Eng Ru
Отправить письмо

Эжектор - это что такое? Описание, устройство, виды и особенности. Инжекция и эжекция в чем разница


Инжекция

ИНЖЕКЦИЯ (а. injection; н. Injection, Einspritzung; ф. injection; и. inyeccion) — процесс непрерывного смешения двух потоков веществ и передачи энергии инжектирующего (рабочего) потока инжектируемому с целью его нагнетания в различные аппараты, резервуары и трубопроводы. Смешиваемые потоки могут находиться в газовой, паровой и жидкой фазах и быть равнофазными, разнофазными и изменяющейся фазности (например, пароводяные). Применяемые для инжекции струйные аппараты (насосы) называются инжекторами. Явление инжекции известно с 16 в. С начала 19 в. процесс инжекции получил промышленное использование для усиления тяги в дымовых трубах паровозов.

Основы теории инжекции были заложены в работах немецкого учёного Г. Цейнера и английского учёного У. Дж. М. Ранкина в 70-е гг. 19 в. В СССР, начиная с 1918, значительный вклад в развитие теории и практики инжекции внесли А. Я. Милович, Н. И. Гальперин С. А. Христианович, Е. Я. Соколов, П. Н. Каменев и др. Смешение рабочего и инжектируемого потоков с разными скоростями сопровождается значительной потерей кинетической энергии на удар и превращением её в тепловую, выравниванием скоростей, повышением давления инжектируемого потока. Инжекция описывается законами сохранения энергии, массы и импульсов. При этом потеря энергии на удар пропорциональна квадрату разности скоростей потоков в начале смешения. При необходимости быстрого и тщательного перемешивания двух однородных сред массовая скорость рабочего потока должна превышать массовую скорость инжектируемого в 2-3 раза. В некоторых случаях при инжекции наряду с гидродинамическим происходит и термический процесс с передачей рабочим потоком инжектируемому тепловой энергии, например при нагревании жидкостей паром с интенсивным перемешиванием сред — жидкости и конденсата.

Принцип инжекции заключается в том, что давление Р1 и средняя линейная скорость и1 инжектирующего (рабочего) потока газа или жидкости, движущегося по трубе, в суженном сечении меняются. Скорость потока возрастает (и2>и1), давление (Р2<Р1) падает, т.е. рост кинетической энергии потока сопровождается уменьшением его потенциальной энергии. При падении давления Р2 ниже давления Р0 в суженную часть трубы засасывается инжектируемая среда, которая за счёт поверхностного трения увлекается рабочим потоком и смешивается с ним. При дальнейшем движении смеси по трубе с расширяющимся сечением уменьшение скорости потока до 3 и его кинетической энергии сопровождается нарастанием потенциальной энергии и давления до величины Р3, причём Р2<Р0<Р3<Р1. Таким образом, в результате инжекционное давление инжектируемой среды возрастает от Р0 до Р3 за счёт падения давления рабочего потока от Р1 до Р3, а давление смешанного потока приобретает промежуточное значение.

При инжекции с изменяющейся фазностью сред, например с конденсацией рабочего пара от соприкосновения с холодной инжектируемой жидкостью, можно создавать давление смешанного потока, превышающее давление рабочего потока. В этом случае работа, затрачиваемая на инжекцию, совершается не только энергией струи, но и внешним давлением при сокращении объёма конденсирующегося рабочего пара, а также за счёт превращения его тепловой энергии в потенциальную энергию смешанного потока. По сравнению с механическими способами смешивания, нагревания, сжатия и нагнетания различных сред инжекция отличается простотой, однако требует в 2-3 раза больших затрат энергии. О применении инжекции см. в статье Инжектор.

www.mining-enc.ru

принцип работы и устройство эжекторного насоса

Эжектор – что это такое? Данный вопрос часто возникает у владельцев загородных домов и дач в процессе обустройства автономной системы водоснабжения. Источником поступления воды в такую систему, как правило, является предварительно пробуренная скважина или колодец, жидкость из которых необходимо не только поднять на поверхность, но и транспортировать по трубопроводу. Для решения таких задач используется целый технический комплекс, состоящий из насоса, набора датчиков, фильтров и водяного эжектора, устанавливаемого в том случае, если жидкость из источника необходимо откачивать с глубины, превышающей десять метров.

Эжектор водоструйный с фланцевыми соединениями

Эжектор водоструйный с фланцевыми соединениями

В каких случаях нужен эжектор

Прежде чем разбираться с вопросом о том, что такое эжектор, следует выяснить, для чего нужна насосная станция, оснащенная им. По сути, эжектор (или эжекторный насос) представляет собой устройство, в котором энергия движения одной среды, перемещающейся с высокой скоростью, передается другой среде. Таким образом, у эжекторной насосной станции принцип работы основан на законе Бернулли: если в сужающемся сечении трубопровода создается пониженное давление одной среды, это вызовет подсос в формируемый поток другой среды и ее перенос от места всасывания.

Всем хорошо известно: чем больше глубина источника, тем тяжелее поднять воду из него на поверхность. Как правило, если глубина источника составляет более семи метров, то обычный поверхностный насос уже с трудом выполняет свои функции. Конечно, для решения такой проблемы можно применить более производительный погружной насос, но лучше пойти другим путем и приобрести эжектор для насосной станции поверхностного типа, значительно улучшив характеристики используемого оборудования.

Внешний эжектор, подготовленный для погружения в скважину

Внешний эжектор, подготовленный для погружения в скважину

За счет применения насосной станции с эжектором увеличивается напор жидкости в основном трубопроводе, при этом используется энергия быстрого потока жидкой среды, протекающей по его отдельному ответвлению. Эжекторы, как правило, работают в комплекте с насосами струйного типа – водоструйными, жидкостно-ртутными, парортутными и паромасляными.

Особенно актуальным эжектор для насосной станции является в том случае, если надо увеличить мощность уже установленной или планируемой к установке станции с поверхностным насосом. В таких случаях эжекторная установка позволяет увеличить глубину забора воды из резервуара до 20–40 метров.

Обзор и работа насосной станции с внешним эжектором

Виды эжекторных устройств

По своему конструктивному исполнению и принципу действия эжекторные насосы могут относиться к одной из следующих категорий.

Паровые

При помощи таких эжекторных устройств из замкнутых пространств откачиваются газовые среды, а также поддерживается разреженное состояние воздуха. Работающие по такому принципу устройства имеют широкую область применения.

Паровой эжектор для турбины с маслоохладителем

Паровой эжектор для турбины с маслоохладителем

Пароструйные

В таких устройствах для отсасывания газообразных или жидких сред из замкнутого пространства используется энергия струи пара. Принцип работы эжектора данного типа заключается в том, что пар, вылетающий из сопла установки с большой скоростью, увлекает за собой транспортируемую среду, выходящую через кольцевой канал, расположенный вокруг сопла. Эжекторные насосные станции данного типа применяются преимущественно для быстрого откачивания воды из помещений судов различного назначения.

Установка подогрева воды с помощью пароструйного эжектора

Установка подогрева воды с помощью пароструйного эжектора

Газовые

Станции с эжектором данного типа, принцип действия которых основан на том, что сжатие газовой среды, изначально находящейся под низким давлением, происходит за счет высоконапорных газов, используются в газовой промышленности. Описанный процесс протекает в камере смешения, откуда поток перекачиваемой среды направляется в диффузор, где происходит его торможение, а значит, рост давления.

Воздушный (газовый) эжектор для химической, энергетической, газовой и других отраслей промышленности

Воздушный (газовый) эжектор для химической, энергетической, газовой и других отраслей промышленности

Конструктивные особенности и принцип действия

Элементами конструкции выносного эжектора для насоса являются:

  • камера, в которую всасывается перекачиваемая среда;
  • смесительный узел;
  • диффузор;
  • сопло, поперечное сечение которого сужается.
Устройство выносного эжектора

Устройство выносного эжектора

Как работает любой эжектор? Как сказано выше, функционирует такое устройство по принципу Бернулли: если скорость движения потока жидкой или газовой среды увеличивается, то вокруг него формируется область, характеризующаяся низким давлением, что способствует возникновению эффекта разрежения.

Если правильно подобрать форму трубы и скорость потока, то в отвод, расположенный в суженной части, будет засасываться воздух или жидкость

Если правильно подобрать форму трубы и скорость потока, то в отвод, расположенный в суженной части, будет засасываться воздух или жидкость

Итак, принцип работы насосной станции, оснащенной эжекторным устройством, заключается в следующем:

  • Жидкая среда, которую перекачивает эжекторная установка, поступает в последнюю через сопло, поперечное сечение которого меньше, чем диаметр входной магистрали.
  • Проходя в камеру смесителя через сопло с уменьшающимся диаметром, поток жидкой среды приобретает заметное ускорение, что способствует формированию в такой камере области с пониженным давлением.
  • За счет возникновения в смесителе эжектора эффекта разрежения в камеру всасывается жидкая среда, находящаяся под более высоким давлением.

