Eng Ru
Отправить письмо

Прибор для проверки заземления. Испытание заземления


Методика испытания заземляющих устройств - Автоматизация энергопредприятий и электролабораторий

1. Проверка элементов заземляющего устройства.

Проверку следует проводить путем осмотра элементов заземляющего устройства в пределах доступности осмотра. Сечение и проводимость элементов заземляющего устройства должны соответствовать требованиям ПУЭ и проектным данным.

 

2. Проверка цепи между заземлителями и заземляющими элементами.

Для обеспечения безопасности обслуживающего персонала периодически должна производиться проверка целостности цепи между заземлителем и заземленным оборудованием. Проверяется целостность проводников, соединяющих аппаратуру с контуром заземления, надежность болтовых соединений, наличие у каждого аппарата непосредственной связи с магистралью заземления и заземленными металлическими конструкциями. Последовательное подключение оборудования, подлежащего заземлению, недопустимо.

Для проверки целостности заземляющей проводки применяют мост постоянного тока Р-333 и соединительные провода с известным сопротивлением. Подготовка и порядок работы с прибором:

  • установить мост на горизонтальную площадку;
  • присоединить к мосту соединительные провода;
  • присоединить соединительные провода к заземлителю и заземляемому оборудованию;
  • произвести замер сопротивления;
  • разобрать схему;
  • оформить результаты проверки протоколом.

3.  Измерение сопротивления заземляющих устройств.

Сопротивление заземляющего устройства является суммой сопротивления заземлителя относительно земли и сопротивления заземляющих проводников.

Сопротивление заземлителя определяется отношением напряжения заземлитель-земля к току, проходящему через заземлитель в землю. Сопротивление заземлителя зависит от удельного сопротивления грунта, в котором находится заземлитель, типа, размера и расположения элементов, из которых выполнен заземлитель, количества и взаимного расположения заземлителей.

В различные периоды года вследствие изменения влажности, температуры грунта сопротивление заземлителя может меняться в несколько раз. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое летнее время при его высыхании.

Измерение сопротивления заземлителей должно производится в периоды наименьшей проводимости грунта. Если измерения производятся при другом состоянии грунта, следует вводить рекомендованные поправочные коэффициенты, учитывающие состояние грунта в момент производства измерения и количество осадков, выпавших в предшествовавшее измерению время.

Повышающий коэффициент не вводится для заземлителей, находящихся во время измерения в промерзшем грунте или ниже глубины промерзания, а также для заземлителей, связанных с естественными заземлителями.

Существует несколько способов измерения сопротивления заземлителей. При каждом способе создаётся искусственная нагрузочная цепь через испытуемый заземлитель, для чего на некотором расстоянии от него сооружаются вспомогательные заземлители (потенциальный, токовый).

Испытываемый и вспомогательный заземлители присоединяются к источнику питания, и через грунт пропускают нагрузочный ток для измерения падения напряжения в заземлители в зоне нулевого потенциала забивается потенциальный электрод, называемый зондом.

Вспомогательные электроды должны располагаться на определённом расстоянии от испытуемого заземлителя и друг от друга.

В качестве вспомогательных заземлителей применяются стальные, неокрашенные электроды диаметром 10-20 мм, длиной 800-1000 мм. Один конец электрода заострён, на противоположном находится зажим для присоединения провода. Электроды забиваются в грунт на глубину не менее 0,5 м. Место забивки электродов должно быть выбрано с учетом прохождения кабельных трасс. Перед тем, как забивать электроды в землю, следует зачистить от ржавчины места их соединения с проводником.

Вспомогательные электроды следует забивать в землю прямыми ударами, не расшатывая их, чтобы не увеличивать переходное сопротивление между электродом и грунтом. Забивать вспомогательные электроды следует в твёрдый, естественный грунт, в местах, отдаленных от возможных проводящих предметов, находящихся в земле (кабели с металлической оболочкой, металлические трубы), так как они существенным образом влияют на характер растекания тока в земле. При большом удельном сопротивлении грунта места забивки вспомогательных электродов для уменьшения сопротивления увлажняются водой, раствором соли либо кислоты. В качестве вспомогательных заземлителей могут быть использованы металлические предметы, зарытые в землю (стальные пасынки опор, отрезки труб, одиночные заземлители), если они не связаны с испытуемым заземлителем и находятся от него на требуемом расстоянии.

Каждое отдельное заземляющее устройство должно иметь паспорт, содержащий схему устройства, основные технические и расчетные данные, сведения о произведённых ремонтах и внесённых изменениях.

Измерения проводятся прибором М-416. Прибор применяется для измерения больших и малых сопротивлений, как одиночных, так и сложных заземлителей.

Для проведения измерений необходимо иметь:

  • прибор М-416;
  • два стальных неокрашенных заземлителя диаметром 10-20 мм длиной 0,8-1м;
  • четыре соединительных провода, два из которых длиной не короче 20 и 10 м соответственно;
  • кувалду для заглубления заземлителей на глубину не менее 0,5м.

