрегата будет: 2000 ВА * 3,5 = 7000 ВА

malvil.kz

Формула мощности тока

    \[ P = I \cdot U \]

P – мощность тока, I

– сила тока, U – напряжение в цепи.

Единица измерения мощности – Ватт (Вт).

Мощность – величина, обозначающая интенсивность передачи электрической энергии. Можно определить мощность как работу по перемещению электрических зарядов за единицу времени:

    \[ P = \frac{A}{\Delta t} \]

Здесь A – работа, \Delta t – время, в течение которого работа совершалась.

Для измерения мощности применяют ваттметры.

Примеры решения задач по теме «Мощность тока»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Электрическая мощность. Мощность электрического тока.

 

 

 

Тема: что такое электрическая мощность, её определение и вычисление.

 

В этой теме хотелось бы раскрыть понятие электрической мощности в простой и понятной форме. И, пожалуй, прежде чем говорить об электрической мощности, сперва следует определиться с понятием мощности в общем смысле. Обычно, когда люди говорят о мощности, они подразумевают некую «силу», которой обладает тот или иной предмет (мощный электродвигатель) либо действие (мощный взрыв). Но как мы знаем из школьной физики, сила и мощность — это разные понятия, но зависимость у них есть.

 

Первоначально мощность (N), это характеристика, относящаяся к определённому событию (действию), а если оно привязано к некоторому предмету, то с ним также условно соотносят понятие мощности. Любое физическое действие подразумевает воздействие силы. Сила (F), с помощью которой был пройден определённый путь (S) будет равняться совершенной работе (А). Ну, а работа, проделанная за определённое время (t) и будет приравниваться к мощности.

 

Мощность — это физическая величина, которая равна отношению совершенной работы, что выполняется за некоторый промежуток времени, к этому же промежутку времени. Поскольку работа является мерой изменения энергии, то ещё можно сказать так: мощность — это скорость преобразования энергии системы.

 

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

 

 

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

 

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

 

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

 

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

 

 

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

 

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

 

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

 

P.S. Говоря об электрической мощности электротехнических устройств мы должны помнить, что она в них ограничивается номинальными и максимальными значениями тока и напряжения, а эти ограничения уже зависят от материала, рабочих частот, технологии изготовления и прочих факторов.

electrohobby.ru

формула, единицы измерения :: SYL.ru

У каждого современного прибора есть электрическая мощность. Ее цифровое значение указывается производителем на корпусе фена либо электрического чайника, на крышке кухонного комбайна.

Единицы измерения

Расчет электрической мощности позволяет определять стоимость электрической энергии, потребляемой разными приборами за определённый промежуток времени. Ватты и киловатты в избыточном количестве приводят к выходу из строя проводов, деформации контактов.

Зависимость между электрическим током и мощностью, потребляемой приборами

Электрическая мощность представляет собой работу, которая совершается за промежуток времени. Включенный в розетку прибор совершает работу, измеряемую в ваттах (Вт). На корпусе указывается количество энергии, которое будет потреблено прибором за определенный промежуток времени, то есть дается потребляемая электрическая мощность.

Потребляемая мощность

Она расходуется на то, чтобы в проводнике происходило перемещение электронов. В случае одного электрона, имеющего единичный заряд, она сопоставима с величиной напряжения сети. Полная энергия, которая необходима для перемещения всех электронов, будет определяться как произведение напряжения на число электронов, находящихся в цепи при работе электрического прибора. Ниже представлена формула электрической мощности:

Р=(U*Q)/t.

Учитывая, что число электронов, протекающих за промежуток времени через поперечное сечение проводника, представляет собой электрический ток, можно представить его в выражение для искомой величины. Формула электрической мощности будет выглядеть:

Р=I*U.

В реальности приходится вычислять не саму мощность, а величину тока, зная напряжение сети и номинальную мощность. Определив ток, который потребляется определенным прибором, можно соотнести номинал розетки и автоматического выключателя.

Примеры расчетов

Для чайника, электрическая мощность которого рассчитана на два киловатта, потребляемый ток определяется по формуле:

I=P/U=(2*1000)/220=9А

Чтобы подключать такой прибор в обычную электрическую сеть, разъем, рассчитанный на 6 ампер, явно не подойдет.