Если вы решили оснастить насосную станцию таким устройством, как эжектор, имейте в виду, что перекачиваемая жидкая среда поступает в него не из скважины или колодца, а от насоса. Сам эжектор при этом располагается таким образом, чтобы часть жидкости, которая была откачана из скважины или колодца посредством насоса, возвращалась в камеру смесителя через сужающееся сопло. Кинетическая энергия потока жидкости, поступающей в камеру смесителя эжектора через его сопло, передается массе жидкой среды, всасываемой насосом из скважины или колодца, обеспечивая тем самым постоянное ускорение ее движения по входной магистрали. Часть потока жидкости, которую откачивает насосная станция с эжектором, поступает в рециркуляционную трубу, а остальная – в обслуживаемую такой станцией водопроводную систему.

Подключение насоса с внешним эжектором

Подключение насоса с внешним эжектором

Разобравшись с тем, как работает насосная станция, оснащенная эжектором, вы поймете, что ей требуется меньше энергии для того, чтобы поднять воду на поверхность и транспортировать ее по трубопроводу. Таким образом, не только повышается эффективность использования насосного оборудования, но и увеличивается глубина, с которой может быть произведено откачивание жидкой среды. Кроме того, при использовании эжектора, всасывающего жидкость самостоятельно, насос защищен от работы вхолостую.

Устройство насосной станции с эжектором предусматривает наличие в ее оснащении крана, устанавливаемого на рециркуляционной трубе. При помощи такого крана, который регулирует поток жидкости, поступающей к соплу эжектора, можно управлять работой данного устройства.

Виды эжекторов по месту установки

Приобретая эжектор для оснащения насосной станции, имейте в виду, что такое устройство может быть встроенным и внешним. Устройство и принцип работы эжекторов двух этих типов практически ничем не отличаются, различия состоят лишь в месте их установки. Эжекторы встроенного типа могут помещаться во внутреннюю часть корпуса насоса, либо монтироваться в непосредственной близости от него. Эжекционный насос встроенного типа отличает ряд достоинств, к которым следует отнести:

  • минимум места, необходимого для установки;
  • хорошая защищенность эжектора от загрязнений;
  • отсутствие необходимости в установке дополнительных фильтров, защищающих эжектор от нерастворимых включений, содержащихся в перекачиваемой жидкости.
Центробежный насос с встроенным эжектором

Центробежный насос с встроенным эжектором

Между тем следует иметь в виду, что высокую эффективность эжекторы встроенного типа демонстрируют в том случае, если их используют для откачивания воды из источников небольшой глубины – до 10 метров. Еще одним значимым недостатком насосных станций с эжекторами встроенного типа является то, что они издают достаточно сильный шум при своей работе, поэтому располагать их рекомендуется в отдельном помещении или в кессоне водоносной скважины. Следует также иметь в виду, что устройство эжектора данного типа предполагает использование более мощного электродвигателя, приводящего в действие и саму насосную установку.

Выносной (или внешний) эжектор, как следует из его названия, устанавливается на определенном расстоянии от насоса, причем оно может быть довольно большим и доходить до пятидесяти метров. Эжекторы выносного типа, как правило, размещают непосредственно в скважине и подключают к системе посредством рециркуляционной трубы. Насосная станция с выносным эжектором также требует использования отдельного накопительного бака. Этот бак необходим для того, чтобы обеспечивать постоянное наличие воды для рециркуляции. Наличие такого бака, кроме того, позволяет снизить нагрузку, приходящуюся на насос с выносным эжектором, и уменьшить количество энергии, необходимой для его функционирования.

Насос с внешним эжектором

Насос с внешним эжектором

Использование эжекторов выносного типа, эффективность которых несколько ниже, чем у встраиваемых устройств, позволяет осуществлять откачивание жидкой среды из скважин значительной глубины. Кроме того, если сделать насосную станцию с внешним эжектором, то ее можно не размещать в непосредственной близости от скважины, а смонтировать на расстоянии от источника водозабора, которое может составлять от 20 до 40 метров. При этом важно, что расположение насосного оборудования на таком значительном расстоянии от скважины не отразится на эффективности его работы.

Изготовление эжектора и его подключение к насосному оборудованию

Разобравшись в том, что же такое эжектор и изучив принцип его действия, вы поймете, что изготовить это несложное устройство можно и своими руками. Зачем изготавливать эжектор своими руками, если его без особых проблем можно приобрести? Все дело в экономии. Найти чертежи, по которым можно самостоятельно сделать такое устройство, не представляет особых проблем, а для его изготовления вам не потребуются дорогостоящие расходные материалы и сложное оборудование.

Как сделать эжектор и подключить его к насосу? Для этой цели вам необходимо подготовить следующие комплектующие:

  • тройник с внутренней резьбой;
  • штуцер;
  • муфты, колена и другие фитинговые элементы.
Комплектующие для самодельного эжектора

Комплектующие для самодельного эжектора

Изготовление эжектора осуществляется по следующему алгоритму.

  1. В нижнюю часть тройника вкручивают штуцер, причем делают это так, чтобы узкий патрубок последнего оказался внутри тройника, но при этом не выступал с его обратной стороны. Расстояние от торца узкого патрубка штуцера до верхнего торца тройника должно составлять порядка двух-трех миллиметров. Если штуцер чересчур длинный, то торец его узкого патрубка стачивают, если короткий, то наращивают при помощи полимерной трубки.
  2. В верхнюю часть тройника, которая будет соединяться с всасывающей магистралью насоса, вкручивают переходник с наружной резьбой.
  3. В нижнюю часть тройника с уже установленным штуцером вкручивают отвод в виде уголка, который будет соединяться с рециркуляционной трубой эжектора.
  4. В боковой патрубок тройника также вкручивают отвод в виде уголка, к которому посредством цангового зажима присоединяют трубу, подающую воду из скважины.
Самодельный эжектор в сборе

Самодельный эжектор в сборе

Все резьбовые соединения, выполняемые при изготовлении самодельного эжектора, должны быть герметичными, что обеспечивается применением ФУМ-ленты. На трубе, по которой будет осуществляться забор воды из источника, следует разместить обратный затвор и сетчатый фильтр, который защитит эжектор от засорения. В качестве труб, при помощи которых эжектор будет подключаться к насосу и накопительному баку, обеспечивающему рециркуляцию воды в системе, можно выбрать изделия как из металлопластика, так и из полиэтилена. Во втором варианте для монтажа нужны не цанговые зажимы, а специальные обжимные элементы.

После того как все требуемые соединения выполнены, самодельный эжектор помещают в скважину, а всю трубопроводную систему заполняют водой. Только после этого можно осуществить первый пуск насосной станции.

Оценка статьи:

Загрузка...

Поделиться с друзьями:

met-all.org

это что такое? Описание, устройство, виды и особенности

Эжектор - это приспособление, которое предназначается для того, чтобы передавать кинетическую энергию от одной среды, движущейся с большей скоростью, к другой. В основе работы этого устройства лежит принцип Бернулли. Это значит, что агрегат способен создавать пониженное давление в сужающемся сечении одной среды, что, в свою очередь, будет вызывать подсос в поток другой среды. Таким образом, она переносится, а после и удаляется от места всасывания первой среды.

Общие сведения о приспособлении

Эжектор - это небольшое, но очень эффективное устройство, которое работает в паре с насосом. Если говорить о воде, то, естественно, что используется водяной насос, однако он также может работать в паре и с паровым, и с паромасляным, и с парортутным, и с жидкостно-ртутным.

эжектор это

Применение этого оборудования целесообразно в том случае, если водоносный слой залегает довольно глубоко. В таких ситуациях чаще всего случается так, что обычное насосное оборудование не справляется с обеспечением дома водой или же подает слишком слабый напор. Эжектор же поможет решить данную проблему.

Виды

Эжектор - это довольно распространенное оборудование, а потому существует несколько разнообразных видов этого устройства:

  • Первый - это паровой. Он предназначается для отсасывания газов и замкнутых пространств, а также для поддержания разрежения в этих пространствах. Применение этих агрегатов распространено в разнообразных технических отраслях.
  • Второй - это пароструйный. Этот аппарат использует энергию струи пара, при помощи которой он способен отсасывать жидкость, пар или газ из замкнутого пространства. Пар, который выходит из сопла с большой скоростью, влечет за собой перемещаемое вещество. Чаще всего использовался на различных судах и кораблях для быстрого отсоса воды.
  • Газовый эжектор - это приспособление, принцип работы которого построен на том, что избыточное давление высоконапорных газов применяется для сжатия газов низкого давления.