Порядок работы:

  • Установить прибор на горизонтальную поверхность, открыть крышку.
  • Присоединить зажимы 1,2,3,4 прибора к испытываемому заземляющему устройству и заземляющим электродам, заглубленным не менее чем на 0,5 м по одной из схем, представленных на рис. 1 – 4.
  • Переключатель пределов измерения поставить в положение «Контроль 5 Ом».
  • Нажать кнопку и ручкой «Реохорд» добиться установления стрелки индикатора на нулевую отметку. На шкале реохорда при этом должно быть показание 5±0,3 Ом.
  • Переключатель пределов измерения установить в положение х1, нажать кнопку, и вращая ручку «Реохорд»  добиться максимального приближения стрелки к нулю.

Результат измерения равен произведению показания шкалы реохорда на множитель(х1, х5, х20, х100).

4. Проверка состояния пробивных предохранителей в электроустановках  до 1 кВ.

Проверка состояния пробивных предохранителей заключается в проверке целости фарфора, резьбовых соединений и крепления, качества заземления. Разрядные поверхности электродов должны быть чистыми и гладкими, без заусенцев и нагаров. Слюдяная пластинка должна быть целой и иметь толщину в пределах 0,08±0,02 мм при исполнении на 220-380 В и 0,21±0,03 мм – при исполнении на 500-600 В.

У собранного предохранителя измеряется сопротивление изоляции мегаомметром до 250 В, которое должно быть больше или равно 5-10 МОм.

Перед установкой предохранителя измеряется его пробивное напряжение. При  исполнении на 220-380 В U проб = 351- 500 В; при исполнении на 500-660 В – 701-1000 В. Для ограничения после пробоя сопровождающего тока в цепь предохранителя включается токоограничивающее сопротивление 5-10 кОм.

Если пробивное напряжение соответствует норме, то напряжение снижается и снова повышается до 0,75 U проб . Если при этом не наступает пробой, то испытательная установка отключается и повторно измеряется сопротивление изоляции. При существенном снижении сопротивления изоляции (более 30%) необходимо разобрать предохранитель, зачистить подгоревшие разрядные поверхности и повторить испытания, увеличив балластное сопротивление.

 

5. Проверка цепи фаза-нуль в электроустановках до 1 кВ с глухим заземлением нейтрали.

В установках до 1000В с глухим заземлением нейтрали ток однофазного короткого замыкания на корпус или нулевой провод должен обеспечивать надёжное срабатывание защиты. Проверку петли фаза – нуль следует производить измерением полного сопротивления петли фаза – нуль.

Измерение сопротивления петли фаза – нуль должно производиться на электроприёмниках наиболее мощных, а также наиболее удалённых от источника тока, но не менее 10% их общего количества. Измерение имеет целью определить истинное значение полного сопротивления петли фаза – нуль, оно должно быть таким, чтобы ток однофазного КЗ был достаточным для отключения повреждённой установки от сети.

После измерения полного сопротивления петли фаза–нуль рассчитывается ток однофазного короткого замыкания по формуле:

Iк.з.=Uф/Rф-0 , где Uф – фазное напряжение сети, В;

Rф-0 – полное сопротивление петли фаза – нуль, Ом.

Измерения производятся прибором для контроля сопротивления цепи «фаза-нуль» М-417. Прибор предназначен для контроля величины сопротивления цепи «фаза-нуль» без отключения питающего источника с целью проверки наличия условия безопасности работы на электрооборудовании. С его помощью измеряется падение напряжения, пропорциональное сопротивлению цепи фаза – нуль, поэтому шкала прибора отградуирована в омах. Диапазон измерения 0,1-2 Ом. Основная погрешность 10% от длины рабочей части шкалы. Прибор обеспечивает автоматическое размыкание измеряемой цепи на время не более 0,3 с.

Прибор применяется в электроустановках, где имеется электрооборудование, работающее от сети переменного тока промышленной частоты напряжением 380 В с глухозаземленной нейтралью.

На время подключения прибора место не готовится, необходимо только отключить питающее напряжение контролируемого участка сети.

В случаях, когда по условиям эксплуатации невозможно отключить питающее напряжение, допускается подключение прибора без снятия напряжения. В этом случае прибор надежно соединяется с корпусом испытываемого оборудования, после чего второй зажим прибора подключается к фазному проводу. Присоединение прибора производится в диэлектрических перчатках. Время измерения прибором не должно превышать 4-7 секунд.

Подготовка и порядок работы:

  • Установить прибор на горизонтальную поверхность, открыть крышку и вынуть соединительные провода.
  • Ручку «Калибровка» установить в левое крайнее положение.
  • Присоединить соединительные провода к зажимам прибора.
  • Обесточить проверяемый участок цепи.
  • Один провод с помощью пружинного зажима подсоединить к корпусу испытываемого объекта, обеспечив в месте соединения надежный контакт, а второй провод присоединить к одной из фаз сети.
  • Подать напряжение на измеряемый участок сети. При отсутствии обрыва заземляющей цепи на приборе загорится сигнальная лампа. Если лампа не загорается, измерение производить запрещается.
  • Нажать кнопку «Проверка калибровки».
  • Ручкой «Калибровка» установить указатель на нуль, отпустить кнопку.
  • Нажать на кнопку «Измерение». При сопротивлении цепи «фаза-нуль» больше 2 Ом загорается сигнальная лампа.
  • Если сигнальная лампа не загорается, по шкале прибора произвести отсчет.
  • Повторные измерения производить только после проверки калибровки

НТД и техническая литература:

  • Правила устройства электроустановок, 6 изд., переработанное и дополненное, 1998.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.
  • Измерение электрических параметров земли и заземляющих устройств. Коструба С.И. — М.: Энергоатомиздат, 1983.
  • Прибор М416. Техническое описание и инструкция по эксплуатации.
  • Прибор М417. Техническое описание и инструкция по эксплуатации

 

 

www.etlpro.ru

Прибор для проверки заземления - Всё о электрике в доме

Как проверить контур заземления

Прибор для проверки заземления

  1. Для чего измеряется сопротивление
  2. Как измерить сопротивление контура заземления
  3. Замер сопротивление изоляции

Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования. Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление. Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Прибор для проверки заземления

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Прибор для проверки заземления

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Прибор для проверки заземления

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Измерение сопротивления заземления

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Прибор для проверки заземления

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Прибор для проверки заземления

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

Прибор для проверки заземления

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена .

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание. Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

Рекомендуем прочитать:

Прибор для проверки заземленияПрибор для проверки заземления

Проверка заземления.

Прибор для проверки заземленияЗащитное заземление является одним из основных видов защиты от поражения электрическим током при косвенном прикосновении. Под косвенным прикосновением подразумевается касание открытой токопроводящей части электроустановки, которая не должна быть под напряжением в нормальном режиме работы. Например, появилось напряжение на металлическом корпусе бытового электроприбора из-за повреждения изоляции. Исправное состояние системы заземления поможет избежать многих неприятностей, а, возможно, и спасет чью-то жизнь. На данной странице вы сможете найти наиболее полную информацию о том, как проводится проверка системы заземления на объекте.

Требования к заземлению.

Согласно ПУЭ, все защитные проводники (заземляющие, проводники основной и дополнительной системы уравнивания потенциалов) не должны иметь обрывов и видимых дефектов.

Все соединения и присоединения заземляющих, защитных проводников, проводников системы уравнивания потенциалов должны обеспечивать непрерывный электрический контакт.Прибор для проверки заземления Проводники, выполненные из стали, рекомендуется соединять при помощи сварки. Ее надежность проверяется ударом молотка. Для всех соединений необходимо предусмотреть средства защиты от коррозии, а для болтовых соединений еще и средства от ослабления контактов. Необходимым условием является доступность соединений для осмотра. Исключение составляют герметизированные соединения или соединения, заполненные компаундом. Если оборудование подвергается частому демонтажу или оно установлено на движущихся частях, то присоединение защитного проводника должно быть выполнено гибким проводом. Присоединение каждой открытой проводящей части электроустановки к нулевому или защитному заземляющему проводнику должно быть выполнено при помощи отдельного ответвления.

Последовательное включение в защитный проводник открытых проводящих частей не допускается. Так как при пропадании контакта на одном из заземленных устройств, пропадет контакт соответственно и на всех остальных.

Так же при помощи отдельного ответвления должно быть выполнено присоединение проводящих частей к основной системе уравнивания потенциалов. Присоединение к дополнительной системе уравнивания потенциалов может быть выполнено как при помощи отдельных ответвлений, так и при помощи присоединения к одному общему неразъемному проводнику.

В качестве РЕ-проводников в электроустановках до 1000 В могут использоваться:

  • — жилы многожильных кабелей;
  • — изолированные и неизолированные провода в общей оболочке с фазными проводами;
  • — стационарно проложенные изолированные и не изолированные проводники;
  • — алюминиевые оболочки кабелей;
  • — стальные трубы электропроводок;
  • — металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления;

Металлические кабельные лотки и короба можно использовать в качестве РЕ-проводников только в том случае, если об этом указано в документации завода изготовителя. Так же в качестве РЕ-проводника допускается использовать некоторые сторонние проводящие части. Например, металлические строительные конструкции зданий и сооружений (фермы, колонны и т. д.), или металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т. д.).

Использование сторонних проводящих частей в качестве РЕ-проводника допускается при соблюдении следующих условий: Обеспечена их непрерывность. Непрерывность может быть обеспечена как их конструкцией, так и с помощью соединений, защищенных от механического, химического и прочих воздействий. Так же должна быть исключена возможность их демонтажа, если не предусмотрены меры по сохранению непрерывности проводника.

Для чего нужно проводить проверку системы заземления?

Очень важно проводить регулярную проверку системы заземления. В ходе проверки выявляются многие дефекты, которые могут быть незамечены невооруженным взглядом. Это могут быть разрывы в цепи защитных проводников, ослабления контактов, механические повреждения и коррозия. Большинство дефектов в системе заземления возникают с течением времени, однако некоторые могут появиться сразу после окончания электромонтажных работ, поэтому проверка заземления входит в обязательный перечень работ при приемо-сдаточных испытаниях. При этом производятся следующие виды измерений и проверок: проверка наличия цепи между заземленными электроустановками и элементами заземленной электроустановки, а так же измерение сопротивления растеканию тока контура заземления.

Инженеры электроизмерительной лаборатории в ходе проверки используют специальные приборы. Целостность сварных соединений проверяются ударом молотка.

Какие приборы используются для проверки заземления?

В настоящее время существует большое количество различных приборов для измерения параметров системы заземления как импортного, так и отечественного производства. В нашей компании в качестве основных используются приборы фирмы Sonel марки MIC-3, а также отечественный измеритель сопротивления заземления М 416. Первый прибор мы используем для проверки наличия цепи между заземленной электроустановкой и элементами заземленной электроустановки, а так же для измерения сопротивления переходных контактов. Второй прибор используется для измерения сопротивления растеканию тока заземлителя. Оба прибора зарекомендовали себя с лучшей стороны, без проблем проходят ежегодную поверку.