Приведенные выше зависимости между мощностью и электрическим током уместны только при полном совпадении по фазе значений напряжения и тока. Практически для всех бытовых электрических приборов подходит формула электрической мощности.

Исключительные ситуации

В том случае, если в цепи присутствует большая емкость либо индуктивность, используемые формулы будут недостоверными, ими нельзя пользоваться для проведения математических расчетов. Например, электрическая мощность для двигателя переменного тока будет определяться следующим образом:

Р=I*U*cosφ.

cosφ – это коэффициент мощности, который для электрических двигателей составляет 0,6-0,8 единиц.

Определяя параметры прибора в трехфазной сети с напряжением 380 В, необходимо суммировать мощность из отдельных величин для каждой фазы.

Пример расчета

Например, в случае трехфазного котла, рассчитанного на мощность в 3 кВт, в каждой фазе потребляется по 1 кВт. Рассчитаем величину фазного тока по формуле:

I=P/U_ф =(1*1000)/220=4,5А.

Для современного человека характерно постоянное применение на производстве и в быту электричества. Он использует приборы, которые потребляют электрический ток, применяет такие устройства, которые его производят. Работая с такими источниками, важно учитывать те максимальные возможности, которые предполагаются в технических характеристиках.

Такая физическая величина, как электрическая мощность, является одним из основных показателей любого прибора, функционирующего при протекании через него потока электронов. Для транспортировки либо передачи электрических мощностей в большом объеме, необходимой в производственных условиях, применяются высоковольтные линии электрических передач.

Преобразование энергии выполняется на мощных трансформаторных подстанциях. Трехфазное преобразование характерно для промышленных и бытовых приборов разной сферы применения. Например, благодаря такому преобразованию, функционируют лампы накаливания разного номинала.

В теоретической электротехнике существует такое понятие, как мгновенная электрическая мощность. Связана такая величина с протеканием через определенную поверхность за незначительный временной промежуток единичного элементарного заряда. Происходит совершение работы этим зарядом, который и связан с понятием мгновенной мощности.

Выполняя несложные математические вычисления, можно определить величину мощности. Зная данную величину, можно подбирать напряжение для полноценного функционирования разнообразных бытовых и промышленных приборов. В таком случае можно избежать рисков, связанных с перегоранием дорогостоящих электрических приборов, а также с необходимостью периодически менять в квартире либо офисе электрическую проводку.

www.syl.ru

Ватт - это... Что такое Ватт?

О типе морских побережий см. Ватты

Ватт (обозначение: Вт, W) — в системе СИ единица измерения мощности. Единица названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта (Ватта), создателя универсальной паровой машины.

Ватт как единица измерения мощности был впервые принят на Втором Конгрессе Британской Научной ассоциации в 1882 году. До этого при большинстве расчётов использовались введённые Джеймсом Уаттом лошадиные силы, а также фут-фунты в минуту. На XIX Генеральной конференции по мерам и весам в 1960 году ватт был включён в Международную систему единиц (СИ).

Одной из основных характеристик всех электроприборов является потребная мощность, поэтому на любом электроприборе (или в инструкции к нему) можно найти информацию о количестве ватт, необходимых для его работы.

Определение

1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.[1] Таким образом, ватт является производной единицей измерения и связан с другими единицами СИ следующими соотношениями:

Вт = Дж / с = кг·м²/с³ Вт = H·м/с Вт = В·А

Кроме механической (определение которой приведено выше), различают ещё тепловую и электрическую мощность.

Перевод в другие единицы измерения мощности

Ватт связан с другими единицами измерения мощности следующими соотношениями:

1 Вт = 107 эрг/с 1 Вт ≈ 0,102 кгс·м/с 1 Вт ≈ 1,36·10−3 л. с. 1 Вт = 859,8452279 кал/ч

Кратные и дольные единицы

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Стандартные приставки СИ для ватта приведены в следующей таблице.