эжектор насосный

Эжектор для отсоса воды

Если говорить о добыче воды, то тут чаще всего используется эжектор для насоса водяного. Все дело в том, что если после бурения скважины вода оказывается ниже, чем семь метров, то обычный водяной насос будет справляться с большим трудом. Конечно, можно покупать сразу погружной насос, производительность которого значительно выше, однако это дорого. А вот при помощи эжектора можно повысить мощность уже имеющегося агрегата.

принцип эжектора

Стоит отметить, что конструкция данного устройства довольно проста. Производство самодельного приспособления также остается вполне реальной задачей. Но для этого придется потрудиться над чертежами для эжектора. Основной принцип работы этого простого аппарата заключается в том, что он придает потоку воды дополнительное ускорение, что приводит к увеличению поставок жидкости в единицу времени. Другими словами, задача агрегата - это усиление напора воды.

Составные элементы

Установка эжектора приведет к тому, что оптимальный уровень забора воды сильно увеличится. Показатели будут примерно равны от 20 до 40 метров в глубину. Еще один из плюсов именно этого устройства в том, что его работа требует гораздо меньших затрат электроэнергии, чем потребует, к примеру, более производительный насос.

Сам же насосный эжектор состоит из таких частей, как:

эжектор для насоса

Принцип работы

Принцип работы эжектора полностью основан на принципе Бернулли. Это утверждение гласит о том, что, если увеличить скорость движения какого-либо потока, то вокруг него всегда будет образовываться область с низким давлением. Из-за этого и достигается такой эффект, как разряжение. Сама же жидкость будет проходить через сопло. Диаметр этой детали всегда меньше, чем габариты всей остальной конструкции.

принцип работы эжектора

Тут важно понимать, что даже небольшое сужение будет значительно ускорять поток поступающей воды. Далее вода будет попадать в камеру смесителя, где она создаст пониженное давление. Из-за возникновения этого процесса будет происходить так, что через всасывающую камеру в смеситель будет попадать жидкость, давление которой будет значительно выше. Это и есть принцип эжектора, если описывать его вкратце.

Здесь важно отметить, что вода в устройство должна попадать не от непосредственного источника, а от самого насоса. Другими словами, агрегат должен быть смонтирован таким образом, чтобы некоторая часть воды, которая поднимается при помощи насоса, оставалась в самом эжекторе, проходя через сопло. Это необходимо для того, чтобы была возможность подачи постоянной кинетической энергии той массе жидкости, которую нужно поднять.

Благодаря работе именно таким образом будет поддерживаться постоянное ускорение потока вещества. Из преимуществ можно выделить то, что использование эжектора для насоса позволит экономить большое количество электроэнергии, так как станция не будет работать на пределе.

чертеж эжектора

Тип устройства для насоса

В зависимости от места установки агрегата может быть встроенный или выносной тип. Огромной конструктивной разницы между местами установки не имеется, однако некоторые небольшие отличия все же дадут о себе знать, так как немного изменится монтаж самой станции, а также ее работоспособность. Конечно, понятно из названия, что встроенные эжекторы устанавливаются внутрь самой станции или же в непосредственной близости от нее.

Такой тип агрегата хорош тем, что не придется выделять дополнительное место для его установки. Сам монтаж эжектора также не придется проводить, так как он уже встроен, нужно будет установить лишь саму станцию. Еще одно преимущество такого устройства в том, что оно будет очень хорошо защищено от различного рода загрязнений. Недостатком станет то, что такой тип аппарата будет создавать достаточно много шума.

Сравнение моделей

Выносное же оборудование установить будет несколько сложнее и придется выделить отдельное место для его расположения, однако количество шума, к примеру, значительно уменьшится. Но тут есть другие недостатки. Выносные модели способны обеспечить эффективную работу лишь на глубине до 10 метров. Встроенные модели изначально рассчитываются на не слишком глубокие источники, но преимущество в том, что они создают довольно мощный напор, что приводит к более эффективному использованию жидкости.

Создаваемой струи вполне хватит не только для бытовых нужд, но еще и для таких операций, как полив, к примеру. Повышенный уровень шума от встроенной модели - это одна из наиболее существенных проблем, о которой придется позаботиться. Чаще всего она решается тем, что насосная станция вместе с эжектором устанавливается в отдельном здании или в кессоне скважины. Также придется озаботиться более мощным электродвигателем для таких станций.

Подключение

Если говорить о подключении выносного эжектора, то придется выполнить такие операции:

  • Прокладка дополнительной трубы. Данный объект необходим для того, чтобы обеспечить циркуляцию воды от линии напора до водозаборной установки.
  • Второй шаг - это подсоединение к всасывающему отверстию водозаборной станции специального патрубка.

А вот подключение встроенного агрегата ничем не будет отличаться от обычного процесса монтажа насосной станции. Все необходимые процедуры по подсоединению нужных труб или патрубков осуществляются еще на заводе.

fb.ru

ЭЖЕКЦИЯ И ИНЖЕКЦИЯ РЕАГЕНТОВ В ТЕХНОЛОГИЯХ ВОДОПОДГОТОВКИ | Опубликовать статью РИНЦ

Петросян О.П.1, Горбунов А.К.2, Рябченков Д.В.3, Кулюкина А.О.4

1Кандидат физико-математических наук, доцент, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана), 2Доктор физико-математических наук, профессор, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана), 3Аспирант, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана), 4Аспирант, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ЭЖЕКЦИЯ И ИНЖЕКЦИЯ РЕАГЕНТОВ В ТЕХНОЛОГИЯХ ВОДОПОДГОТОВКИ

Аннотация

Система водоподготовки предусматривает введение в нее различных реагентов. Основными технологическими способами внедрения реагентов в обеззараживаемую воду являются эжекция и инжекция. В данной статье проведен анализ этих методов. Разработана методика расчета высокопроизводительных эжекторов. Проведенными авторами лабораторные и производственные испытаниями установлены оптимальные соотношения продольных размеров внутреннего сечения, обеспечивающие максимально эффективное значение коэффициента эжекции.

Ключевые слова: эжектор, диффузор, камера смешения, коэффициент эжекции, аэрация, хлорирование.

Petrosyan O.P.1, Gorbunov A.K.2, Ryabchenkov D.V.3, Kuliukina A.O. 4

1PhD in Physics and Mathematics, Associate Professor, 2PhD in Physics and Mathematics, Professor, 3Postgraduate Student, 4Postgraduate Student, Kaluga Branch of the Federal State Budget Educational Institution of Higher Professional Education “Bauman Moscow State Technical University (National Research University” (Kaluga Branch of Moscow State Technical University named after N.E. Bauman)

EJECTION AND INJECTION OF REAGENTS IN WATER TREATMENT TECHNOLOGIES

Abstract

A water treatment system provides for the introduction of various reagents into it. The main technological methods for introducing reagents into disinfected water are ejection and injection. This article analyzes both of these methods. A technique for calculating high-efficiency ejectors is developed. The laboratory and production tests carried out by the authors established the best proportions of the internal section longitudinal dimensions – they ensure the maximum effective value of the ejection coefficient.

Keywords: ejector, diffuser, mixing chamber, ejection coefficient, aeration, chlorination.

Питьевая вода, централизовано подаваемая населению, должна соответствовать СанПин 2.1.4.559-96. Такое качество воды достигается, как правило, использованием классической двухступенчатой схемы, представленной на рисунке 1. На первой ступни в очищаемую воду вводят коогулянты и флокулянты и затем, производится осветление в горизонтальных отстойниках и скорых фильтрах, на второй ступени перед подачей в РЧВ производится обеззараживание [1, С. 36–38], [2, С. 56–62].

29-08-2017 17-03-53

Рис. 1 – Технологическая схема системы водоподготовки

 

Таким образом, в схеме предусмотрено введение в воду различных реагентов в виде газов (хлор, озон, аммиак, диоксид хлора), растворов гипохлорита, коагулянтов (сернокислый алюминий и/или гидроксохлорид алюминия), флокулянтов (ПАА, прайстол и феннопол). Чаще всего дозирование и подача этих реагентов производится методом инжекции или эжекции.

Инжекция – это ввод и распыление через форсунку (инжектор) растворов хлорной воды, гипохлорита, коагулянта (флокулянта) насосами под давлением.

Эжектор – «эжекционный насос» приводит в движение раствор реагента или газа путем разряжения среды. Разряжение создается движущимся с большей скоростью, рабочим (активным) потоком. Этот активный поток назавем эжектирующим, а приводимую в движение смесь эжектируемой (пассивной смесью). В камере смешения эжектора пассивная смесь передает энергию активному потоку, вследствие чего все их показатели, в том числе и скорости.

Широкое применение процесса эжектирования обосновывается следующими факторами: простотой устройства и его технического обслуживания; малым износом вследствии отсутствия трущихся деталей, что обусловливает длительный срок службы. Именно поэтому эжектирование применяется во многих сложных технических устройствах, таких как: химические реакторы; системы дегазации и аэрации; газотранспортных установках, сушки и вакуумировании; системах передачи теплоты; и, конечно, как сказано выше в ситемах водоподготовки и водоснабжения.

Ограничение в применении инжекторов в тех же системах связано с их малой производительностью, так как большая производительность требует мощных насосов-инжекторов, что приводит к существенному удорожанию системы, в то время как увеличение производительности эжекторами менее затратно. Так автоматические модульные станции водоподготовки, рассчитанные на снабжение питьевой водой небольших поселков, в подавляющем большинстве используют инжекцию. Типовая конструкция такой станции универсального типа представлена в [3], где на всех точках ввода реагентов в воду используется инжекция. Часто принимают и компромиссное решение (рис.2). На первом этапе эжекцией газообразного хлора в воду с использованием хлораторов в эжекторе 4 получают так называемую хлорную воду, которую затем (на втором этапе) инжектируют насосом 1 в водовод 2, где движется поток обрабатываемой воды.

 

29-08-2017 17-05-01

Рис. 2 – Эжекция и инжекция газообразного хлора в воду

29-08-2017 17-06-01

Рис. 3 – Схема ввода хлорной воды в процессе инжекции ее в водовод

Типовой инжекционный узел ввода хлорной воды в водовод 2 в таких случаях представлен на рис.3. Достоинством такой схемы является рациональное совмещение эжекции и инжекции, что позволяет благодаря насосу 1, необходимому для реализации инжекции, обеспечить высокую эжекционную производительность эжектора. Диаграммы выбора насоса 1 в таких схемах для эжектора с производительностью до 20 кг Сl/час представлены на рис. 4.

На рис. 5 представлена типовая конструкция эжектора, наиболее характерная для дозирования газового реагента (чаще всего хлора) в водовод. Эжектор состоит из линии подачи эжектирующего потока (воды) представляющей собой конусообразное сопло 1, которое соединяется с камерой смешения (рабочая камера) 2 и камерой смешения 4. В рабочую камеру 2 Подается эжектируемый газообразный хлор через устройство 3. Диффузор 5 подает хлорную воду в водовод [4, С. 15 – 18].

29-08-2017 17-07-04

Рис. 4 – Диаграмма выбора насоса к эжектору 20кг Gl/час

Параметры такого эжектора являются исходными величинами, определяющими все основные рабочие параметры узлов ввода реагентов. Авторами разработана методика [5, С. 56–62] расчета высокопроизводительных хлораторов на основе, которой разработан и запатентован модельный ряд эжекторов различной производительности [6, C. 142].

Производительность и другие характеристики инжектора, который фактически является дозирующим насосом, зависят от общих технических характеристик собственно насоса и системы импульсного дозирования. Основные же характеристики эжектора определяют конструктивные особенности его сечения, причем эти особенности настолько принципиальны, что без технических расчетов и экспериментальных проработок обеспечить эффективность работы эжектора практически невозможно. Поэтому целесообразно рассмотреть эти вопросы на примере эжекторов для дозирования газообразного хлора в воду.

Таким образом, действие эжектора основано на передаче кинетической энергии эжектируещего потока (активного потока) жидкости, обладающего большим запасом энергии, эжектируемому (пассивному) потоку, обладающему малым запасом энергии [7,], [8, С. 184]. Запишем уравнение Бернулли для идеальной жидкости в соответствии, с которым сумма удельной потенциальной энергии (статического напора) и удельной кинетической энергии (скоростного напора) постоянна и равна полному напору:

29-08-2017 17-08-02

 

29-08-2017 17-08-33

Рис. 5 – Эжектор для дозирования газообразного хлора в воду

 

Истекающая из сопла вода обладает большей скоростью (v2>v1), т. е. большим скоростным напором, поэтому  пьезометрический напор потока воды в рабочей камере 2  и в камере смешения уменьшается (p2<p1), это и приводит к подсосу газа (в нашем случае хлора) в камеру смешения. В камере происходит перемешивание рабочей и эжектируемой сред. В диффузоре 5 скорость смеси сред уменьшается, а статический напор увеличивается, благодаря которому жидкость подается в водовод по нагнетательному трубопроводу.

Отношение расхода эжектируемой жидкости (QЭ) к расходу рабочей жидкости (QP) называется коэффициентом подмешивания или эжекции – a.

Коэффициент эжекции, зависящий от параметров эжектора, лежит в довольно широких пределах от 0.5 до 2.0. Наиболее устойчивая работа водоструйного насоса наблюдается при a=1.

29-08-2017 17-09-30

Коэффициентом напора эжекционного насоса ß назавем отношение полной геометрической высоты подъема (Н) эжектируемого потока жидкости в метрах – это давление на входе в эжектор к напору рабочего потока (h) в м – противодалению.

29-08-2017 17-10-09

Важным параметром характерезующий эффективность работы эжектора и также зависящий от конструктивных параметров устройства является коэффициент полезного действия насоса. Как известно этот коэффициент равен отношению полезно затраченной мощности (H·QЭ·Y кГм/сек) к затраченной мощности (h·QP·Y кГм/сек), то есть

29-08-2017 17-10-49

Таким образом, эффективность работы эжекционного насоса определяется произведением коэффициентов напора и эжекции. Лабораторные эксперименты на стенде проводились  для определения коэффициента напора эжекторов различной производительности. Полученная экспериментальная диаграмма эжектора изображена на рис.3. По данной диаграмме определяются параметры – давление на входе в эжектор, противодавление и расход эжектрующей жидкости, которые обеспечивают расход эжектируемого газа 20 кг/ч.

В соответствии с полученной методикой расчетов параметров эжектора определены основополагающие типоразмеры эжекторов модельного ряда хлораторов с производительностью по хлору от 0,01кг/час до 200 кг/час обеспечивающие максимальную эжекционную способность. Установлено, конфигурация внутреннего продольного сечения эжектора, необходимо учитывать следующие размеры сечения (рис.5): диаметр сопла D, длина рабочей камеры L, диаметр камеры смешения D1, длина камеры смешения L1, выходной диаметр диффузора D2, длина диффузора L2.

Получено экспериментальное подтверждение зависимости расхода хлора Q от расхода воды R. Кривая Q = f(R) аппроксимируется двумя прямыми пересечение которых, отделяет зону эффективной эжекции с высоким коэффициентом эжекции от зоны неэффективной. Очевидно, что дальнейший интерес представляет область эффективной эжекции, а конструкция внутреннего сечения эжектора должна быть такова, чтобы коэффициент эжекции в этой области был максимально возможным.

Область, в которой изменяется коэффициент эжекции, определяется геометрическим параметром эжектора m, равным отношению площади сечения камеры смешения F к площади сечения сопла F1:

m = F/F1,

Таким образом, этот параметр является основным, по которому рассчитывают все остальные основные размеры эжекционного насоса.

Анализ результатов, полученных из сопоставления экспериментальных результатыов с существующими аналитическими данными [5, С. 56 – 62] позволяет сделать следующие выводы. Наиболее эффективная эжекция насоса соответствует параметру m лежащему в диапазоне значений 1,5 – 2,0. В этом случае, определяемый по формуле диаметр камеры смешения D1 = D29-08-2017 17-12-06 , при D = 7мм лежит в диапазоне 8,6 -10 мм.

Экспериментально установлена пропорция, связывающая все параметры, обозначенные на рис.5 L = 1,75D, L1 = 1,75D, L2= 7,75D. Эти соотношения обеспечивают максимальный коэффициент эжекции, который лежит в области максимально эффективной эжекции.

Таким образом, можем сделать вывод, что для достижения максимальной эжекции конструкция внутреннего продольного сечения и соотношения размеров должны соответствовать найденным соотношениям D1=1,25D, D2 = 2,5D, L = 1,75D, L1 =1,75D, L2 =7,75D

Сконструированный по данным соотношениям эжекционный насос создает оптимальные условия для передачи кинетической энергии эжектируещей жидкости поступающей на вход насоса под большим давлением, определяемым по диаграмме, эжектируемому газу подаваемому в камеру смешения с меньшим скоростным напором и меньшим запасом энергии и обеспечивает максимальное подсасывание газа.

Список литературы / References

  1. А. Б. Кожевников. Современная автоматизация реагентных технологий водоподготовки / А. Б. Кожевников, О. П. Петросян // Стройпрофиль. – 2007. – № 2. – С. 36 – 38.
  2. Бахир В. М. К проблеме поиска путей повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ / Бахир В. М. // Водоснабжение и канализация. – 2009. – № 1. – С. 56 – 62.
  3. Пат. 139649 Российская Федерация, МПК C02F Автоматическая модульная станция водоподготовки с системой розлива и продажи питьевой воды улучшенного вкусового качества / Кожевников А. Б. Петросян А. О., Парамонов С. С.; опубл. 20.04.2014.
  4. А. Б. Кожевников. Современное оборудование хлораторных станций водоподготовки / А. Б. Кожевников, О. П. Петросян // ЖКХ. – 2006. – № 9. – С. 15 – 18.
  5. Бахир В. М. К проблеме поиска путей повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ / Бахир В. М. // Водоснабжение и канализация. – 2009. – № 1. – С. 56 – 62.
  6. А. Б. Кожевников, О. П. Петросян. Эжекция и сушка материалов в режиме пневмотранспорта. – М: Изд-во МГТУ им. Н. Э. Баумана. – 2010. – C. 142.
  7. Пат. 2367508 Российская Федерация, МПК C02F Эжектор для дозирования газообразного хлора в воду / А. Б. Кожевников, О. П. Петросян.; опубл. 20.09.2009.
  8. А. С. Волков, А. А. Волокитенков. Бурение скважин с обратной циркуляцией промывочной жидкости. – М: Изд-во Недра. – 1970. – С. 184.

Список литературы на английском языке / References in English

  1. А. B. Kozhevnikov. Sovremennaja avtomatizacija reagentnyh tehnologij vodopodgotovki [Modern automation of reagent technologies of water treatment] / A. B. Kozhevnikov, O. P. Petrosjan // Strojprofil’ [Stroyprofile]. – 2007. – № 2. – P. 36 – 38. [in Russian]
  2. Bahir V. M. K probleme poiska putej povyshenija promyshlennoj i jekologicheskoj bezopasnosti ob#ektov vodopodgotovki i vodootvedenija ZhKH [To the problem of finding ways to improve the industrial and environmental safety of water treatment and disposal facilities] / Bahir V. M. // Vodosnabzhenie i kanalizacija [Water supply and sewerage]. – № 1. – Р. 56 – 62. [in Russian]
  3. 139649 Russian Federation, MPK C02F9. Avtomaticheskaja modul’naja stancija vodopodgotovki s sistemoj rozliva i prodazhi pit’evoj vody uluchshennogo vkusovogo kachestva [Automatic modular water treatment station with a system for bottling and selling drinking water of improved taste] / A. B. Kozhevnikov, A. O. Petrosjan, S. S. Paramonov.; Publ. 20.04.2014.
  4. B. Kozhevnikov. Sovremennoe oborudovanie hloratornyh stancij vodopodgotovki [Modern equipment of chlorination stations of water treatment] / A. B. Kozhevnikov. // ZhKH [Housing and communal services]. – 2006. – № 9. – P. 15 – 18. [in Russian]
  5. Bahir V. M. K probleme poiska putej povyshenija promyshlennoj i jekologicheskoj bezopasnosti ob#ektov vodopodgotovki i vodootvedenija ZhKH [To the problem of finding ways to improve the industrial and environmental safety of water treatment and disposal facilities]. / Bahir V. M. // Vodosnabzhenie i kanalizacija [Water supply and sewerage]. – 2009. – № 1. – P. 56 – 62. [in Russian]
  6. Kozhevnikov, O. P. Petrosjan. Jezhekcija i sushka materialov v rezhime pnevmotransporta [Ejection and drying of materials in pneumatic transport mode]. M: Izd-vo MGTU im. N. Je. Baumana [Publishing house Moscow State Technical University named after N. Bauman Kaluga Branch]. – 2010. – P. 142. [in Russian]
  7. 2367508 Russian Federation, MPK C02F9. Jezhektor dlja dozirovanija gazoobraznogo hlora v vodu [Ejector for dosing chlorine gas into water] / A. B. Kozhevnikov, A. O. Petrosjan; Publ. 20.09.2009.
  8. Volkov, A. A. Volokitenkov. Burenie skvazhin s obratnoj cirkuljaciej promyvochnoj zhidkosti [Drilling of wells with back circulation of washing liquid]. M: Izd-vo Nedra [Publishing house Bosom]. – 1970. – P.184. [in Russian]

research-journal.org

Принцип - эжекция - Большая Энциклопедия Нефти и Газа, статья, страница 1

Принцип - эжекция

Cтраница 1

Принцип эжекции заключается в следующем: струя инжектирующего газа, выходя с большой скоростью из сопла, создает разрежение и увлекает за собой эжектируемый газ из окружающего пространства.  [1]

Принцип эжекции используют в газовых горелках для подсасывания и смешения газа и воздуха, в приспособлениях для отвода отходящих газов, в пароструйных приборах, подающих воздух для горения и газификации. Чтобы уменьшить потери, эжекционные устройства делают многоступенчатыми; при этом засасываемая среда эжектируется также и смесью сред.  [2]

Принцип эжекции прост: в отдельном помещении устанавливается вентилятор, создающий скоростной напор воздуха; при выходе из узкого сопла струя чистого воздуха захватывает с собой взрывоопасную смесь и выбрасывает ее в атмосферу. Эжек-ционные установки ( рис. 20) имеют невысокий коэффициент полезного действия и применяются в тех случаях, когда нельзя найти лучшего решения.  [4]

Именно на принципе эжекции построено движение песка внутри пневморегенератора. Попадая в зазор между устьем трубы и соплом, по которому подается воздух давлением 0 2 - 0 3 кгс / см2, частицы песка и сростки зерен размером до 2 5 мм увлекаются воздушным потоком, разгоняются и вылетают с большой скоростью вверх. При выходе из трубы песчано-воздушный поток встречает отбойный щит, на внутренней поверхности которого удерживается слой песка, играющий двоякую роль. Принимая удар потока на себя, песок предохраняет щит от преждевременного износа. С другой стороны, при обтекании с внутренней поверхности отбойного щита частицы песка, двигаясь с различной скоростью в различных слоях потока, истираются одна об другую. В результате трения сростки зерен распадаются, отдельные зерна освобождаются от пленок и глинистых оболочек и приобретают при этом округлую форму. Очищенный песок отводится в приемник, а воздух, потеряв значительную часть скорости, уходит через завесу падающего песка, унося пыль и мелкие зерна кварца.  [5]

При работе гидромешалок второго типа используется принцип эжекции, заключающийся в эффекте понижения давления вокруг струи жидкости, истекающей с большой скоростью из насадки. В результате в зону разрежения засасывается глинопорошок. Образующаяся пульпа поступает в бак и ударяется о специальный башмак, что способствует интенсивному перемешиванию глины с водой.  [6]

Порошковый питатель установки УЭНП работает на принципе эжекции порошка из кипящего слоя. Он представляет собой цилиндрический сосуд с пористой перегородкой, через которую подается сжатый воздух для псевдоожижения порошка. Дополнительное псевдоожижение порошка достигается вибратором эксцентрикового типа. Для подачи порошка в распылитель питатель имеет эжектор. На корпусе питателя закреплен пульт управления, на котором размещены редукторы, клапаны, тумблеры.  [8]

Работа апн-арата со струйным смесителем основана на принципе эжекции с некоторыми особенностями, присущими этим аппаратам. В работе представлены методы расчета реактора со струйный смесителем.  [9]

Более безопасными считаются вентиляционные установки, основанные на принципе эжекции.  [10]

Элеватор, являять водоструйным насосом, работает на принципе эжекции.  [11]

Выделение кристаллов осуществляется на барабанах с пароструйными насосами, работающими по принципу эжекции. Температура упаренной ванны, поступающей в кристаллизатор, составляет 40 - 45 С и в результате работы пароструйных насосов снижается до 16 С. Охлажденная ванна поступает во второй кристаллизатор, где температура дополнительно снижается до 10 С.  [12]

На некоторых предприятиях для подсушки и предварительного подогрева сырья используют камерные сушилки, которые в то же время являются емкостями загрузочного устройства, работающего по принципу пневматической эжекции. Эти сушильные устройства устанавливаются в непосредственной близости от литьевых или экструзионных машин и обслуживают одновременно несколько единиц оборудования.  [14]

Страницы:      1    2    3

www.ngpedia.ru

ИНЖЕКТОР

ИНЖЕКТОР

Инжектор (термин происходит от фр. injecteur, а оно, в свою очередь, от лат. injicio — «вбрасываю»):1.    Ускоритель, причем обыкновенно линейный ускоритель, который используется с целью введения заряженных частиц внутрь основного ускорителя. При этом энергия, которая сообщается всем частицам внутри инжектора, должна быть больше минимальной, необходимой для начала действия основного ускорителя.

2.    Струйный насос, который предназначен для сжимания газа или пара, а также для нагнетания жидкостей в разнообразные аппараты или резервуар. Инжекторы применяют на паровозах, а также внутри локомобилей и на котельных установках небольшого размера с целью подачи питательной воды внутрь парового котла. Достоинство инжекторов состоит в том, что у них нет каких-либо подвижных частей, а обслуживание весьма простое. В основе действия инжектора лежит преобразование кинетической энергии, которой обладает струя пара, в другой вид энергии — в потенциальную энергию воды. При этом внутри общей камеры инжектора размещают на одной оси три конуса. К первому паровому конусу при помощи паропровода из котла подается пар, у которого развивается в устье первого конуса большая скорость, происходит захват воды, которая подводится по трубе из бака. Впоследствии образующаяся смесь, состоящая из воды и конденсированного пара, прогоняется внутрь водяного (или конденсационного) конуса, из него же — внутрь нагнетательного конуса, потом — через обратный клапан внутрь парового котла. Расширяющийся конус уменьшает скорость тока воды в нем, поэтому давление растет и в итоге становится вполне достаточным для того, чтобы преодолеть давление внутри парового котла и нагнетать питательную воду в котел. Избыток воды, который образуется в самом начале работы инжектора, сбрасывается затем через клапан «вестовой» трубы. Следует также учитывать, что температура воды, которая поступает в инжектор, должна быть не больше 40 °С, высота же всасывания не должна превышать 2,5 м. Инжектор можно установить как вертикально, так и горизонтально.

Пароводяные инжекторы. Особенности процесса в пароводяном инжекторе. В пароводяных инжекторах осуществляется повышение давления жидкости за счет кинетической энергии струи пара, который в процессе смешения с жидкостью полностью конденсируется в ней.

Особенностью этого процесса, в отличие от процессов в других струйных аппаратах, является возможность при определенных условиях повышения давления инжектируемой воды до значения, превышающего давление рабочего пара. Благодаря этому пароводяные инжекторы еще с середины XIX в. получили широкое распространение в качестве питательных насосов для небольших котельных. Низкий КПД этих аппаратов при этом не имел особого значения, так как теплота рабочего пара с питательной водой возвращалась в котел. Как показал проведенный анализ, при обратном соотношении давление смешанного потока, в принципе, может быть получено из любого из взаимодействующих потоков только в том случае, когда прямая обратимого смешения проходит области более высоких изобар по сравнению с изобарами состояния взаимодействующих сред.

В струйных аппаратах при наличии необратимых потерь на удар при взаимодействии потоков личными скоростями имеет место увеличение энтропии потока по сравнению с обратимым смешением, что приводит к изменению давления смешанного потока. Применительно к пароводяным инжекторам реализована на практике возможность получения давления, превышающего давление действующих сред. Эта возможность существует благодаря балансу работы, получаемой из рабочего пара и сжатия инжектируемой воды. В последнее время в связи с разработкой магнитогидродинамического способа получения электроэнергии, а также тепловых циклов с новыми рабочими телами усилился интерес к применению в этих установках инжекторов в качестве струйных конденсаторов и насосов. Появились многочисленные исследования этих аппаратов, направленные на повышение их КПД путем снижения потерь в элементах проточной части инжектора, изучения условий их запуска и т. д. Многие из этих работ обобщены. Достаточно сложные конструкции промышленных инжекторов подробно описаны.

Во всех конструкциях подвод инжектируемой воды осуществляется через узкую кольцевую щель, окружающую рабочее сопло, с тем чтобы вода поступала в камеру смешения с большой скоростью, направленной параллельно скорости рабочего пара, поступающего из расположенного на оси инжектора центрального сопла Лаваля. Камера смешения имеет, как правило, коническую форму. При проведении исследований пароводяных инжекторов не ставилась задача разработки оптимальной формы проточной части. Была разработана методика расчета пароводяного инжектора простейшей формы (с цилиндрической камерой смешения), результаты расчета по этой методике были сопоставлены с результатами экспериментального исследования такого инжектора. Струя рабочего пара, выходящая из сопла, расположенного на некотором расстоянии от цилиндрической камеры смешения, при достаточной разности температур пара и воды конденсируется в инжектируемой воде до поступления в камеру смешения, повышая температуру инжектируемой воды до tc и сообщая ей определенную скорость.Это представление хорошо согласуется с опубликованными теоретическими и экспериментальными исследованиями конденсации струи пара в пространстве, заполненном жидкостью. При поступлении воды в камеру смешения ограниченного сечения скорость воды возрастает, а давление ее соответственно снижается. Если р больше давления насыщенного пара при определенной температуре, то в камере смешения движется жидкость и процесс в камере смешения и диффузоре аналогичен процессу в водоструйном насосе. В этом случае в камере смешения происходит повышение давления и за счет выравнивания профиля скоростей, имеющего в начале камеры смешения значительную неравномерность. Затем в диффузоре давление воды повышается до рс. При этом режимные или конструкционные факторы оказывают на характеристику пароводяного инжектора такое же влияние, как и на характеристику водоструйного насоса.

Существенные отличия наступают при малых коэффициентах инжекции. При снижении расхода инжектируемой воды и неизменном С-плоде рабочего пара температура воды повышается до величины, предшествующей температуре насыщения при давлении в камере смешения, и наступает срыв работы инжектора из-за недостатка воды и конденсации всего поступающего рабочего пара. Этот режим определяет минимальный коэффициент инжекции.

При увеличении коэффициента инжекции, когда расход инжектируемой воды в результате снижения противодавления увеличивается, температура воды в камере смешения падает. Одновременно из-за изменения скорости воды в камере смешения снижается давление.

При увеличении расхода инжектируемой воды до определенной границы давление р во входном сечении камеры смешения понижается до давления насыщения при температуре нагретой воды t.

Снижение противодавления не приводит к увеличению рапида, а дальнейшее падение давления в камере смешения невозможно и, следовательно, не может увеличиться перепад давлений, определяющий расход инжектируемой воды. Понижение противодавления в этом случае приводит лишь к вскипанию воды в камере смешения. Этот режим аналогичен кавитационному режиму водоструйного насоса. Вскипание воды в камере смешения обусловливает, таким образом, максимальный (предельный) коэффициент инжекции. Следует отметить, что именно этот режим является рабочим для питательных инжекторов. Он позволяет объяснить обнаруженную из опытов независимость производительности инжектора от противодавления при работе на кавитационном режиме. Ниже приводится вывод основных расчетных уравнений для пароводяного инжектора с простейшей цилиндрической формой камеры смешения.

Уравнение характеристики. Уравнение импульсов можно написать в следующем виде:/2 {GWpi + GKWM) - (Gp + + GH) Wi=fp + fin, где p — давление пара в выходном сечении рабочего сопла; Wpj — действительная скорость пара в выходном сечении сопла; Wpj — скорость пара при адиабатном истечении; WHI — скорость инжектируемой воды в кольцевом сечении fn в плоскости выходного сечения сопла; У — скорость воды в конце камеры смешения. Примем следующие допущения:1)    сечение в плоскости выходного сечения сопла настолько велико, что скорость инжектируемой воды в этом сечении близка к нулю и количеством движения инжектируемой воды GKWH, по сравнению с количеством движения рабочего пара GWpi можно пренебречь;2)    сечение приемной камеры в плоскости выходного сечения рабочего сопла значительно превышает сечение цилиндрической камеры смешения.

Снижение давления от р1 до р2 происходит в основном в конце входного участка камеры смешения. Когда выходное сечение сопла близко к значению сечения камеры смешения, давление после инжектора не зависит от давления инжектируемой воды. Отношение сечений оказывает на характеристики пароводяного инжектора такое же влияние, как и на характеристики других типов струйных аппаратов: пароструйных компрессоров, водоструйных насосов. Увеличение показателя приводит к увеличению коэффициента инжекции и снижению давления воды после инжектора р. Как уже отмечалось, в пароводяном инжекторе максимальный и минимальный коэффициенты инжекции ограничиваются условиями вскипания воды в камере смешения. Вскипание воды в камере смешения станет ниже давления насыщения (кавитации) при температуре воды в камере смешения t_. Оба эти давления (р, и р2) зависят при заданных параметрах рабочего пара и инжектируемой воды и размерах инжектора от коэффициента инжекции и. Температура воды в камере смешения определяется из теплового баланса. При этой температуре по таблицам насыщенного пара определяется соответствующее значение pv. Давление воды в начале цилиндрической камеры смешения р2 зависит от скорости, которую получит масса инжектируемой воды до поступления в камеру смешения в результате обмена импульсами между инжектируемой и рабочей средами.

Если считать, что после конденсации рабочего пара образуется струя рабочей жидкости, движущаяся с очень большой скоростью и занимающая вследствие этого весьма малое сечение, а также что основной обмен импульсами между этой струей и инжектируемой водой происходит в цилиндрической камере смешения, то средней скоростью, которую приобретает инжектируемая вода при давлении р, можно пренебречь. В этом случае давление воды в начале камеры смешения может быть определено по уравнению Бернулли. Снижение давления инжектируемой воды при неизменной ее температуре (t = const) приводит к сокращению рабочего диапазона инжектора, так как при этом сближаются значения инжекции. К аналогичному эффекту приводит повышение давления рабочего пара. При неизменном давлении р и температуре t инжектируемой воды увеличение давления рабочего пара р до определенного значения приводит к срыву работы инжектора. Так, при УД = 1,8, давлении инжектируемой воды р = 80 кПа и ее температуре / = 20 °С срыв работы инжектора наступает при повышении давления рабочего пара р до 0,96 МПа, а при / = 40 °С давление рабочего пара не может быть поднято выше 0,65 МПа. Таким образом, имеют место зависимости предельных коэффициентов инжекции от основного геометрического параметра инжектора, а также от условий работы.

Достижимые коэффициенты инжекции. Для того чтобы определить достижимый коэффициент инжекции при заданных условиях работы инжектора: параметрах рабочего пара р и t , параметрах инжектируемой воды и требуемом давлении воды после инжектора, следует решить совместно уравнение характеристики и уравнение предельного коэффициента инжекции. Существенное влияние оказывает положение сопла на предельный коэффициент инжекции: чем меньше расстояние сопла от камеры смешения, тем меньше предельный коэффициент инжекции. Это можно объяснить тем, что при малых расстояниях сопла от камеры смешения рабочий пар не успевает полностью конденсироваться в приемной камере и занимает часть входного сечения камеры смешения, уменьшая тем самым сечение для прохода воды. При увеличении расстояния сопла от камеры смешения предельный коэффициент инжекции увеличивается, но это увеличение постепенно замедляется. При максимальном расстоянии сопла от камерысмешения (36 мм) предельный коэффициент инжекции близок к расчетному. Можно предполагать, что дальнейшее его увеличение не приведет к заметному увеличению предельного коэффициента инжекции.Такая же закономерность наблюдалась при различных давлениях рабочего пара и различных диаметрах выходного сечения сопла. Исходя из полученных результатов, все опыты с другими камерами смешения и рабочими соплами проводились при максимальном расстоянии сопла от камеры смешения. Лишь при р = 0,8 МПа и показателе 1,8 повышение давления инжектируемой воды меньше р четного, что объясняется, по-видимому, тем, что при этих условиях режим работы инжектора близок к срыву. Действительно, при 1,8 и р = 0,8 МПа расчетное минимальное давление инжектируемой воды составляет около 0,6 атм. При 1,8 и р = 0,8 МПа давление инжектируемой воды близко к минимальному. На этом режиме инжектор работ с предельным коэффициентом инжекции, почти равным расчетному, но не создает расчетного повышения давления инжектируемой воды. Такое явление наблюдалось и в других опытах, когда инжектор работал в режиме, близком к срывному. Для того чтобы при этих условиях реализовать теоретически возможные повышения давления воды в инжекторе, необходимо, по-видимому, более тщательное выполнение проточной части, точный выбор расстояния между камерой смешения и т. п. При расчете струйных аппаратов для пневмотранспорта абсолютное давление р обычно равно 0,1 МПа, если только в приемной камере аппарата не создается искусственно вакуум. Значение рс, как правило, равно потере давления в сети после аппарата. Эта потеря давления зависит, главным образом, от диаметра трубы трубопровода после струйного аппарата и плотности транспортируемой среды. Для расчета параметров потока в характерных сечениях струйных аппаратов для пневмотранспорта могут быть использованы те же уравнения, что и для газоструйных инжекторов. При сверхкритической степени расширения рабочего потока основные размеры рабочего сопла рассчитываются по тем же формулам, что и для струйных компрессоров. При докритической степени расширения рабочие сопла имеют коническую форму, а сечение сопла рассчитывается. Расход через сопло при докритической степени расширения определяется по формулам, как и определяется осевой размер аппарата.

Водовоздушные эжекторы. Устройство и особенности работы водовоздушного эжектора. В водовоздушных эжекторах рабочей (эжектирующей) средой служит вода, подаваемая под давлением к суживающемуся соплу, на выходе из которого она приобретает большую скорость. Вытекающая из сопла в приемную камеру струя воды увлекает с собой поступающие через патрубок в камеру воздух или паровоздушную смесь, после чего поток попадает в камеру смешения и диффузор, где и происходит повышение давления. Наряду с традиционной формой проточной части применяются водовоздушные эжекторы, в которых рабочая жидкость подается в камеру смешения через несколько рабочих сопл или одно сопло с несколькими отверстиями (многоструйное сопло).

В результате увеличения поверхности контакта взаимодействующих сред такое сопло, как показали экспериментальные исследования, приводит к определенному увеличению коэффициента инжекции при прочих равных условиях.

Экспериментальные исследования показали также целесообразность увеличения длины камеры смешения до 40—50 вместо 8—10 калибров для однофазных струйных аппаратов. Это связано, по-видимому, с тем, что образование однородной газожидкостной эмульсии требует большей длины пути перемешивания, чем выравнивание профиля скоростей однофазного потока.

В исследовании, специально посвященном этому вопросу, авторы следующим образом показывают процесс разрушения рабочей струи. Струя рабочей жидкости в газовой среде разрушается в результате того, что капли выпадают из ядра струи. Разрушение струи начинается с появления ряби (волн) на ее поверхности на расстоянии нескольких диаметров от среза сопла. Затем амплитуда волн растет до тех пор, пока капли или частицы жидкости не начнут выпадать в окружающую среду. По мере развития процесса ядро струи уменьшается и в конце концов исчезает. Расстояние, на котором происходит разрушение струи, считается зоной перемешивания, в которой сплошной средой является инжектируемый газ. После скачкообразного повышения давления сплошной средой становится жидкость, в которой распределены пузырьки газа. Длина камеры смешения должна быть достаточной для завершения смешения. При недостаточной длине камеры смешения зона перемешивания переходит в диффузор, что снижает эффективность водовоздушного эжектора.

Для исследованного авторами диапазона геометрического параметра длина перемешивания составляла соответственно 32—12 калибров камеры смешения. По исследованиям авторов, оптимальной формой рабочего сопла является диффузия вакуума в различных емкостях и т. д. Водовоздушные эжекторы всегда выполняются одноступенчатыми. Предлагались конструкции двухступенчатых водовоздушных эжекторов или эжекторов с пароструйной и второй водоструйной ступенями, но они не получили распространения. В условиях конденсационных установок одноступенчатые водовоздушные эжекторы сжимают воздух, содержащийся в отсасываемой из конденсатора паровоздушной смеси, от давления 2—6 кПа до атмосферного или при расположении водовоздушного эжектора на некоторой высоте над уровнем воды в сливном баке — до давления меньше атмосферного на значение давления столба водовоздушной смеси в сливном трубопроводе.

Характерной особенностью условий работы водовоздушного эжектора является большая разница плотностей рабочей воды и эжектируемого воздуха. Отношение этих величин может превышать 10. Массовые коэффициенты инжекции водовоздушного эжектора имеют обычно порядка 10“6, а объемные коэффициенты инжекции 0,2—3,0.

Для проведении экспериментальных исследований водовоздушные эжекторы часто выполняют из прозрачного материала,чтобы иметь возможность наблюдать за характером движения среды.Экспериментальные водовоздушные эжекторы ВТИ — с мерой смешения с входным участком, выполненным из плексигласа. В четырех точках по длине камеры смешения производится измерение давления. На основании визуальных наблюдений и измерения давления по длине течение в камере смешения представляется следующим образом. Струя воды поступает в камеру смешения, сохраняя свою первоначальную цилиндрическую форму. Примерно на расстоянии 2 калибров d3 от начала камера смешения оказывается уже заполненной молочно-белой водовоздушной эмульсией (пеной), причем у стенок камеры смешения наблюдаются обратные токи водовоздушной эмульсии, которая снова захватывается струей и увлекается ею. Это возвратное движение обусловлено повышением давления по длине камеры смешения. При всех рассмотренных режимах давление в начале камеры смешения равно р в приемной камере. При низких противодавлениях повышение давления в цилиндрической камере смешения сравнительно невелико. Основное повышение давления происходит в диффузоре. При увеличении противодавления эта картина изменяется: повышение давления в диффузоре уменьшается, а в камере смешения резко увеличивается, причем оно происходит на сравнительно небольшом участке камеры смешения скачкообразно. Чем меньше отношение сечения камеры смешения и сопла, тем более резко выражен скачок давления. Место скачка хорошо различимо, так как после него движется не молочно-белая эмульсия, а прозрачная вода с пузырьками воздуха. Чем больше отношение сечений камеры смешения и сопла, тем более развиты обратные токи водовоздушной эмульсии. При увеличении противодавления скачок давления перемещается против течения струи и, наконец, при определенном противодавлении (р) достигает начала камеры смешения. При этом эжекция воздуха водой прекращается, вся камера смешения заполнена прозрачной водой без пузырьков воздуха. Аналогичные явления имеют место, если при неизменном противодавлении снижается давление рабочей воды. Для расчета описанных типов струйных аппаратов весьма плодотворным оказывалось применение уравнения импульсов. Это уравнение учитывает основной вид необратимых потерь энергии, имеющих место в струйных аппаратах, — так называемые потери на удар. Последние определяются, главным образом, отношением масс и скоростей инжектируемой и рабочей среды. При работе водовоздушного эжектора масса инжектируемого воздуха оказывается в тысячи раз меньше массы рабочей воды и не может поэтому в какой-либо степени изменить скорость струи рабочей воды.

Применение в данном случае уравнения импульсов для взаимодействующих потоков, как это было сделано при выводе расчетных уравнений для однофазных аппаратов, приводит к значениям достижимого коэффициента инжекции, в несколько раз превышающим опытные. Поэтому предложенные до настоящего времени различными авторами методы расчета водовоздушных эжекторов представляют собой, по существу, эмпирические формулы, позволяющие получить результаты, более или менее приближающиеся к опытным данным.

Экспериментальные исследования водовоздушных эжекторов показали, что при изменении в широких пределах параметров работы эжектора (давления рабочей, инжектируемой, сжатой среды, массового расхода воздуха) сохраняется достаточно стабильный объемный коэффициент инжекции. Поэтому в ряде методик расчета водовоздушных эжекторов предлагаются формулы для определения объемного коэффициента инжекции. В камере смешения благодаря большой поверхности контакта между водой и воздухом происходит насыщение воздуха парами воды. Температура пара в эмульсии практически равна температуре воды. Поэтому газовая фаза эмульсии представляет собой насыщенную паровоздушную смесь. Полное давление этой смеси в начале камеры смешения равно давлению инжектируемого сухого воздуха в приемной камере р. Парциальное давление воздуха в смеси меньше этого давления на давление насыщенного пара при температуре рабочей среды. Поскольку сжимаемый в эжекторе воздух входит в состав паровоздушной смеси, то и в приведенном выше выражении для объемного коэффициента инжекции значение V представляет собой объемный расход паровоздушной смеси, равный, согласно закону Дальтона, объемному расходу воздуха при парциальном давлении р. Массовый расход инжектируемого воздуха при этом может быть определен из уравнения Клапейрона. При повышении давления в диффузоре пар, содержащийся в эмульсии, конденсируется. На основании результатов испытаний водовоздушного эжектора с одноструйным соплом и цилиндрической камерой смешения длиной около 10 калибров было предложено использовать для расчета водовоздушного эжектора формулы для водоструйного насоса, в которых массовый коэффициент инжекции и заменен объемным (скорость эжектируемой среды равна нулю), удельные объемы рабочей сжатой среды одинаковы.

Опыты показывают, что по мере увеличения GB количество пара в отсасываемой смеси при данной температуре снижается вначале очень быстро, а затем медленнее. Соответственно характеристика pa -AGB) при/см = const, начинающаяся на оси ординат в точке ря = рп (при GB = 0), возрастает и асимптотически приближается к характеристике, отвечающей отсасыванию сухого воздуха при той же температуре рабочей воды tv. Таким образом, характеристика водоструйного эжектора при отсасывании паровоздушной смеси заданной температуры существенно отличается от соответствующей характеристики пароструйного эжектора, представляющей собой (до точки перегрузки) прямую линию, которой отвечает Gn = const.

Можно ради простоты принимать с достаточной для практических целей точностью, что характеристика водоструйного эжектора при отсасывании паровоздушной смеси данной температуры состоит из двух участков, которые по аналогии с характеристикой пароструйного эжектора могут быть названы рабочим и перегрузочным. В пределах рабочего участка характеристики водоструйного эжектора для При указанном допущении перегрузочный участок характеристики начинается при расходе воздуха G, которому отвечает в случае отсасывания сухого воздуха давление рн, равное давлению рп насыщенного пара при температуре отсасываемой смеси. Для перегрузочного участка, т. е для области GB > G, можно принять, что характеристика эжектора при отсасывании паровоздушной смеси совпадает с его характеристикой на сухом воздухе при данной t.

При отсасывании водоструйным эжектором сухого воздуха его производительность GH при определенном давлении всасывания р может быть увеличена, или при данном G давление всасывания может быть понижено как путем увеличения давления рабочей воды рр так и путем уменьшения противодавления, т. е. давления за диффузором рс. Уменьшить рс можно, например, путем установки водоструйного эжектора на определенной высоте над уровнем воды в сливном баке или колодце. Благодаря этому давление после диффузора снижается на величину давления столба в сливном трубопроводе. Правда, при том же насосе рабочей воды это повлечет за собой некоторое уменьшение давления воды перед рабочим соплом рр, но это лишь частично снизит положительный эффект, достигающийся в результате уменьшения рс.При установке водоструйного эжектора на высоте Н над уровнем воды в сливном колодце давление после диффузора составит Рс = Р6 + Ар. При отсасывании водоструйным эжектором паровоздушной смеси уменьшение рс указанным выше путем также благоприятно сказывается на характеристике эжектора, но уже не столько вследствие уменьшения давления всасывания в пределах рабочего участка характеристики, сколько вследствие увеличения при этом протяженности рабочего участка характеристики (т. е. увеличения G).

enciklopediya-tehniki.ru

Эжекция - это... Что такое Эжекция?

  • эжекция — и, мн. нет, ж. (фр. éjection выбрасывание). тех. 1. Процесс смешения двух разных сред (пара и воды, воды и песка и др.), в котором одна среда, находясь под давлением, воздействует на другую и, увлекая за собой, выталкивает ее в необходимом… …   Словарь иностранных слов русского языка

  • эжекция — и, ж. ejection f. выбрасывание. 1. спец. Процесс смешения каких л. двух сред (пара и воды, воды и песка и т. п.), в котором одна среда, находясь под давлением, воздействует на другую и, увлекая за собой, выталкивает ее в необходимом направлении.… …   Исторический словарь галлицизмов русского языка

  • эжекция — Увлечение потоком с более высоким давлением, движущимся с большой скоростью, среды с низким давлением. [http://www.heuristic.su/effects/catalog/est/byId/description/1090/index.html] Эффект эжекции заключается в том, что поток с более высоким… …   Справочник технического переводчика

  • эжекция — эж екция, и …   Русский орфографический словарь

  • эжекция — (1 ж), Р., Д., Пр. эже/кции …   Орфографический словарь русского языка

  • Эжекция — [ejection] процесс подсасывания жидкости или газа за счет кинетической энергии струи другой жидкости или газа …   Энциклопедический словарь по металлургии

  • эжекция — 1. Нин. б. ике матдәнең (пар белән суның, су белән комның һ. б. ш.) кушылу процессы; бу очракта бер матдә, басым астында булып, икенчесенә тәэсир итә һәм, үзенә ияртеп, аны кирәкле юнәлештә этеп чыгара 2. Ташу вакытында турбиналарны нормаль… …   Татар теленең аңлатмалы сүзлеге

  • эжекция — эжек/ци/я [й/а] …   Морфемно-орфографический словарь

  • ежекція — эжекция ejection * Ejektion – процес змішування двох середовищ (напр., газу і води), з яких одно, як транзитний струмінь, перебуваючи під тиском, діє на друге, підсмоктує і виштовхує його у певному напрямі. Транзитний струмінь утворюється робочою …   Гірничий енциклопедичний словник

  • отражение гильзы патрона стрелкового оружия — отражение гильзы Ндп. эжекция гильзы выбрасывание гильзы Удаление извлеченной из патронника гильзы за пределы стрелкового оружия. [ГОСТ 28653 90] Недопустимые, нерекомендуемые выбрасывание гильзыэжекция гильзы Тематики оружие стрелковое Синонимы… …   Справочник технического переводчика

  • dic.academic.ru


    © ЗАО Институт «Севзапэнергомонтажпроект»
    Разработка сайта