Кто может производить проверку заземления?

Производить проверку заземления должна специализированная организация, которая имеет свидетельство о регистрации электроизмерительной лаборатории, выданное Федеральной службой по экологическому, технологическому и атомному надзору. Сотрудники электролаборатории должны иметь удостоверение по электробезопасности с группой не ниже III.

Как часто производят проверку заземления?

Проверка заземления производится при текущем ремонте, при капитальном ремонте, а так же при проведении межремонтных испытаний электрооборудования электроустановок. Сроки проверки устанавливает технический руководитель с учетом заводских инструкций, состояния электроустановок и местных условий. Согласно ПТЭЭП 2.7.9 раз в полгода должен производиться визуальный осмотр видимой части ЗУ, результаты осмотров должны заноситься в паспорт ЗУ.

Переходное сопротивление контактов должно быть не выше 0,05 Ом.

Методика проверки сопротивления переходных контактов защитных проводников.

Перед началом измерений производят визуальный осмотр целостности заземляющих проводников. Если измерения производятся без отключения испытуемого оборудования, то необходимо предварительно убедиться в отсутствии напряжения на корпусе оборудования. При измерении сопротивления прибором MIC-3 создается цепь тока корпус электрооборудования — прибор — магистраль заземления — заземляющий проводник — корпус.

Прибор для проверки заземления

После проведения измерения на дисплее высвечивается значение переходного сопротивления. Данные заносятся в протокол.

Методика измерения сопротивления растеканию тока контура заземлителя.

Методику измерения сопротивления заземляющих устройств рассмотрим на примере проведения этих работ прибором М 416. Для более точного измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю. Это позволит снизить влияние на результат сопротивление проводов, соединяющих Rx с зажимами 1 и 2. К зажиму 3 подключается потенциальный электрод (зонд), к зажиму 4 — вспомогательный электрод. Расстояния между электродами должны быть, как указано на рисунках 1-4. Глубина погружения в грунт электродов должна быть не менее 500 мм. Для повышения точности измерений грунт вокруг электродов можно увлажнить или забить дополнительные электроды. Дополнительные зонды забиваются на расстоянии не менее 2-3 метров друг от друга и соединяются электрически. Измерения проводятся по схемам, указанным на рисунках 1-4. В случае, когда измерение проводится по схемам 1 или 3, в итоговый результат входит сопротивление провода, соединяющего зажим 1 с Rx. Такие схемы подходят для измерений, в которых не требуется большая точность. Для измерения сопротивления сложных заземлителей используют схему, указанную на рис. 3, где d — наибольшая диагональ измеряемого контура заземляющего устройства. Предел измерения прибора М 416 от 0,1 до 1000 Ом.

Прибор для проверки заземления

Прибор для проверки заземления

Прибор для проверки заземления

Прибор для проверки заземления

Согласно ПТЭЭП 2.7.7 — Заземляющие проводники, которые проложены открыто должны иметь защиту от коррозии, а также должны иметь окраску черного цвета.

Источники: http://electric-220.ru/news/proverka_kontura_zazemlenija/2016-04-04-953, http://electry.ru/zazemlenie/izmerenie-soprotivleniya-zazemleniya.html, http://www.olimp02.ru/elektroizmeritelnaya-laboratoriya/proverka-zazemleniya/

electricremont.ru

Проверка заземления ООО "Олимп-02" 8(495)968-08-60 Москва и Московская область

контакт PEЗащитное заземление является одним из основных видов защиты от поражения электрическим током при косвенном прикосновении. Под косвенным прикосновением подразумевается касание открытой токопроводящей части электроустановки, которая не должна быть под напряжением в нормальном режиме работы. Например, появилось напряжение на металлическом корпусе бытового электроприбора из-за повреждения изоляции. Исправное состояние системы заземления поможет избежать многих неприятностей, а, возможно, и спасет чью-то жизнь. На данной странице вы сможете найти наиболее полную информацию о том, как проводится проверка системы заземления на объекте.

Требования к заземлению.

Согласно ПУЭ, все защитные проводники (заземляющие, проводники основной и дополнительной системы уравнивания потенциалов) не должны иметь обрывов и видимых дефектов.

Все соединения и присоединения заземляющих, защитных проводников, проводников системы уравнивания потенциалов должны обеспечивать непрерывный электрический контакт.защита от коррозии контакта PE Проводники, выполненные из стали, рекомендуется соединять при помощи сварки. Ее надежность проверяется ударом молотка. Для всех соединений необходимо предусмотреть средства защиты от коррозии, а для болтовых соединений еще и средства от ослабления контактов. Необходимым условием является доступность соединений для осмотра. Исключение составляют герметизированные соединения или соединения, заполненные компаундом. Если оборудование подвергается частому демонтажу или оно установлено на движущихся частях, то присоединение защитного проводника должно быть выполнено гибким проводом. Присоединение каждой открытой проводящей части электроустановки к нулевому или защитному заземляющему проводнику должно быть выполнено при помощи отдельного ответвления.

Последовательное включение в защитный проводник открытых проводящих частей не допускается. Так как при пропадании контакта на одном из заземленных устройств, пропадет контакт соответственно и на всех остальных.

Так же при помощи отдельного ответвления должно быть выполнено присоединение проводящих частей к основной системе уравнивания потенциалов. Присоединение к дополнительной системе уравнивания потенциалов может быть выполнено как при помощи отдельных ответвлений, так и при помощи присоединения к одному общему неразъемному проводнику.

В качестве РЕ-проводников в электроустановках до 1000 В могут использоваться:

  • - жилы многожильных кабелей;
  • - изолированные и неизолированные провода в общей оболочке с фазными проводами;
  • - стационарно проложенные изолированные и не изолированные проводники;
  • - алюминиевые оболочки кабелей;
  • - стальные трубы электропроводок;
  • - металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления;

Металлические кабельные лотки и короба можно использовать в качестве РЕ-проводников только в том случае, если об этом указано в документации завода изготовителя. Так же в качестве РЕ-проводника допускается использовать некоторые сторонние проводящие части. Например, металлические строительные конструкции зданий и сооружений (фермы, колонны и т. д.), или металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т. д.).

Использование сторонних проводящих частей в качестве РЕ-проводника допускается при соблюдении следующих условий: Обеспечена их непрерывность.! Непрерывность может быть обеспечена как их конструкцией, так и с помощью соединений, защищенных от механического, химического и прочих воздействий. Так же должна быть исключена возможность их демонтажа, если не предусмотрены меры по сохранению непрерывности проводника.

Для чего нужно проводить проверку системы заземления?

Очень важно проводить регулярную проверку системы заземления. В ходе проверки выявляются многие дефекты, которые могут быть незамечены невооруженным взглядом. Это могут быть разрывы в цепи защитных проводников, ослабления контактов, механические повреждения и коррозия. Большинство дефектов в системе заземления возникают с течением времени, однако некоторые могут появиться сразу после окончания электромонтажных работ, поэтому проверка заземления входит в обязательный перечень работ при приемо-сдаточных испытаниях. При этом производятся следующие виды измерений и проверок: проверка наличия цепи между заземленными электроустановками и элементами заземленной электроустановки, а так же измерение сопротивления растеканию тока контура заземления.

Инженеры электроизмерительной лаборатории в ходе проверки используют специальные приборы. Целостность сварных соединений проверяются ударом молотка.

Какие приборы используются для проверки заземления?

В настоящее время существует большое количество различных приборов для измерения параметров системы заземления как импортного, так и отечественного производства. В нашей компании в качестве основных используются приборы фирмы Sonel марки MIC-3, а также отечественный измеритель сопротивления заземления М 416. Первый прибор мы используем для проверки наличия цепи между заземленной электроустановкой и элементами заземленной электроустановки, а так же для измерения сопротивления переходных контактов. Второй прибор используется для измерения сопротивления растеканию тока заземлителя. Оба прибора зарекомендовали себя с лучшей стороны, без проблем проходят ежегодную поверку.

Кто может производить проверку заземления?

Производить проверку заземления должна специализированная организация, которая имеет свидетельство о регистрации электроизмерительной лаборатории, выданное Федеральной службой по экологическому, технологическому и атомному надзору. Сотрудники электролаборатории должны иметь удостоверение по электробезопасности с группой не ниже III.

Как часто производят проверку заземления?

Проверка заземления производится при текущем ремонте, при капитальном ремонте, а так же при проведении межремонтных испытаний электрооборудования электроустановок. Сроки проверки устанавливает технический руководитель с учетом заводских инструкций, состояния электроустановок и местных условий. Согласно ПТЭЭП 2.7.9 раз в полгода должен производиться визуальный осмотр видимой части ЗУ, результаты осмотров должны заноситься в паспорт ЗУ.

Переходное сопротивление контактов должно быть не выше 0,05 Ом.

Методика проверки сопротивления переходных контактов защитных проводников.

Перед началом измерений производят визуальный осмотр целостности заземляющих проводников. Если измерения производятся без отключения испытуемого оборудования, то необходимо предварительно убедиться в отсутствии напряжения на корпусе оборудования. При измерении сопротивления прибором MIC-3 создается цепь тока корпус электрооборудования - прибор - магистраль заземления - заземляющий проводник - корпус.

проверка переходного контакта заземления

После проведения измерения на дисплее высвечивается значение переходного сопротивления. Данные заносятся в протокол.

Методика измерения сопротивления растеканию тока контура заземлителя.

Методику измерения сопротивления заземляющих устройств рассмотрим на примере проведения этих работ прибором М 416. Для более точного измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю. Это позволит снизить влияние на результат сопротивление проводов, соединяющих Rx с зажимами 1 и 2. К зажиму 3 подключается потенциальный электрод (зонд), к зажиму 4 - вспомогательный электрод. Расстояния между электродами должны быть, как указано на рисунках 1-4. Глубина погружения в грунт электродов должна быть не менее 500 мм. Для повышения точности измерений грунт вокруг электродов можно увлажнить или забить дополнительные электроды. Дополнительные зонды забиваются на расстоянии не менее 2-3 метров друг от друга и соединяются электрически. Измерения проводятся по схемам, указанным на рисунках 1-4. В случае, когда измерение проводится по схемам 1 или 3, в итоговый результат входит сопротивление провода, соединяющего зажим 1 с Rx. Такие схемы подходят для измерений, в которых не требуется большая точность. Для измерения сопротивления сложных заземлителей используют схему, указанную на рис. 3, где d - наибольшая диагональ измеряемого контура заземляющего устройства. Предел измерения прибора М 416 от 0,1 до 1000 Ом.