Кратные Дольные величина название обозначение величина название обозначение 101 Вт 10−1 Вт 102 Вт 10−2 Вт 103 Вт 10−3 Вт 106 Вт 10−6 Вт 109 Вт 10−9 Вт 1012 Вт 10−12 Вт 1015 Вт 10−15 Вт 1018 Вт 10−18 Вт 1021 Вт 10−21 Вт 1024 Вт 10−24 Вт
декаватт даВт daWдециватт дВт dW
гектоватт гВт hWсантиватт сВт cW
киловатт кВт kWмилливатт мВт mW
мегаватт МВт MWмикроватт мкВт µW
гигаватт ГВт GWнановатт нВт nW
тераватт ТВт TWпиковатт пВт pW
петаватт ПВт PWфемтоватт фВт fW
эксаватт ЭВт EWаттоватт аВт aW
зеттаватт ЗВт ZWзептоватт зВт zW
йоттаватт ИВт YWйоктоватт иВт yW
     применять не рекомендуется

Примеры в природе

Величина Описание 10−9 ватт 5·10−3 ватт 1 ватт 10³ ватт 6·104 ватт 1,2·107 ватт 8,2·109 ватт 2,24·1010 ватт 1012 ватт 1,9·1012 ватт 1,5·1015 ватт 1,74·1017 ватт 3,86·1026 ватт
Поток энергии мощностью примерно в 1 нВт падает на поверхность земли площадью 1 м² от звезды яркостью в +1,4 звёздной величины.
Такую мощность (или близкую к ней) имеют обычные лазерные указки.
Примерная мощность приёмника/передатчика обычного мобильного телефона.
Небольшой обогреватель имеет мощность порядка 1 кВт. Среднее потребление энергии одного домашнего хозяйства в США составляет примерно 8900 кВт·ч за год, это соответствует равномерно потребляемой мощности 1 кВт в течение года.[2]
Легковой автомобиль с двигателем в 80 лошадиных сил имеет мощность, примерно равную 60 кВт.
Электропоезд Eurostar имеет мощность около 12 МВт.
Электростанция Касивадзаки-Карива в городе Касивадзаки (Япония), крупнейшая в мире атомная электростанция, при пиковых нагрузках вырабатывает 8,212 ГВт электроэнергии.
Самая крупная существующая электростанция Санься (ГЭС Три ущелья) (Китай). Проектная мощность ГЭС — 22,4 ГВт электроэнергии.
Пиковая мощность среднего удара молнии примерно равна 1 ТВт.
Общая мощность потребляемой человечеством электроэнергии в 2007 году в среднем оценивалось в 1,95 ТВт[3].
Рекордная мощность импульсного лазерного излучения, достигнутая на установке Nova в 1999 году[4]. Энергия в импульсе составляла 660 Дж, длительность импульса — 440·10−15 с.
Исходя из средней мощности потока энергии на поверхности Земли в 1,366 кВт/м²,[5] общая мощность потока энергии солнечного излучения, падающего на Землю, примерно равна 174 ПВт. Таким образом, если бы Земля не излучала энергию в пространство, она становилась бы тяжелее на 1,94 кг каждую секунду.
Полная мощность излучения Солнца оценивается учёными в 386 ЙВт,[6] что более чем в два миллиарда раз больше, чем мощность излучения, падающего на поверхность Земли. Другими словами, вследствие термоядерных реакций в центре Солнца, наше светило ежесекундно теряет массу около 4 000 000 тонн.

Разница между понятиями киловатт и киловатт-час

Из-за схожих названий, киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к электроприборам. Однако эти две единицы измерения относятся к разным физическим величинам. В ваттах и, следовательно, киловаттах измеряется мощность, то есть количество энергии, потребляемое прибором за единицу времени. Ватт-час и киловатт-час являются единицами измерения энергии, то есть ими определяется не характеристика прибора, а количество работы, выполненной этим прибором.

Эти две величины связаны следующим образом. Если лампочка мощностью в 100 Вт работала на протяжении 1 часа, её работа потребовала 100 Вт·ч энергии, или 0,1 кВт·ч. 40-ваттная лампочка потребит такое же количество энергии за 2,5 часа. Мощность электростанции измеряется в мегаваттах, но количество проданной электроэнергии будет измеряться в киловатт-часах (мегаватт-часах).

См. также

Примечания

dic.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта