Глава 10 Использование постоянных магнитов в генераторах энергии. Использование постоянных магнитовЧто такое магнит? Виды и свойства магнитов.Еще в древние времена люди обнаружили уникальные свойства определенных камней - притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье. ОпределениеЧто такое магнит? Это материал, имеющий определенную степень намагниченности. Эта способность возникает благодаря тому, что молекулы магнита имеют свое поле и движутся не хаотично, как во многих других веществах, а строго в двух направлениях. Эта взаимная противоположность обладает свойствами притяжения и отталкивания металлических предметов. Если попробовать соединить магниты с одинаковыми полюсами, то можно почувствовать отторжение. Противоположные стороны, в свою очередь, притянутся друг друга. Это связано с тем, в каком направлении движутся волны магнитных полей. Стоит отметить, что ни один кусок магнита не может быть однополярным. При его разламывании молекулы в каждом кусочке снова образуют северный и южный полюса. Виды магнитовЧто такое магниты и в чем их отличие? Работа многих электроприборов, датчиков, домашней техники зависит от типа магнитов, которые в них присутствуют. Каждый обладает своими особенностями. Они выполняет определенные функции, в зависимости от сферы использования. К основным видам относятся электромагниты, постоянные и временные магниты. Стоит рассмотреть подробнее каждый вид. Что такое постоянный магнит? Это материал, способный продолжительное время сохранять намагниченность. Его молекулы движутся в постоянном направлении и образуют магнитное поле при отсутствии электрического тока. Его еще называют природным магнитом. Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство. Полем электромагнита можно управлять с помощью электрического тока. Как это происходит? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность. Типы постоянных магнитовФерритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250оС. Альнико - магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550оС . Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли. Самариевые магнитные сплавы - это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии. Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет. Что такое магнит, мы выяснили. Далее рассмотрим применение самых востребованных и популярных сплавов. Использование неодимовых магнитовСтоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед силой магнитных полей других сплавов и не подвержен размагничиванию. Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике. Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100оС. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава. Применение ферритовых магнитовФерриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое - ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах. Назначение феррита - защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому свойству магниты используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение. МагнитотерапияНередко применяется физиотерапия магнитом. Что это такое? Эта процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток. Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается. Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения. fb.ru назначение, свойства, принципы взаимодействия магнитовОдно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён. До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка. Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля. Постоянные магниты Природа магнетизмаДемонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита? Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества. В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу. При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ). Как увидеть магнитное полеЧтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку. Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы. Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении. Демонстрация структуры магнитного поля Виды магнитовПостоянные магниты разделяют на 2 вида:
ЕстественныеВ природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл». Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось. Это была разработка и добыча естественного магнетита. Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов. ИскусственныеИскусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов. В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий. Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ. Виды и формы ПМ Применение постоянных магнитовНемаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:
Сферы, где применяют постоянные магниты:
ЭкологияРазработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы. Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений. Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов. ГальваникаГальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB. МедицинаВ последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB. Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее. ТранспортТранспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости. Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье. Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое. Компьютерные технологииВсе подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства. Бытовые приспособленияВ основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода. ЭлектротехникаЭлектротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели. РадиотехникаПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств. ГенераторыГенераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения. Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом. Ротор и статор генератора ЭлектродвигателиВ бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока. Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора. Электродвигатель с постоянными магнитами Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники. Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора. Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики. Видеоamperof.ru Постоянные магниты, их описание и принцип действия :: SYL.ruНаряду с электризующимися трением кусочками янтаря постоянные магниты были для древних людей первым материальным свидетельством электромагнитных явлений (молнии на заре истории определенно относили к сфере проявления нематериальных сил). Объяснение природы ферромагнетизма всегда занимало пытливые умы ученых, однако и в настоящее время физическая природа постоянной намагниченности некоторых веществ, как природных, так и искусственно созданных, еще не до конца раскрыта, оставляя немалое поле деятельности для современных и будущих исследователей. Традиционные материалы для постоянных магнитовОни стали активно использоваться в промышленности, начиная с 1940 года с появления сплава алнико (AlNiCo). До этого постоянные магниты из различных сортов стали применялись лишь в компасах и магнето. Алнико сделал возможным замену на них электромагнитов и применение их в таких устройствах, как двигатели, генераторы и громкоговорители. Это их проникновение в нашу повседневную жизнь получило новый импульс с созданием ферритовых магнитов, и с тех пор постоянные магниты стали обычным явлением. Революция в магнитных материалах началась около 1970 года, с созданием самарий-кобальтового семейства жестких магнитных материалов с доселе невиданной плотностью магнитной энергии. Затем было открыто новое поколение редкоземельных магнитов на основе неодима, железа и бора с гораздо более высокой плотностью магнитной энергии, чем у самарий-кобальтовых (SmCo) и с ожидаемо низкой стоимостью. Эти две семьи редкоземельных магнитов имеют такие высокие плотности энергии, что они не только могут заменить электромагниты, но использоваться в областях, недоступных для них. Примерами могут служить крошечный шаговый двигатель на постоянных магнитах в наручных часах и звуковые преобразователи в наушниках типа Walkman. Постепенное улучшение магнитных свойств материалов представлено на диаграмме ниже. Неодимовые постоянные магнитыОни представляют новейшее и наиболее значительное достижение в этой области на протяжении последних десятилетий. Впервые об их открытии было объявлено почти одновременно в конце 1983 года специалистами по металлам компаний Sumitomo и General Motors. Они основаны на интерметаллическом соединении NdFeB: сплаве неодима, железа и бора. Из них неодим является редкоземельным элементом, добываемым из минерала моназита. Огромный интерес, которые вызвали эти постоянные магниты, возникает потому, что в первый раз был получен новый магнитный материал, который не только сильнее, чем у предыдущего поколения, но является более экономичным. Он состоит в основном из железа, которое намного дешевле, чем кобальт, и из неодима, являющегося одним из наиболее распространенных редкоземельных материалов, запасы которого на Земле больше, чем свинца. В главных редкоземельных минералах моназите и бастанезите содержится в пять-десять раз больше неодима, чем самария. Физический механизм постоянной намагниченностиЧтобы объяснить функционирование постоянного магнита, мы должны заглянуть внутрь его до атомных масштабов. Каждый атом имеет набор спинов своих электронов, которые вместе формируют его магнитный момент. Для наших целей мы можем рассматривать каждый атом как небольшой полосовой магнит. Когда постоянный магнит размагничен (либо путем нагрева его до высокой температуры, либо внешним магнитным полем), каждый атомный момент ориентирован случайным образом (см. рис. ниже) и никакой регулярности не наблюдается. Когда же он намагничен в сильном магнитном поле, все атомные моменты ориентируются в направлении поля и как бы сцепляются «в замок» друг с другом (см. рис. ниже). Это сцепление позволяет сохранить поле постоянного магнита при удалении внешнего поля, а также сопротивляться размагничиванию при изменении его направления. Мерой силы сцепления атомных моментов является величина коэрцитивной силы магнита. Подробнее об этом позже. При более глубоком изложении механизма намагничивания оперируют не понятиями атомных моментов, а используют представления о миниатюрных (порядка 0,001 см) областях внутри магнита, изначально обладающих постоянной намагниченностью, но ориентированных при отсутствии внешнего поля случайным образом, так что строгий читатель при желании может отнести вышеизложенный физический механизм не к магниту в целом. а к отдельному его домену. Индукция и намагниченностьАтомные моменты суммируются и образуют магнитный момент всего постоянного магнита, а его намагниченность M показывает величину этого момента на единицу объема. Магнитная индукция B показывает, что постоянный магнит является результатом внешнего магнитного усилия (напряженности поля) H, прикладываемого при первичном намагничивании, а также внутренней намагниченности M, обусловленной ориентацией атомных (или доменных) моментов. Ее величина в общем случае задаётся формулой: B = µ0 (H + M), где µ0 является константой. В постоянном кольцевом и однородном магните напряженность поля H внутри него (при отсутствии внешнего поля) равна нулю, так как по закону полного тока интеграл от нее вдоль любой окружности внутри такого кольцевого сердечника равен: H∙2πR = iw=0 , откуда H=0. Следовательно, намагниченность в кольцевом магните: M= B/µ0. В незамкнутом магните, например, в том же кольцевом, но с воздушным зазором шириной lзаз в сердечнике длиной lсер, при отсутствии внешнего поля и одинаковой индукции B внутри сердечника и в зазоре по закону полного тока получим: Hсер l сер + (1/ µ0)Blзаз = iw=0. Поскольку B = µ0(Hсер + Мсер), то, подставляя ее выражение в предыдущее, получим: Hсер(l сер + lзаз) + Мсер lзаз=0, или Hсер = ─ Мсер lзаз(l сер + lзаз). В воздушном зазоре: Hзаз = B/µ0, причем B определяется по заданной Мсер и найденной Hсер. Кривая намагничиванияНачиная с ненамагниченного состояния, когда Н увеличивается от нуля, вследствие ориентации всех атомных моментов по направлению внешнего поля быстро увеличиваются М и B, изменяясь вдоль участка «а» основной кривой намагничивания (см. рисунок ниже). Когда выровнены все атомные моменты, М приходит к своему значению насыщения, и дальнейшее увеличение В происходит исключительно из-за приложенного поля (участок b основной кривой на рис. ниже). При уменьшении внешнего поля до нуля индукция В уменьшается не по первоначальному пути, а по участку «c» из-за сцепления атомных моментов, стремящегося сохранить их в том же направлении. Кривая намагничивания начинает описывать так называемую петлю гистерезиса. Когда Н (внешнее поле) приближается к нулю, то индукция приближается к остаточной величине, определяемой только атомными моментами: Вr = μ0 (0 + Мг). После того как направление H изменяется, Н и М действуют в противоположных направлениях, и B уменьшается (участок кривой «d» на рис.). Значение поля, при котором В уменьшается до нуля, называется коэрцитивной силой магнита BHC. Когда величина приложенного поля является достаточно большой, чтобы сломать сцепление атомных моментов, они ориентируются в новом направлением поля, а направление M меняется на противоположное. Значение поля, при котором это происходит, называется внутренней коэрцитивной силой постоянного магнита МНC. Итак, есть две разных, но связанных коэрцитивных силы, связанных с постоянным магнитом. На рисунке ниже показаны основные кривые размагничивания различных материалов для постоянных магнитов. Из него видно, что наибольшей остаточной индукцией Br и коэрцитивной силой (как полной, так и внутренней, т. е. определяемой без учета напряженности H, только по намагниченности M) обладают именно NdFeB-магниты. Поверхностные (амперовские) токиМагнитные поля постоянных магнитов можно рассматривать как поля некоторых связанных с ними токов, протекающих по их поверхностям. Эти токи называют амперовскими. В обычном смысле слова токи внутри постоянных магнитов отсутствуют. Однако, сравнивая магнитные поля постоянных магнитов и поля токов в катушках, французский физик Ампер предположил, что намагниченность вещества можно объяснить протеканием микроскопических токов, образующих микроскопические же замкнутые контуры. И действительно, ведь аналогия между полем соленоида и длинного цилиндрического магнита почти полная: имеется северный и южный полюс постоянного магнита и такие же полюсы у соленоида, а картины силовых линий их полей также очень похожи (см. рисунок ниже). Есть ли токи внутри магнита?Представим себе, что весь объем некоторого стержневого постоянного магнита (с произвольной формой поперечного сечения) заполнен микроскопическими амперовскими токами. Поперечный разрез магнита с такими токами показан на рисунке ниже. Каждый из них обладает магнитным моментом. При одинаковой ориентации их по направлению внешнего поля они образуют результирующий магнитный момент, отличный от нуля. Он и определяет существование магнитного поля при кажущемся отсутствии упорядоченного движения зарядов, при отсутствии тока через любое сечение магнита. Легко также понять, что внутри него токи смежных (соприкасающихся) контуров компенсируются. Нескомпенсированными оказываются только токи на поверхности тела, образующие поверхностный ток постоянного магнита. Плотность его оказывается равной намагниченности M. Как избавиться от подвижных контактовИзвестна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты – контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность. Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом. Двигатель на постоянных магнитахВ последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети. Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора. www.syl.ru Применение - постоянный магнит - Большая Энциклопедия Нефти и Газа, статья, страница 2Применение - постоянный магнитCтраница 2 Практика применения постоянных магнитов показывает, что магниты, применяемые в больших количествах, обычно имеют небольшие размеры и массу примерно десятки граммов. Постоянные магниты, предназначенные для изделий мелкосерийного производства или уникальных устройств, как правило, представляют собой крупные магниты, с массой единицы и даже согни килограммов. В обоих случаях экономия массы имеет большое значение, так как при этом достигается снижение стоимости и уменьшается расход дефицитных материалов, таких как никель, кобальт и других, входящих в качестве компонентов в современные высококачественные магнитнотвердые материалы. Поэтому задача оптимального проектирования весьма актуальна. В общем случае следовало бы ставить вопрос о рациональном совместном выборе размеров и формы всех деталей устройства, в которое входит постоянный магнит. Однако конфигурации магнитной системы и самого постоянного магнита обычно выбираются из общих конструктивных соображений, и задача сводится поэтому лишь к выбору размеров постоянного магнита, обеспечивающих его минимальный объем. Практически в силу тех или иных обстоятельств постоянный магнит не работает в точке максимальной энергии. [16] При применении постоянных магнитов дугогаситель-ные устройства становятся поляризованными и неправильное включение аппарата может привести к аварии. Такие устройства применяют только в аппаратах постоянного тока. [17] При применении постоянных магнитов весьма важен вопрос о стабильности их свойств. Магнитная нестабильность может иметь обратимый и необратимый характер. Необратимые изменения вызываются естественным старением, воздействием вибрации и ударов. Обратимые изменения вызываются воздействием температуры и могут быть устранены повторным намагничиванием материала. [18] Однако часто применение постоянных магнитов связано также с их способностью притягивать ферромагнитные материалы и притягивать и отталкивать другие постоянные магниты. Поэтому следует вкратце рассмотреть соотношения, касающиеся магнитных сил. [19] Недостатком, ограничивающим применение постоянных магнитов для создания магнитного поля дугогашения, является то, что аппарат становится поляризованным и неправильное его включение, как и изменение направления тока, может привести к аварии. [20] В настоящее время применение постоянных магнитов из мартенеитных сталей весьма ограничено вследствие низких магнитных свойств. Однако полностью от них не отказываются, так как они сравнительно дешевы, допускают механическую обработку на металлорежущих станках. В основном они применяются в тех случаях, когда к магнитным системам не предъявляются требования по габаритам и массе. [21] Недостатком, ограничивающим применение постоянных магнитов для создания магнитного поля дугогашения, является то, что аппарат становится поляризованным и неправильное его включение, как и изменение направления тока, может привести к аварии. [22] Недостатком, ограничивающим применение постоянных магнитов для создания магнитного поля дугогашения, является то, что аппарат становится поляризованным и неправильное его включе-яе, как равно и изменение направления тока, может привести к аварии. [23] Электромагнитные микрофоны, благодаря применению постоянных магнитов из специальных магнитных сплавов, обладают достаточно большой мощностью как микрофоны и применяются в безбатарейной телефонной связи помещений с уровнем шумов не более 100 - ПО дб. Для работы не требуют подачи к ним питания. [25] Это свидетельствует о высокой эффективности применения постоянных магнитов в системах броневого типа. [27] Поэтому конструкции магнитных приспособлений с применением постоянных магнитов из АНКО4 и МБА значительно отличаются друг от друга. [28] В связи с такой обширной областью применения постоянных магнитов и спецификой их работы в каждом отдельном случае требуется прежде всего получить от постоянного магнита те или иные характеристики. [29] Переменному И постоянному току) устраняется применением постоянных магнитов для создания униполярного потока. [30] Страницы: 1 2 3 4 www.ngpedia.ru принцип действия, производство и использованиеПринцип работы постоянного магнитаВ электромагните магнитное поле порождается изменением электрического поля, либо за счёт движения проводника с постоянным током, либо за счёт протекания по проводнику переменного тока. В любом случае, при отключении тока магнитный эффект пропадает. Совсем другое дело — постоянный магнит. Никакого тока здесь и в помине нет. А магнитное поле есть. Строгое объяснение принципа действия постоянного магнита невозможно без привлечения аппарата квантовой физики. Если же объяснять «на пальцах», то наиболее адекватное объяснение звучит следующим образом. Каждый электрон сам по себе является магнитом, обладает магнитным моментом — это его неотъемлемое физическое свойство. Если атомы, которым «принадлежат» электроны, в веществе ориентированы хаотично, то магнитные моменты электронов друг друга компенсируют и вещество магнитных свойств не проявляет. Если по какой-то причине атомы (хотя бы какая-то их часть) ориентируются в каком-то одном направлении, то магнитные свойства электронов складываются и вещество становится магнитом. Получается, что сильный магнит — это такой магнит, в котором много атомов ориентированы в одном направлении, и чем меньше атомов имеют одинаковую ориентацию, тем слабее получается магнит. Понятно также, что жидкости и газы магнитами в принципе быть не могут — ведь сохранять ориентацию атомы могут только в твёрдых телах. Со временем магниты теряют свои свойства, но это происходит под действием внешних причин: внешнего магнитного поля, высокой температуры, механических повреждений. Притягивая какое-то тело, магнит затрачивает часть своей энергии на это притяжение и становится чуть-чуть менее сильным. Но когда вы отрываете это тело от магнита, он полностью возвращает себе потраченную энергию. Таким образом, суммарная механическая работа постоянного магнита остаётся нулевой, и теоретически магнит может сохранять свои свойства сколь угодно долгое время. Производство и использование постоянных магнитовНе смотря на то, что магниты были известны людям тысячи лет назад, их промышленное производство стало возможным только в двадцатом веке. Причём самые сильные постоянные магниты на основе неодимовых сплавов были изобретены только в 80-х годах прошлого века. А наиболее дешёвые и популярные из производимых сегодня магнитов — полимерные магнитные материалы, к числу которых относится, например, магнитный винил, так и вовсе были разработаны на рубеже второго и третьего тысячелетий. Первое практическое использование постоянных магнитов относится к 12 веку и не потеряло актуальности до сих пор. Это использование магнитной стрелки в компасе. До начала массового производства магнитных материалов ни для чего другого магниты и не использовались (применение их в качестве игрушек или «лечебных» амулетов — не в счёт). В современной же технике постоянные магниты используются повсеместно. Достаточно перечислить магнитные носители информации (от дисковых накопителей в вашем компьютере, до магнитной полосы в вашей пластиковой карте), микрофоны и динамики (постоянные магнитики есть и в звуковых колонках на вашем столе, и в вашем мобильном телефоне), в электродвигателях и генераторах (не во всех типах электродвигателей используются постоянные магниты, но, например, в вентиляторах в вашем компьютере они точно есть), в многочисленных электронных датчиках (задумывались ли вы, что именно такого типа датчик, например, не позволяет лифту начать движение при незакрытых дверях) и во множестве других устройств. Некоторые виды применения магнитов постепенно устаревают: так сегодня уже мало актуальны электронно-лучевые трубки, на основе которых ещё недавно выпускалось 100 % телевизоров и мониторов; постепенно сходят со сцены магнитные носители информации. Но в целом производство и применение постоянных магнитов растёт с каждым годом. www.sovets.ru Использование постоянных магнитовУважаемые клиенты! Вы нам часто задаете вопросы, связанные с понятиями постоянные магниты и электрический ток. Поэтому сегодня расскажем Вам о том, что такое сильный постоянный магнит и, что происходит внутри него во время взаимодействия с другими такими же постоянными магнитами.
Как известно, «чистый» электрический ток – это комплекс зарядов, который состоит из одинакового количества отрицательно и положительно заряженных частиц. При этом одни частицы по сравнению с другими двигаются в преобладающем направлении. Таким образом, мы видим, что в большинстве случаев взаимодействующие токи не являются нейтральными токами, поскольку не выполняется условие о равномерном распределении зарядов. Чтобы изучить свойства нейтрального тока, нужно использовать постоянные магниты.
При взаимодействии постоянного магнита с другим постоянным магнитом возникает электрическая взаимная индукция. Данное явление очень подробно описано в научной литературе. Известно точно, что энергия системы магнитов должна отличаться от суммарной энергии каждого магнита. Суммарные магнитные свойства постоянных магнитов являются неизменными на протяжении времени. Но постоянные магниты обладают внешним и внутренним магнитным полем, которое может “связать” элементарные токи. Из этого следует, что каждый круговой ток может отреагировать на колебания остальных, и данная реакция является взаимной. Таким образом, постоянный магнит – это единый "организм", который состоит из взаимодействующих между собой элементарных токов.
Теперь более подробно расскажем о практическом использовании постоянных магнитов в наше время. Постоянный магнит используется в большинстве громкоговорителей и микрофонов. Благодаря постоянному магниту и токовой катушке происходит преобразование электрической энергии в механическую. Таким образом, сигнал преобразовывается в движение, которое уже создает звук. Похожая комбинация электромагнита и постоянного магнита лежит в основе всех электродвигателей и генераторов.
Под постоянными магнитами, принято считать магниты сплавов NdFeB (неодимовые магниты), Ферритовые магниты (Br/St), магниты SmCo (самарий-кобальт) и магниты AlNiCo (ЮНДК). Самые популярные магниты на сегодняшний день это неодимовые магниты. Использование неодимовых магнитов (NdFeB) открыло широкие горизонты для разных отраслей промышленности, для изготовления сувениров и магнитиков на холодильник, для магнитных замков, для магнитных креплений, для ветрогенераторов, в жестких дисках, в мебельной промышленности, в детских конструкторах, в производстве активаторов топлива, в швейном производстве, в кожаных изделиях и мн. другого.
В отличие от их предшественников, ферритовых магнитов, неодимовые магниты в 7-10 раз сильнее, при равных размерах. Поэтому неодимовые называют сильными магнитами или мощными магнитами. Всем известные магниты из феррита, черного цвета. Чаще всего используются в сувенирах и в акустических системах.
Магниты SmCo (самарий-кобальт) схожи по своим характеристикам и усилию с неодимовыми магнитами, и даже выдерживают более высокие температуры (до +350оС). Но из-за своего дорого материала, не нашел применения в повседневной жизни и применяется только в промышленности. Магниты AlNiCo вы все помните из школы. Всеми любимый магнит подкова изготовлена, как раз из этого сплава. Магниты достаточно слабые, но имеют значительное преимущество, перед всеми другими магнитами. Магниты AlNiCo изготавливаются путем литья, и можно изготовить практически любую форму. В отличии от прессованных магнитов (неодимовых).
Постоянный магнит также использовался практически во всех попытках человечества изобрести «вечный двигатель». Людей всегда привлекала неисчерпаемая энергия его магнитного поля. Он работает постоянно, то есть вы можете купить магнит и пользоваться им всегда без домагничивания, в течение 10 лет он теряет свои свойства, всего на 1% и при правильной эксплуатации магнит не размагничивается примерно 30 лет. Но, к сожалению, рабочий макет «вечного двигателя» так и не удалось никому построить.
В нашем магазине магнитов вы найдете любой магнит по Вашим запросам. У нас широкий ассортимент магнитов по сплавам, маркам, формам и размерам. Также изготавливаем магниты по Вашим потребностям. Ждем Вас у себя в офисе! Звоните или пишите, если Вы в другом городе!
С удовольствием покажем, расскажем и опишем о всех возможностях магнитов.
Частично использован материал из: http://mirnt.ru/statji/ispolzovanie-postojannyh-magnitov
Следите за новостями!
magnet-prof.ru Глава 10 Использование постоянных магнитов в генераторах энергииГлава 10 Использование постоянных магнитов в генераторах энергии Начнем эту обширную тему с истории развития электромагнитного генератора Джона Серла (John Roy Robert Searl). Джон в возрасте 14 лет поступил учеником электромонтера на завод в английском городе Бирмингеме. Работая с постоянными магнитами для электросчетчиков, он в 1946 году открыл новый эффект электромеханики, о котором в школе не рассказывают. В быстро вращающемся диске появлялась радиальная электродвижущая сила с вертикальным вектором. Для увеличения эффекта, Джон сначала намагничивал диски, а затем стал использовать постоянные магниты. Однажды его модель, состоящую из нескольких соединённых вместе колец, испытывали во дворе. При малых оборотах, в кольцах появилась большая радиальная разность потенциалов, что проявилось по характерному треску электрических разрядов и запаху озона. Затем произошло совсем необычное: блок колец оторвался от раскручивающего их мотора и завис на высоте 1,5 метра, постоянно увеличивая обороты вращения. Вокруг вращающегося объекта появилось розовое свечение – показатель активизации воздуха при падении давления. Объект начал подниматься. Наконец, вращение достигло такой скорости, что объект быстро исчез из виду в вышине. Вдохновлённый своими результатами, Джон, в период с 1950 по 1952 год создал и испытал свыше десятка моделей левитирующих дисков. В дальнейшем он научился управлять «разгоном» этих дисков. Уверенный в том, что общество будет с благодарностью принимать его открытия, он в 1963 году разослал приглашения на презентацию своей модели «летающей тарелки» в Королевский Дом и высшим министерским чинам. Но никто на приглашения не откликнулся. Обескураженный Джон на некоторое время перестал работать, потом, в 1967 году обратился к английским учёным, но те лишь высмеяли «неуча-электрика». Как обычно, признание к изобретателю пришло из-за рубежа. Сначала от японцев, а значительно позже и от ученых других стран. В 1968 году произошло событие, которое, задержало развитие этих научных исследований. 30 июля 1968 года Джон испытывал аппарат «Р-11» весом почти 500 кг. При демонстрации аппарат опять перестал управляться, а затем взлетел и скрылся из виду на большой высоте в небе. Власти оперативно «отреагировали» на это событие. Местные электрики предъявили изобретателю счет за использование электроэнергии в течении прошлых 30 лет, хотя Джон имел собственную электростанцию. Он не имел возможности уплатить огромную сумму, поэтому его арестовали, судили, и посадили в тюрьму на 15 месяцев. Все оборудование и приборы уничтожили, а дом сожгли. В 1980-е годы о нем было много шума в прессе, как об «отце летающих тарелок». Потом все разговоры об этом талантливом изобретателе прекратились, как будто кто-то дал такую команду. В настоящее время, Джон Серл открыт для контактов, о нем снимают фильмы и пишут книги. Он действительно заслуживает того, чтобы изучить его теорию и технологию. Необходимо отметить, что Джон Серл сделал фундаментальное открытие природы магнетизма, которое заключается в том, что добавление небольшой составляющей слабого переменного тока (примерно 100 милиампер) высокой частоты (около 10 MГц) в процессе изготовления постоянных магнитов придает им новые и неожиданные свойства. На основе этих магнитов Джон создал свои генераторы. Полагаю, что суть данной технологии состоит в создании магнитного материала, имеющего прецессию магнитных моментов. Данная концепция подробно рассмотрена в моей книге «Новые космические технологии», 2012. Основной интерес разработчика был в создании «летающих дисков», и это у него получалось с большим успехом, так как в его генераторах, кроме эффекта самовращения, создается эффект осевой активной силы. К продаже генераторов энергии, Серл и его коллеги готовы давно, иногда они давали рекламу, но до серийного выпуска развитие их проекта не дошло. Возможно, отсутствие серийного производства – это компромисс за то, что они сейчас еще имеют возможность продолжать исследования. На фото рис. 109 показана фотография небольшой экспериментальной установки в современной лаборатории Джона Серла. Слева на фото ролики не вращаются, а справа на фото показаны вращающиеся ролики. Фото публикуется с разрешения Джона Серла. Он прислал письмо в январе 2011 года, с пожеланиями успехов в исследованиях. Рис. 109. Один из современных генераторов Серла В интернет есть много фильмов с его презентациями и пояснениями о том, «как это работает». Официально, проектами занимается компания DISC Direct International Science Consortium Inc. Они ставят задачи коммерческого освоения космоса, в том числе. Технические подробности данного изобретения имеют аналогии с другими проектами. Эффект Серла, обнаруженный в магнитных взаимодействиях, проявляется в необычном поведении роликов, находящихся в области постоянного поля кольцевого магнита с осевой намагниченностью. Ролик, установленный на свое место «на орбите», после небольшого толчка влево или вправо, начинает движение по орбите с вращением вокруг своей оси, причем с постоянным увеличением орбитальной скорости. Этот эффект может быть объяснен явлением «запаздывания взаимодействия», которое, при перемагничивании, в особых материалах, возникает даже на небольших скоростях взаимного движения магнитов. На рис. 110 показана схема с несколькими кольцами и несколькими орбитами роликов-магнитов. Рис. 110. Схема Серла с несколькими магнитамиКоманда последователей Джона Серла продолжает его проекты, создавая новые конструкции и применяя современные материалы. Для более детального обсуждения конструкции, можно обратиться к схеме Рощина и Година, которые в 1992 году в Институте Высоких Температур, Москва, построили и успешно испытали аналогичный генератор. Проект назывался «Астра». Схема экспериментальной установки показана на рис. 111. Рис. 111. Установка «Астра», авторы Годин и Рощин, 1992 годВ данной конструкции, периферийные магниты (ролики с осевой намагниченностью) вращаются вокруг центрального магнита, имеющего форму кольца с осевой намагниченностью. Вращение создает электродвигатель с внешним питанием. Некоторые отличия от проектов Серла состоят в том, что магниты, в данном случае, не являются свободными, а установлены на общем роторе (элемент 3 на рис. 111), хотя ролики также имеют свободу вращения вокруг своей оси. Диаметр магнитной системы рабочего тела конвертора Година и Рощина в проекте «Астра» был около 1 метра. При оборотах более 500 оборотов в минуту, начиналось самовращение, и машина переключалась от первичного привода на генератор с нагрузкой до 7 киловатт. Интересно, что в процессе работы также отмечалось наличие осевой вертикальной силы, и создается радиальное электрическое поле. В затемненном помещении, вокруг работающего генератора наблюдается коронный разряд в виде голубовато-розового свечения и характерный запах озона. При этом, облако ионизации охватывает статор и ротор, и имеет тороидальную форму. Вокруг установки отмечаются концентрические «магнитные стены», то есть области изменения величины магнитного поля и температуры среды. Расстояние между данными «магнитными стенами» было около 50–60 см, толщина «стен» примерно 5–8 см. Температура внутри «стен» была ниже окружающей примерно на 6–8 градусов. Концентрические «магнитные стены» и сопутствующие тепловые эффекты начинали проявляться, заметным образом, примерно с 200 об/мин, и линейно нарастали по мере увеличения числа оборотов. Подробнее, читайте о данном проекте в статье В. Година и С. Рощина «Экспериментальное исследование нелинейных эффектов в динамической магнитной системе», журнал Новая Энергетика, www.faraday.ru Метод запатентован в России: «Устройство для выработки механической энергии и способ выработки механической энергии», Рощин В.В., Годин С.М., патент РФ 2155435 от 27.10.1999 г. Несмотря на это, есть серьезные критические замечания, а также сомнения в корректности постановки и данного эксперимента и оценке его результатов. Эти явления могут быть реализованы не только путем специального намагничивания, по технологии Серла, но и другими методами. Например, простым способом, обеспечивающим режим работы магнитного генератора под нагрузкой без торможения, или даже с ускорением, является конструктивно создаваемое динамическое смещение полюсов магнита ротора и полюсов генераторных катушек. Эта концепция самоускоряющихся приводов с постоянными магнитами проверена мной в нескольких вариантах, и она получила название «задержка реакции в явлениях электромагнитной индукции». Рассмотрим суть предлагаемого метода. Обычно, приближение магнита ротора к полюсу катушки генератора вызывает его торможение полем индуцированного тока, а в фазе удаления ротора вторичное поле притягивает его, и тоже тормозит. Создав сдвиг фазы нужной длительности, получаем «задержку реакции» . Этот эффект может быть создан различными методами, например, свойствами материала сердечника. В результате, сближение полюса магнита не вызывает реакции (гистерезисная задержка), а удаление вызывает отталкивание, поскольку статор реагирует на удаление, как на сближение. На рис. 112 показана схема из статьи Профессора Лайтвайта (Professor Eric Laithwaite of Queens College, London). Рис. 112. Принцип «задержки реакции»Насколько я понимаю, при конструировании подобных устройств, необходимо найти требуемое сочетание скорости вращения ротора и длительности задержки реакции (перемагничивания или переполяризации). Эта точка рабочего режима напоминает резонанс. При скорости меньшей, чем «резонансная», статор успевает дать реакцию отталкивания на сближение с ротором. При номинальной «резонансной» скорости вращения ротора, статор реагирует «в нужное время, и в нужном месте», отталкивая удаляющийся ротор. При скорости больше, чем надо, статор не реагирует на ротор или «не попадает в такт». Отличную от известных, концепцию явления «самовращения» развивает профессор В. Эткин в книге «Энергодинамика. Синтез теорий переноса и преобразования энергии» (СПб, «Наука», 2008 г., 409 с.). Он объясняет это явление, как следствие «запаздывания потенциала» при деформации силовых полей, вызванной взаимным движением полеобразующих тел. В частном случае относительного движения магнитных полюсов это проявляется в неравенстве сил их притяжения и отталкивания вследствие конечной скорости (гистерезиса) процесса намагничивания. Для диэлектриков, применяемых в других конструкциях, необходимы условия запаздывания переполяризации, что мы рассматривали ранее, как «эффект Герца-Квинке-Сумото», рис. 72. Аналогии всегда дают пищу для размышлений, и поиска новых конструктивных решений. Следующий пример конструкции магнитного мотора, который в 2010 году был показан на Всемирной Выставке в Шанхае, и его видели около 70 миллионов человек, это изобретение Ванга (Wang). Проект развивался более 40 лет. На фото рис. 113 показано устройство небольшой мощности с вращающимся ротором, и ротор отдельно. Автор на фото рис. 113, показан еще «в молодости», он держит в руках мотор мощностью 1 кВт. Внутри мотора применяется феррофлюид, то есть магнитная жидкость. Рис. 113. Ванг и его магнитный моторВ конце 2010 мне удалось связаться с изобретателем, и он уточнил, что в Китае для развития его проекта создана компания с большими финансовыми возможностями, которой поставлена задача внедрить эту технологию на объектах общей мощностью 10 тысяч мегаватт. По сообщениям в прессе, в Китае начата реконструкция устаревших угольных электростанций. Автор готов рассматривать сделку по продаже его технологии в Россию, и начале серийного производства, но при серьезном уровне переговоров, с участием партийных и военных структур. К сожалению, в 2011 году, мы не смогли организовать дела с китайцами на должном уровне, и контакты с автором прекратились. Возможно, изменилась и ситуация в Китае. Проект другого мотора на магнитах, был нам известен как «планируемый к продажам на рынке мотор ПЕРЕНЕДЕВ», серийное производство которого планировалось в Европе. Патент получен WO/2006/045333 04.05.2006, хотя его схема очень напоминает бразильский патент BR 8900294 (A), автор которого Malafaia Mauro Caldeira. Отметим, что бразильский патент был выдан после того, как автор Калдейра предоставил рабочий образец в патентный офис. Автор Майк Бреди (Mike Brady) широко рекламировал возможности его мотора PERENDEV, но за много лет мы не нашли позитивных откликов от покупателей. В 2009 мы пытались организовать визит к нему для проверки и покупки моторов мощностью 100 кВт. Однако демонстрация мотора под нагрузкой, так сказать «товар в действии», раз за разом откладывалась. Новости 2010 года прибавили пессимизма: Майкл Бреди был отправлен в Германию на суд, так как он не обеспечил поставки оплаченного товара и его клиенты были «разочарованы». Патент Майкла Бреди WO2006045333A1 и схема его мотора известны, рис. 114. Магниты статора и ротора расположены под углом, в положении взаимного отталкивания. Многие попытки разных энтузиастов данного направления конструирования повторить конструкцию ПЕРЕНДЕВ были успешны, но надо отметить, что серийное производство так и не началось. Рис. 114. Схема мотора на магнитах ПЕРЕНДЕВ (PERENDEV)Поэтому мы можем предположить, что версия «чисто магнитного мотора» в исполнении фирмы ПЕРЕНДЕВ была не совсем удачной. Автор сообщал мне в 2005 году, что 16 машин небольшой мощности (5–6 кВт), проданных в Европе для бета-тестирования, имели недостатки в эксплуатации (магниты размагничивались). Поэтому мощные машины 100 кВт и 300 кВт планировались к производству с использованием электромагнитов. Поведение Майкла Бреди по отношению к заказчикам было явно некорректным. Вместо организации широкой демонстрации своих изобретений, он предпочитал работать в скрытной манере, хотя заявки в публикациях давал многообещающие. В таких случаях, происходит спекуляция на повышенном спросе. Инвесторы и покупатели таких машин, учитывая возможность хорошо заработать при выводе нового продукта на рынок, готовы поверить и платить аванс. Я полагаю, что нормальный путь развития новых технологий идет через академическую среду, то есть при организации открытых демонстраций технологии, экспертной проверке и нормальном техническом сопровождении продаваемой продукции (гарантии возврата денег, гарантии по техобслуживанию), все сертификаты, включая электро– и пожаробезопасность, а также медицинские сертификаты. Согласитесь, что покупать такую продукцию, даже если она работает, может быть опасно по причине возможных неизвестных медико-биологических эффектов. Магнитные моторы, например, создают низкочастотные электромагнитные поля, которые трудно экранировать. Поделитесь на страничкеСледующая глава > tech.wikireading.ru |