инструкция к прибору м416

инструкция к прибору м416

инструкция к прибору м416

инструкция к прибору м416

Согласно ПТЭЭП 2.7.7 - Заземляющие проводники, которые проложены открыто должны иметь защиту от коррозии, а также должны иметь окраску черного цвета.

скачать протокол измерения сопротивления заземляющих устройств

скачать протокол проверки наличия цепи между заземлённой электроустановкой и заземлёнными элементами

www.olimp02.ru

Испытание заземления - Energy

Испытание заземления

Испытание заземления

Испытание заземления

Основным назначением любой системы заземления является поддержание потенциала элементов электрической сети приближенными к потенциалу грунта. Системой заземления обычно называют соединение электросети или отдельных ее элементов с устройством заземления, расположенным в земле. В состав системы заземления входят электроды и соединительные проводники.

 

Качественная система заземления обеспечивает защиту пользователей электрической системы и в случае повреждения изоляции на токоведущих частях системы снижает силу заряда электрического тока на элементах сети до безопасного для человека уровня. При появлении тока пробоя он будет уходить в землю, не причиняя вреда пользователям электрической системы. Таким образом, с корпусов электрического оборудования будет сниматься любое опасное постороннее напряжение. Для поддержания такой защитной системы в работоспособном и функциональном состоянии периодически требуется профессиональное испытание заземления.

Проверка заземления

Испытание заземления

Испытание заземления

Любые электрические измерения, затрагивающие систему заземления, распространяются на электроды, соединительные проводники, заземляющие шины и саму почву.

Периодичность проведения испытаний и сроки обязательных проверок указываются в действующих правилах устройства и эксплуатации электроустановок. Для различных объектов, электропроектов офисов, домов и подстанций, сроки будут различными.

Пример проекта электроснабжения офиса

 

Для подстанций и распределительных сетей, напряжение на которых составляет более 35 кВ, испытания систем должно проводиться после электромонтажа, а также каждые 12 лет в процессе эксплуатации электроустановок.

На воздушных линиях электропередач также требуется организация качественной системы заземления. Здесь профессиональные проверки электролаборатории требуются после монтажных работ и ежегодно в процессе эксплуатации.

Любые измерительные работы для определения состояния заземления и основных параметров данной системы должны проводиться при наибольшем пересыхании или промерзания почвы. Все внешние условия при проведении проверки обязательно должны заноситься в протокол, это требование касается как температуры окружающей среды, так и уровня атмосферного давления, хотя последние параметры и не оказывают воздействия на точность измерительных работ.

Профессиональные измерения

Испытание контура заземления

Испытание контура заземления

Испытание контура заземления, как и замеры сопротивления изоляции электропроводки, и другие ответственные измерительные работы в электрических системах, может проводиться только профессиональными специалистами, обладающими необходимой квалификацией, опытом и разрешениями. Сами подобные замеры проводятся для того, чтобы определить соответствие действующей системы заземления современным стандартам, описанным в ПУЭ, ГОСТе и других нормативных актах.

Вне зависимости от внешних условий, времени года, температуры и влажности, параметры сопротивления заземления должны находиться на приемлемом, безопасном уровне. Уровень сопротивления на трансформаторах и генераторах при линейном напряжении 660 В должен составлять не более 2 Ом, при напряжении 380 В – не более 4 ОМ, при напряжении 220 В – не более 8 Ом.

Для точного определения уровня сопротивления в системе заземления профессиональные специалисты должны использовать современное, качественное измерительное оборудование. Среди наиболее часто используемых измерителей профессиональными сотрудниками электролабораторий можно выделить устройство ИС-10, обладающее необходимой точностью и надежностью для использования в любых условиях и на любых электрифицированных объектах.

Какое бы оборудование ни применялось для проверки уровня сопротивления, такие работы обычно включают в себя одинаковые действия сотрудников энергетических предприятий. Замеры проводят за счет создания искусственной цепи, которая обеспечивает прохождение электрического тока через электроды системы заземления. Для проведения испытаний дополнительный электрод устанавливают на небольшом удалении от контура системы, после чего его и испытуемый электрод в системе подключают к источнику напряжения.

Испытание контура заземления

Испытание контура заземления

Как уже отмечалось, проводить подобные испытания следует при максимальном промерзании или пересыхании грунта, так как только в подобных условиях можно получить актуальные параметры сопротивления заземляющего устройства. Полученные в ходе измерения значения сопротивления умножают на различные поправочные коэффициенты, необходимые для учета внешних условий – состояние грунта, конфигурация заземления, погода и т.д.

Не использовать поправочные коэффициенты можно только в том случае, если замеры уровня сопротивления осуществляются при максимальном промерзании почвы. Если проведенные испытания показали несоответствие параметров системы установленным нормам, потребуются дальнейшие проверки, в состав которых будет включаться и замеры удельного сопротивления земли.

Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:

Поделитесь ссылкой

 

Дата публикации: 19.11.2010

energy-systems.ru

Методика испытания заземляющих устройств — Методики испытаний / Документы — Электротехническая лаборатория, г.Ханты-Мансийск

1. Проверка элементов заземляющего устройства.

Проверку следует проводить путем осмотра элементов заземляющего устройства в пределах доступности осмотра. Сечение и проводимость элементов заземляющегоустройства должны соответствовать требованиям ПУЭ и проектным данным.

2. Проверка цепи между заземлителями и заземляющими элементами.

Для обеспечения безопасности обслуживающего персонала периодически должна производиться проверка целостности цепи между заземлителем и заземленным оборудованием. Проверяется целостность проводников, соединяющих аппаратуру с контуром заземления, надежность болтовых соединений, наличие у каждого аппарата непосредственной связи с магистралью заземления и заземленными металлическими конструкциями. Последовательное подключение оборудования, подлежащего заземлению, недопустимо.

Для проверки целостности заземляющей проводки применяют мост постоянного тока Р-333 и соединительные провода с известным сопротивлением. Подготовка и порядок работы с прибором:

  • установить мост на горизонтальную площадку;
  • присоединить к мосту соединительные провода;
  • присоединить соединительные провода к заземлителю и заземляемому оборудованию;
  • произвести замер сопротивления;
  • разобрать схему;
  • оформить результаты проверки протоколом.

3. Измерение сопротивления заземляющих устройств.

Сопротивление заземляющего устройства является суммой сопротивления заземлителя относительно земли и сопротивления заземляющих проводников.

Сопротивление заземлителя определяется отношением напряжения заземлитель-земля к току, проходящему через заземлитель в землю. Сопротивление заземлителя зависит от удельного сопротивления грунта, в котором находится заземлитель, типа, размера и расположения элементов, из которых выполнен заземлитель, количества и взаимного расположения заземлителей.

В различные периоды года вследствие изменения влажности, температуры грунта сопротивление заземлителя может меняться в несколько раз. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое летнее время при его высыхании.

Измерение сопротивления заземлителей должно производится в периоды наименьшей проводимости грунта. Если измерения производятся при другом состоянии грунта, следует вводить рекомендованные поправочные коэффициенты, учитывающие состояние грунта в момент производства измерения и количество осадков, выпавших в предшествовавшее измерению время.

Повышающий коэффициент не вводится для заземлителей, находящихся во время измерения в промерзшем грунте или ниже глубины промерзания, а также для заземлителей, связанных с естественными заземлителями.

Существует несколько способов измерения сопротивления заземлителей. При каждом способе создаётся искусственная нагрузочная цепь через испытуемый заземлитель, для чего на некотором расстоянии от него сооружаются вспомогательные заземлители (потенциальный, токовый).

Испытываемый и вспомогательный заземлители присоединяются к источнику питания, и через грунт пропускают нагрузочный ток для измерения падения напряжения в заземлители в зоне нулевого потенциала забивается потенциальный электрод, называемый зондом.

Вспомогательные электроды должны располагаться на определённом расстоянии от испытуемого заземлителя и друг от друга.

В качестве вспомогательных заземлителей применяются стальные, неокрашенные электроды диаметром 10-20 мм, длиной 800-1000 мм. Один конец электрода заострён, на противоположном находится зажим для присоединения провода. Электроды забиваются в грунт на глубину не менее 0,5 м. Место забивки электродов должно быть выбрано с учетом прохождения кабельных трасс. Перед тем, как забивать электроды в землю, следует зачистить от ржавчины места их соединения с проводником.

Вспомогательные электроды следует забивать в землю прямыми ударами, не расшатывая их, чтобы не увеличивать переходное сопротивление между электродом и грунтом. Забивать вспомогательные электроды следует в твёрдый, естественный грунт, в местах, отдаленных от возможных проводящих предметов, находящихся в земле (кабели с металлической оболочкой, металлические трубы), так как они существенным образом влияют на характер растекания тока в земле. При большом удельном сопротивлении грунта места забивки вспомогательных электродов для уменьшения сопротивления увлажняются водой, раствором соли либо кислоты. В качестве вспомогательных заземлителей могут быть использованы металлические предметы, зарытые в землю (стальные пасынки опор, отрезки труб, одиночные заземлители), если они не связаны с испытуемым заземлителем и находятся от него на требуемом расстоянии.

Каждое отдельное заземляющее устройство должно иметь паспорт, содержащий схему устройства, основные технические и расчетные данные, сведения о произведённых ремонтах и внесённых изменениях.

Измерения проводятся прибором М-416. Прибор применяется для измерения больших и малых сопротивлений, как одиночных, так и сложных заземлителей.

Для проведения измерений необходимо иметь:

  • прибор М-416;
  • два стальных неокрашенных заземлителя диаметром 10-20 мм длиной 0,8-1м;
  • четыре соединительных провода, два из которых длиной не короче 20 и 10 м соответственно;
  • кувалду для заглубления заземлителей на глубину не менее 0,5м.

Порядок работы:

  • Установить прибор на горизонтальную поверхность, открыть крышку.
  • Присоединить зажимы 1,2,3,4 прибора к испытываемому заземляющему устройству и заземляющим электродам, заглубленным не менее чем на 0,5 м по одной из схем, представленных на рис. 1 — 4.
  • Переключатель пределов измерения поставить в положение «Контроль 5 Ом».
  • Нажать кнопку и ручкой «Реохорд» добиться установления стрелки индикатора на нулевую отметку. На шкале реохорда при этом должно быть показание 5±0,3 Ом.
  • Переключатель пределов измерения установить в положение х1, нажать кнопку, и вращая ручку «Реохорд» добиться максимального приближения стрелки к нулю.

Результат измерения равен произведению показания шкалы реохорда на множитель(х1, х5, х20, х100).

4. Проверка состояния пробивных предохранителей в электроустановках до 1 кВ.

Проверка состояния пробивных предохранителей заключается в проверке целости фарфора, резьбовых соединений и крепления, качества заземления. Разрядные поверхности электродов должны быть чистыми и гладкими, без заусенцев и нагаров. Слюдяная пластинка должна быть целой и иметь толщину в пределах 0,08±0,02 мм при исполнении на 220-380 В и 0,21±0,03 мм — при исполнении на 500-600 В.

У собранного предохранителя измеряется сопротивление изоляции мегаомметром до 250 В, которое должно быть больше или равно 5-10 МОм.

Перед установкой предохранителя измеряется его пробивное напряжение. При исполнении на 220-380 В U проб = 351 — 500 В; при исполнении на 500-660 В — 701-1000 В. Для ограничения после пробоя сопровождающего тока в цепь предохранителя включается токоограничивающее сопротивление 5-10 кОм.

Если пробивное напряжение соответствует норме, то напряжение снижается и снова повышается до 0,75 U проб. Если при этом не наступает пробой, то испытательная установка отключается и повторно измеряется сопротивление изоляции. При существенном снижении сопротивления изоляции (более 30%) необходимо разобрать предохранитель, зачистить подгоревшие разрядные поверхности и повторить испытания, увеличив балластное сопротивление.

5. Проверка цепи фаза-нуль в электроустановках до 1 кВ с глухим заземлением нейтрали.

В установках до 1000В с глухим заземлением нейтрали ток однофазного короткого замыкания на корпус или нулевой провод должен обеспечивать надёжное срабатывание защиты. Проверку петли фаза — нуль следует производить измерением полного сопротивления петли фаза — нуль.

Измерение сопротивления петли фаза — нуль должно производиться на электроприёмниках наиболее мощных, а также наиболее удалённых от источника тока, но не менее 10% их общего количества. Измерение имеет целью определить истинное значение полного сопротивления петли фаза — нуль, оно должно быть таким, чтобы ток однофазного КЗ был достаточным для отключения повреждённой установки от сети.

После измерения полного сопротивления петли фаза–нуль рассчитывается ток однофазного короткого замыкания по формуле:

Iк.з.=Uф/Rф-0, где Uф — фазное напряжение сети, В;

Rф-0 — полное сопротивление петли фаза — нуль, Ом.

Измерения производятся прибором для контроля сопротивления цепи «фаза-нуль» М-417. Прибор предназначен для контроля величины сопротивления цепи «фаза-нуль» без отключения питающего источника с целью проверки наличия условия безопасности работы на электрооборудовании. С его помощью измеряется падение напряжения, пропорциональное сопротивлению цепи фаза — нуль, поэтому шкала прибора отградуирована в омах. Диапазон измерения 0,1-2 Ом. Основная погрешность 10% от длины рабочей части шкалы. Прибор обеспечивает автоматическое размыкание измеряемой цепи на время не более 0,3 с.

Прибор применяется в электроустановках, где имеется электрооборудование, работающее от сети переменного тока промышленной частоты напряжением 380 В с глухозаземленной нейтралью.

На время подключения прибора место не готовится, необходимо только отключить питающее напряжение контролируемого участка сети.

В случаях, когда по условиям эксплуатации невозможно отключить питающее напряжение, допускается подключение прибора без снятия напряжения. В этом случае прибор надежно соединяется с корпусом испытываемого оборудования, после чего второй зажим прибора подключается к фазному проводу. Присоединение прибора производится в диэлектрических перчатках. Время измерения прибором не должно превышать 4-7 секунд.

Подготовка и порядок работы:

  • Установить прибор на горизонтальную поверхность, открыть крышку и вынуть соединительные провода.
  • Ручку «Калибровка» установить в левое крайнее положение.
  • Присоединить соединительные провода к зажимам прибора.
  • Обесточить проверяемый участок цепи.
  • Один провод с помощью пружинного зажима подсоединить к корпусу испытываемого объекта, обеспечив в месте соединения надежный контакт, а второй провод присоединить к одной из фаз сети.
  • Подать напряжение на измеряемый участок сети. При отсутствии обрыва заземляющей цепи на приборе загорится сигнальная лампа. Если лампа не загорается, измерение производить запрещается.
  • Нажать кнопку «Проверка калибровки».
  • Ручкой «Калибровка» установить указатель на нуль, отпустить кнопку.
  • Нажать на кнопку «Измерение». При сопротивлении цепи «фаза-нуль» больше 2 Ом загорается сигнальная лампа.
  • Если сигнальная лампа не загорается, по шкале прибора произвести отсчет.
  • Повторные измерения производить только после проверки калибровки

НТД и техническая литература:

  • Правила устройства электроустановок, 6 изд., переработанное и дополненное, 1998.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.
  • Измерение электрических параметров земли и заземляющих устройств. Коструба С.И. — М.: Энергоатомиздат, 1983.
  • Прибор М416. Техническое описание и инструкция по эксплуатации.
  • Прибор М417. Техническое описание и инструкция по эксплуатации

etl86.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта