Ассоциация государственных научных центров «НАУКА». Институт теоретической и экспериментальной физикиНИЦ Курчатовский Институт- ИТЭФ
Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра «Курчатовский институт» (далее ИТЭФ) ― уникальный многопрофильный научный центр. Образован в 1945 году под руководством академика А.И. Алиханова для участия в решении проблем советского Атомного проекта и занял одно из ведущих мест среди физических центров страны. В 2011 году ИТЭФ вошел в состав Национального исследовательского центра «Курчатовский институт». ИТЭФ известен своими исследованиями в области строения материи и фундаментальных взаимодействий, в сфере теоретической физики, астрофизики, и математической физики, физики и техники ядерно-энергетических и ускорительных установок, физики высокой плотности энергии в веществе, медицинской физики, физики и химии конденсированных сред. В институте на высоком научно-техническом уровне разрабатываются оригинальные электрофизические и экспериментальные установки. Ведутся актуальные теоретические и экспериментальные исследования фундаментального и прикладного характера. Физики ИТЭФ эффективно работают в крупнейших международных научных центрах, внося весомый вклад в ряд экспериментов, находящихся на переднем крае познания мира. Институт пользуется заслуженным авторитетом в международном физическом сообществе. Ряд учёных удостоен Ленинских, Государственных, международных и отечественных научных премий, премий Правительства РФ, а также премий и медалей Академии наук и отрасли. В ИТЭФ выполняется обширная образовательная программа, предусматривающая подготовку студентов, аспирантов и кандидатов наук. www.itep.ru Научно-организационная деятельность
Институт был основан в Москве в 1945 году как Лаборатория № 3 Академии наук СССР с целью создания тяжеловодного ядерного реактора для производства делящихся ядерных материалов и исследований в области космических лучей. В 1949 году здесь был пущен первый в СССР и в Европе тяжеловодный исследовательский реактор. В 1961 году на территории "НИЦ "Курчатовский институт" - ИТЭФ был построен первый в стране протонный синхротрон с жесткой фокусировкой на энергию 7 ГэВ. Ввод в строй этого ускорителя дал возможность широко развернуть исследовательские работы в области физики элементарных частиц. На базе ускорителя созданы Центр протонно-лучевой терапии и Ускорительно-накопительный комплекс ИТЭФ-ТВН. В 2009 году Институт присоединился к проекту по созданию Национального исследовательского центра "Курчатовский институт" . В рамках Программы совместной деятельности Института координирует направление "Фундаментальные и прикладные исследования с использованием тяжелых ионов. Теоретическая и математическая физика". В Институте работают учёные, инженеры и техники высшей квалификации. Среди них 1 академик и 8 членов-корреспондентов РАН, 92 доктора и 193 кандидата физико-математических наук. Всемирно известная школа физиков-теоретиков "НИЦ "Курчатовский институт" - ИТЭФ внесла решающий вклад в развитие теории атомных реакторов в СССР и фундаментальный вклад в физику элементарных частиц. В Институте действуют четыре ведущие научные школы в области теоретической и экспериментальной физики, получающие государственную поддержку. Ежегодно учёные в Институте публикуют более 500 научных работ в реферируемых журналах. Подготовка молодых специалистов ведется в Институте на 5-ти аккредитованных кафедрах МФТИ, МИФИ, МГУ и через аспирантуру Института. Обучается более 100 студентов. В диссертационном совете при "НИЦ "Курчатовский институт"- ИТЭФ проходит от 8 до 15 защит диссертаций в год по трём специальностям. Институт ежегодно проводит международную зимнюю школу физики, в числе лекторов приглашаются ведущие учёные мира. Ряд учёных Института отмечен Государственными, Ленинскими, международными и отечественными научными премиями, премиями Правительства РФ, а также премиями и медалями академии наук и отрасли. www.itep.ru Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра «Курчатовский институт»(НИЦ «Курчатовский институт» - ИТЭФ)Краткая информация Ведущая научная организация России в области получения новых знаний об экстремальных и принципиально новых состояниях материи. Осуществляет исследования и разработки в области физики ядра и частиц, радиационной физики твердого тела, физики ионных пучков, физики безопасных ядерно-энергетических установок и диагностики действующих ядерных реакторов, медицинской физики в области протонно-лучевой и ионной терапии, позитронно-эмиссионной томографии. Основан (создан) Институт основан в 1945 году. В 1994 г. институту присвоен статус Государственного научного центра Российской Федерации, сохраненный по настоящее время соответствующими нормативными актами Правительства Российской Федерации (1997 г., 2000 г., 2002 г., 2004 г., 2007 г., 2009 г., 2011 г., 2013 г.). Работа по приоритетным направлениям и критическим технологиям развития науки, технологий и техники Участвует в реализации восьми приоритетных направлений: «Живые системы», «Безопасность и противодействие терроризму», «Информационно-телекоммуникационные системы», «Перспективные вооружения, военная и специальная техника», «Транспортные, авиационные и космические системы», «Энергетика и энергосбережение», «Индустрия наносистем и материалов», «Рациональное природопользование» - и двенадцати критических технологий. Участие в реализации технологических платформ Национальная суперкомпьютерная технологическая платформа. Замкнутый ядерно-топливный цикл с реакторами на быстрых нейтронах. Радиационные технологии. Инновационные проекты Проект Центра протонно-лучевой терапии для КБ им. Боткина по заказу Правительства Москвы. Исследовательская опытно-экспериментальная база Базовые установки: комплекс ускорителей протонов и ионов; тяжеловодный критический стенд "Макет"; Центр атомно-масштабных и ядерно-физических исследований реакторных материалов. Патенты, свидетельства 13 патентов на балансе предприятия. Численность персонала, занятого исследованиями и разработками 732 человека, в том числе - 1 академик РАН, 8 членов-корреспондентов РАН, 61 докторов наук, 143 кандидата наук. Наличие Соглашений с высшими учебными заведениями Договор МФТИ-ИТЭФ №204/205 от 14.10.2011 г. Соглашение МИФИ-ИТЭФ от 17.11.2008 о сотрудничестве в области научных исследований и подготовки кадров. Базовые кафедры, научные школы МФТИ- 2 кафедры. МИФИ: 3 кафедры. МГУ сотрудничество с кафедрой «Физика ускорителей высоких энергий». Ведущие научные школы 2014 г.
Основные партнеры РФЯЦ-ВНИИТФ, РФЯЦ-ВНИИЭФ, ГНЦ ИФВЭ НИЦ КИ, ПИЯФ НИЦ КИ, НИЦ «Курчатовский институт», ТРИНИТИ. МФТИ, МИФИ, МГУ и др. Международное научно-техническое сотрудничество Сотрудники ИТЭФ в 2015 году участвуют в 22 международных коллаборациях и одном международном проекте в области теоретической физики. Контактная информация 117218, г. Москва, ул. Большая Черемушкинская, дом 25; тел. 8 (499) 123-80-93; факс 8 (499) 127-08-33 Интернет: www.itep.ru E-mail: [email protected] agnc.ru БиблиотекаНаучно-техническая библиотека ИТЭФ работает с 1946 г. Первыми единицами хранения библиотечного фонда НТБ стали трофейные немецкие издания, привезённые из Германии после окончания Второй мировой войны. На данный момент фонд НТБ насчитывает около 250 000 экз. книг, журналов, препринтов и других единиц хранения. Библиотечный фонд НТБ регулярно пополняется периодическими изданиями и книгами по всем научным направлениям института. У работников ИТЭФ есть возможность заказать отсутствующие в фонде книги и журналы по межбиблиотечному абонементу. В НТБ установлена автоматизированная информационно-библиотечная система «Библиобус» (БД формата АБИС «Библиобус» под управлением СУБД Microsoft SQL Server 2008 R2), подключенная к Центральной базе данных БЕН РАН. Ссылка на БД АБИС «Библиобус» размещена на сайте ИТЭФ в разделе «Библиотека», подраздел «Подписные электронные ресурсы». Сформированная БД содержит в себе все необходимые библиографические и другие данные об изданиях, поступивших в библиотеку ИТЭФ из БЕН РАН за период с 1993 г. по 2017 г., и представленные в центральной БД БЕН РАН в общедоступном электронном каталоге. Программное обеспечение обеспечивает полный цикл технологических операций комплектования библиотеки непериодическими изданиями, а именно: - предварительный заказ, регистрацию и распределение по абонентам (отделам) поступающей литературы с автоматическим формированием всех необходимых учётно - бухгалтерских данных; - научную и технологическую обработку изданий (систематизация, каталогизация, шифровка и инвентаризация) и, при необходимости, формирование комплектов карточек для традиционных каталогов; - автоматический импорт информации о полученных изданиях из центральной базы данных (ЦБД) БЕН РАН в локальную систему библиотеки через общедоступную сеть Интернет в формате, принятом БЕН РАН; - предоставление информации об имеющихся в библиотеке изданиях в общедоступном электронном каталоге.
Заведующая библиотекой: Алёхина Антонина Александровна, телефон: 8 (499) 123-53-09. E-mail НТБ: [email protected]; Библиотекарь: Кузьмина Ольга Михайловна, E-mail: [email protected] Отдел научно-технической информации Отдел научно-технической информации (далее-ОНТИ) организует размещение на сайте ИТЭФ информацию о конкурсах НИОКР, проводимых государственными и независимыми фондами поддержки научных исследований в Российской Федерации, принимает участие в подготовке материалов на конкурсы НИОКР в Российском научном фонде, Министерстве образования и науки, других государственных и независимых фондов поддержки научных исследований, принимает участие в организации выполнения поддержанных проектов, координирует деятельность ИТЭФ и фондов на всех стадиях выполнения и отчетности по финансируемым этими фондами проектов. ОНТИ разрабатывает Рекомендации по регистрации в Единой государственной информационной системе учета (ЕГИСУ НИОКТР) научно-исследовательских, опытно-конструкторских и технологических работ гражданского назначения в качестве систематизированного справочного материала, необходимого при регистрации научно-исследовательских и опытно-конструкторских работ в ЕГИСУ НИОКТР, принимает участие в регистрации выполняемых в ИТЭФ НИОКР в ЕГИСУ НИОКТР. ОНТИ совместно с группой информационных технологий поддерживается электронный каталог препринтов ИТЭФ за период с 1960 по 2017 годы, который размещен на сайте ИТЭФ. Каталог препринтов насчитывает более 4,5 тысяч экземпляров по всем направлениям фундаментальных и прикладных исследований, проведенных за эти годы в ИТЭФ, таких как: физика ядра и элементарных частиц, астрофизика, математическая физика, физическая химия, конденсированное состояние вещества, реакторная, ускорительная, лазерная, вычислительная техника, промышленная электроника, оборудование для протонной лучевой терапии, технология изготовления экспериментальных физических установок, технология обработки информации с экспериментальных физических установок. В данном каталоге прослеживается поступательное развитие актуальных, соответствующих времени, исследований и разработок учёных ИТЭФ, имеющих фундаментальное значение для развития науки и техники, от создания проектов реакторных установок повышенной безопасности до кольцевых и линейных ускорителей протонов и тяжелых ионов, реализованных в нашей стране и за рубежом. В каталоге указаны все авторы, принимавшие участие в работе и при написании препринта. Полнотекстовые оригиналы препринтов находятся в отделе научно-технической информации (комната 304, корпус 143). Электронную копию препринта можно получить в ОНТИ по предварительной заявке. Желающие могут обратиться по телефону 66-15 за дополнительной информацией. Начальник ОНТИ: Иваненко Вячеслав Александрович, телефон: 8 (499) 789-66-15. E-mail: [email protected]
Группа научно-технической информацииВ группе научно-технической информации ИТЭФ (далее-ГНТИ) осуществляется предварительная обработка и редактирование научно-технической информации, создающейся коллективом научных, инженерно-технических работников в результате выполнения научно-исследовательских и опытно-конструкторских работ в ИТЭФ. Авторы (авторские коллективы) представляют в ГНТИ доклады на конференциях (тезисы докладов), научные статьи, сборники статей, научные обзоры, монографии, для оформления и дальнейшей публикации в зарубежных и отечественных журналах и издательствах научной литературы. Авторефераты кандидатских и докторских диссертаций, препринты и т.п. печатаются в типографии ИТЭФ. ГНТИ разрабатывает положения и инструкции о порядке рассмотрения документированной информации в ИТЭФ, предназначенной для открытого опубликования в печати и средствах массовой информации, определению возможности её использования в информационном обмене. ГНТИ принимает на обработку и архивное хранение научно-технические отчеты о НИОКР, выполненных в подразделениях ИТЭФ. Начальник ГНТИ: Осипова Людмила Михайловна, телефон: 8 (499) 123-31-47; 65-69; 61-74. E-mail: [email protected] Инженер ГНТИ: Мотин Михаил Сергеевич, телефон: 8 (499) 789-66-15; 66-15. E-mail: [email protected] Инспектор ГНТИ: Яковлева Антонина Сергеевна, телефон: 8 (499) 789-66-15; 66-15. E-mail: [email protected] Информация: Рекомендации по регистрации в Единой государственной информационной системе учёта (ЕГИСУ НИОКТР) научно-исследовательских, опытно-конструкторских и технологических работ гражданского назначения, выполняемых в федеральном государственном бюджетном учреждении «Государственный научный центр Российской Федерации – Институт Теоретической и Экспериментальной Физики» Рекомендации по оформлению научно-технического отчёта www.itep.ru УЦ ИТЭФ [Ускорительный Центр ИТЭФ]Ускорительный центр является структурным подразделением Института Теоретической и Экспериментальной Физики, объединяющим службы института, обеспечивающие работу электрофизических установок ускорительно-накопительного комплекса ИТЭФ-ТВН, предназначенных для получения пучков заряженных частиц, а также научные лаборатории, деятельность которых связана с физикой пучков заряженных частиц и ускорительной техникой. Ускорительно-накопительный комплекс ИТЭФ-ТВН относится к классу протоно-ионных кольцевых ускорителей средних энергий и предназначен для проведения широкомасштабных фундаментальных и прикладных исследований в области физических наук, а также для разработки инновационных технологий гражданского, оборонного и ядерно-энергетического назначения с использованием интенсивных пучков протонов и тяжелых ионов. В последние годы ускорительно-накопительный комплекс оставался основной действующей и интенсивно эксплуатируемой физической установкой института, нарабатывающей ежегодно порядка 4500 часов для выполнения фундаментальных и прикладных исследований по государственным контрактам, грантам РФФИ и МНТЦ, договорам с внешними организациями и тематическим планам лабораторий. В результате пожара в феврале 2012 года из-за повреждения части технологического оборудования ускорительно-накопительный комплекс был выведен из эксплуатации. Восстановление работоспособности ускорительно-накопительного комплекса ИТЭФ-ТВН является приоритетной задачей института. В состав ускорительно-накопительного комплекса ИТЭФ-ТВН входят следующие электрофизические установки: В соответствии с решением объединенной комиссии, в Ускорительном Центре проводятся работы по созданию эскизного проекта восстановления и модернизации ускорительного комплекса. twac.itep.ru 70-летие ФГБУ «ГНЦ РФ ИТЭФ» НИЦ «Курчатовский институт» 1945-20154 марта 2016 года состоялось Торжественное заседание Ученого совета Института, посвященное 70-летию ИТЭФ. Вступительное слово сделал директор ФГБУ ГНЦ РФ ИТЭФ В.Ю. Егорычев, который кратко перечислил основные вехи истории Института и основные научные достижения. На заседании присутствовали помошники Президента НИЦ «Курчатовский институт» Я.И. Штромбах и М.В. Попов, которые тепло приветствовали коллектив ФГБУ ГНЦ РФ ИТЭФ и поздравили работников с 70-летием Института. Была подчеркнута естественная и плодотворная связь институтов, которые привели к формированию вместе с ПИЯФ и ИФВЭ единого научного объединения, создающего качественно новые возможности дальнейшего развития российской науки. С приветствием от ГНЦ РФ ИФВЭ НИЦ «Курчатовский институт» выступил его директор С.В. Иванов, коснувшийся различных этапов взаимодействия и сотрудничества двух институтов – ИТЭФ и ИФВЭ. Это сотрудничество длится с 60-тых годов прошлого века, когда с участием ИТЭФ был спроектирован, построен и успешно запущен ускоритель У-70 в Протвино, до наших дней, отмеченных взаимодействием в международных коллаборациях Большого адронного коллайдера. Затем были представлены доклады ведущих ученых Института:
Директор Института В.Ю. Егорычев и ученый секретарь В.В. Васильев вручили Почетные грамоты победителям конкурса научных работ к 70-летию Института. При содействии профсоюзного комитета почетные грамоты за большой вклад в научные исследования были вручены ветеранам Института: И.В. Кирпичникову, Ю.Я. Лапицкому, В.С. Попову, В.А. Смирнитскому, О.В. Шведову. Торжественное заседание завершилось праздничным концертом. Планшеты по тематике института:
Ученый секретарь В.В. Васильев 18 марта 2016 г. www.itep.ru Институт теоретической и экспериментальной физики1. 1945 год в науке – The year 1945 in science and technology involved some significant events, listed below. Salvador Edward Luria and Alfred Day Hershey independently recognize that viruses undergo mutations, a team at Oak Ridge National Laboratory led by Charles Coryell discovers chemical element 61, the only one still missing between 1 and 96 on the periodic table, which they will name promethium. Found by analysis of products of irradiated uranium fuel, its discovery is not made public until 1947. Dorothy Hodgkin and C. H. Carlisle publish the first three-dimensional molecular structure of a steroid, in January, Hodgkin also discovers the structure of penicillin, not published until 1949. A team at American Cyanamids Lederle Laboratories, Pearl River, New York, led by Yellapragada Subbarow, july - Publication of Vannevar Bushs article As We May Think proposing a proto-hypertext collective memory machine which he calls memex. George Stigler solves the Stigler diet problem heuristically, february - Raymond L. Libby of American Cyanamids research laboratories at Stamford, Connecticut, announces a method of orally administering the antibiotic penicillin. The Amsler grid is introduced for monitoring of the visual field. High-altitude west-to-east winds across Pacific, discovered by Japanese in 1942, july 16 - Nuclear testing, the Trinity test, the first test of an atomic bomb, using 6 kilograms of plutonium, succeeds in detonating an explosion equivalent to that of 20 kilotons of TNT. August 6 and 9 - Atomic bombings of Hiroshima and Nagasaki make the world aware of the power of nuclear weapons, march 2 - The Bachem Ba 349 Natter is launched from Stetten am kalten Markt. The Natter is the first manned rocket, developed as an anti-aircraft weapon, the launch fails and the pilot dies. October - Arthur C. Clarke puts forward the idea of a communications satellite. November - Slinky toy first demonstrated by engineer Richard T. James in Philadelphia, the first desalination plant becomes operational. Kathleen Lonsdale and Marjory Stephenson become the first women elected as Fellows of the Royal Society of London, argentine physicist Ernesto Sabato publishes Uno y el Universo, a collection of essays criticizing the apparent moral neutrality of science and warning of dehumanization in technological societies. First book in the New Naturalist series is published in the United Kingdom, february 9 - Yoshinori Ohsumi, Japanese cell biologist, Nobel Prize laureate. April 11 - John Krebs, English zoologist, april 30 - Mike Smith, American astronaut. August 1 - Douglas Osheroff, American physicist, Nobel Prize laureate, september 18 - John McAfee, Scottish American computer programmer. October 2 - Martin Hellman, American cryptologist, undated - Lyn Evans, Welsh physicist. March 23 - Napier Shaw, English meteorologist, may 14 - Isis Pogson, English astronomer and meteorologist 2. Россия – Russia, also officially the Russian Federation, is a country in Eurasia. The European western part of the country is more populated and urbanised than the eastern. Russias capital Moscow is one of the largest cities in the world, other urban centers include Saint Petersburg, Novosibirsk, Yekaterinburg, Nizhny Novgorod. Extending across the entirety of Northern Asia and much of Eastern Europe, Russia spans eleven time zones and incorporates a range of environments. It shares maritime borders with Japan by the Sea of Okhotsk, the East Slavs emerged as a recognizable group in Europe between the 3rd and 8th centuries AD. Founded and ruled by a Varangian warrior elite and their descendants, in 988 it adopted Orthodox Christianity from the Byzantine Empire, beginning the synthesis of Byzantine and Slavic cultures that defined Russian culture for the next millennium. Rus ultimately disintegrated into a number of states, most of the Rus lands were overrun by the Mongol invasion. The Soviet Union played a role in the Allied victory in World War II. The Soviet era saw some of the most significant technological achievements of the 20th century, including the worlds first human-made satellite and the launching of the first humans in space. By the end of 1990, the Soviet Union had the second largest economy, largest standing military in the world. It is governed as a federal semi-presidential republic, the Russian economy ranks as the twelfth largest by nominal GDP and sixth largest by purchasing power parity in 2015. Russias extensive mineral and energy resources are the largest such reserves in the world, making it one of the producers of oil. The country is one of the five recognized nuclear weapons states and possesses the largest stockpile of weapons of mass destruction, Russia is a great power as well as a regional power and has been characterised as a potential superpower. The name Russia is derived from Rus, a state populated mostly by the East Slavs. However, this name became more prominent in the later history, and the country typically was called by its inhabitants Русская Земля. In order to distinguish this state from other states derived from it, it is denoted as Kievan Rus by modern historiography, an old Latin version of the name Rus was Ruthenia, mostly applied to the western and southern regions of Rus that were adjacent to Catholic Europe. The current name of the country, Россия, comes from the Byzantine Greek designation of the Kievan Rus, the standard way to refer to citizens of Russia is Russians in English and rossiyane in Russian. There are two Russian words which are translated into English as Russians 3. Москва – Moscow is the capital and most populous city of Russia, with 13.2 million residents within the city limits and 17.8 million within the urban area. Moscow has the status of a Russian federal city, Moscow is a major political, economic, cultural, and scientific center of Russia and Eastern Europe, as well as the largest city entirely on the European continent. Moscow is the northernmost and coldest megacity and metropolis on Earth and it is home to the Ostankino Tower, the tallest free standing structure in Europe, the Federation Tower, the tallest skyscraper in Europe, and the Moscow International Business Center. Moscow is situated on the Moskva River in the Central Federal District of European Russia, the city is well known for its architecture, particularly its historic buildings such as Saint Basils Cathedral with its brightly colored domes. Moscow is the seat of power of the Government of Russia, being the site of the Moscow Kremlin, the Moscow Kremlin and Red Square are also one of several World Heritage Sites in the city. Both chambers of the Russian parliament also sit in the city and it is recognized as one of the citys landmarks due to the rich architecture of its 200 stations. In old Russian the word also meant a church administrative district. The demonym for a Moscow resident is москвич for male or москвичка for female, the name of the city is thought to be derived from the name of the Moskva River. There have been proposed several theories of the origin of the name of the river and its cognates include Russian, музга, muzga pool, puddle, Lithuanian, mazgoti and Latvian, mazgāt to wash, Sanskrit, majjati to drown, Latin, mergō to dip, immerse. There exist as well similar place names in Poland like Mozgawa, the original Old Russian form of the name is reconstructed as *Москы, *Mosky, hence it was one of a few Slavic ū-stem nouns. From the latter forms came the modern Russian name Москва, Moskva, in a similar manner the Latin name Moscovia has been formed, later it became a colloquial name for Russia used in Western Europe in the 16th–17th centuries. From it as well came English Muscovy, various other theories, having little or no scientific ground, are now largely rejected by contemporary linguists. The surface similarity of the name Russia with Rosh, an obscure biblical tribe or country, the oldest evidence of humans on the territory of Moscow dates from the Neolithic. Within the modern bounds of the city other late evidence was discovered, on the territory of the Kremlin, Sparrow Hills, Setun River and Kuntsevskiy forest park, etc. The earliest East Slavic tribes recorded as having expanded to the upper Volga in the 9th to 10th centuries are the Vyatichi and Krivichi, the Moskva River was incorporated as part of Rostov-Suzdal into the Kievan Rus in the 11th century. By AD1100, a settlement had appeared on the mouth of the Neglinnaya River. The first known reference to Moscow dates from 1147 as a place of Yuri Dolgoruky. At the time it was a town on the western border of Vladimir-Suzdal Principality 4. Теоретическая физика – Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to physics, which uses experimental tools to probe these phenomena. The advancement of science depends in general on the interplay between experimental studies and theory, in some cases, theoretical physics adheres to standards of mathematical rigor while giving little weight to experiments and observations. Conversely, Einstein was awarded the Nobel Prize for explaining the photoelectric effect, a physical theory is a model of physical events. It is judged by the extent to which its predictions agree with empirical observations, the quality of a physical theory is also judged on its ability to make new predictions which can be verified by new observations. A physical theory similarly differs from a theory, in the sense that the word theory has a different meaning in mathematical terms. A physical theory involves one or more relationships between various measurable quantities, archimedes realized that a ship floats by displacing its mass of water, Pythagoras understood the relation between the length of a vibrating string and the musical tone it produces. Other examples include entropy as a measure of the uncertainty regarding the positions and motions of unseen particles, Theoretical physics consists of several different approaches. In this regard, theoretical particle physics forms a good example, for instance, phenomenologists might employ empirical formulas to agree with experimental results, often without deep physical understanding. Modelers often appear much like phenomenologists, but try to model speculative theories that have certain desirable features, some attempt to create approximate theories, called effective theories, because fully developed theories may be regarded as unsolvable or too complicated. Other theorists may try to unify, formalise, reinterpret or generalise extant theories, or create completely new ones altogether. Sometimes the vision provided by pure mathematical systems can provide clues to how a system might be modeled, e. g. the notion, due to Riemann and others. Theoretical problems that need computational investigation are often the concern of computational physics, Theoretical advances may consist in setting aside old, incorrect paradigms or may be an alternative model that provides answers that are more accurate or that can be more widely applied. In the latter case, a correspondence principle will be required to recover the previously known result, sometimes though, advances may proceed along different paths. However, an exception to all the above is the wave–particle duality, Physical theories become accepted if they are able to make correct predictions and no incorrect ones. They are also likely to be accepted if they connect a wide range of phenomena. Testing the consequences of a theory is part of the scientific method, Physical theories can be grouped into three categories, mainstream theories, proposed theories and fringe theories. Theoretical physics began at least 2,300 years ago, under the Pre-socratic philosophy, during the Middle Ages and Renaissance, the concept of experimental science, the counterpoint to theory, began with scholars such as Ibn al-Haytham and Francis Bacon 5. Математическая физика – Mathematical physics refers to development of mathematical methods for application to problems in physics. It is a branch of applied mathematics, but deals with physical problems, there are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. The rigorous, abstract and advanced re-formulation of Newtonian mechanics adopting the Lagrangian mechanics, both formulations are embodied in analytical mechanics. These approaches and ideas can be and, in fact, have extended to other areas of physics as statistical mechanics, continuum mechanics, classical field theory. Moreover, they have provided several examples and basic ideas in differential geometry, the theory of partial differential equations are perhaps most closely associated with mathematical physics. These were developed intensively from the half of the eighteenth century until the 1930s. Physical applications of these developments include hydrodynamics, celestial mechanics, continuum mechanics, elasticity theory, acoustics, thermodynamics, electricity, magnetism, and aerodynamics. The theory of atomic spectra developed almost concurrently with the fields of linear algebra. Nonrelativistic quantum mechanics includes Schrödinger operators, and it has connections to atomic, Quantum information theory is another subspecialty. The special and general theories of relativity require a different type of mathematics. This was group theory, which played an important role in quantum field theory and differential geometry. This was, however, gradually supplemented by topology and functional analysis in the description of cosmological as well as quantum field theory phenomena. In this area both homological algebra and category theory are important nowadays, statistical mechanics forms a separate field, which includes the theory of phase transitions. It relies upon the Hamiltonian mechanics and it is related with the more mathematical ergodic theory. There are increasing interactions between combinatorics and physics, in statistical physics. The usage of the mathematical physics is sometimes idiosyncratic. Certain parts of mathematics that arose from the development of physics are not, in fact, considered parts of mathematical physics. The term mathematical physics is sometimes used to research aimed at studying and solving problems inspired by physics or thought experiments within a mathematically rigorous framework 6. Астрофизика – Astrophysics is the branch of astronomy that employs the principles of physics and chemistry to ascertain the nature of the heavenly bodies, rather than their positions or motions in space. Among the objects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and their emissions are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. In practice, modern astronomical research often involves an amount of work in the realms of theoretical and observational physics. Although astronomy is as ancient as recorded history itself, it was separated from the study of terrestrial physics. Their challenge was that the tools had not yet been invented with which to prove these assertions, for much of the nineteenth century, astronomical research was focused on the routine work of measuring the positions and computing the motions of astronomical objects. Kirchhoff deduced that the lines in the solar spectrum are caused by absorption by chemical elements in the Solar atmosphere. In this way it was proved that the elements found in the Sun. Among those who extended the study of solar and stellar spectra was Norman Lockyer and he thus claimed the line represented a new element, which was called helium, after the Greek Helios, the Sun personified. By 1890, a catalog of over 10,000 stars had been prepared that grouped them into thirteen spectral types, most significantly, she discovered that hydrogen and helium were the principal components of stars. This discovery was so unexpected that her dissertation readers convinced her to modify the conclusion before publication, however, later research confirmed her discovery. By the end of the 20th century, studies of astronomical spectra had expanded to cover wavelengths extending from radio waves through optical, x-ray and it is the practice of observing celestial objects by using telescopes and other astronomical apparatus. The majority of observations are made using the electromagnetic spectrum. Radio astronomy studies radiation with a greater than a few millimeters. The study of these waves requires very large radio telescopes, infrared astronomy studies radiation with a wavelength that is too long to be visible to the naked eye but is shorter than radio waves. Infrared observations are made with telescopes similar to the familiar optical telescopes. Objects colder than stars are studied at infrared frequencies. Optical astronomy is the oldest kind of astronomy, telescopes paired with a charge-coupled device or spectroscopes are the most common instruments used. The Earths atmosphere interferes somewhat with optical observations, so adaptive optics, in this wavelength range, stars are highly visible, and many chemical spectra can be observed to study the chemical composition of stars, galaxies and nebulae 7. Физика элементарных частиц – Particle physics is the branch of physics that studies the nature of the particles that constitute matter and radiation. By our current understanding, these particles are excitations of the quantum fields that also govern their interactions. The currently dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model, in more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. All particles and their interactions observed to date can be described almost entirely by a field theory called the Standard Model. The Standard Model, as formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for the hundreds of species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the tests conducted to date. However, most particle physicists believe that it is a description of nature. In recent years, measurements of mass have provided the first experimental deviations from the Standard Model. The idea that all matter is composed of elementary particles dates from at least the 6th century BC, in the 19th century, John Dalton, through his work on stoichiometry, concluded that each element of nature was composed of a single, unique type of particle. Throughout the 1950s and 1960s, a variety of particles were found in collisions of particles from increasingly high-energy beams. It was referred to informally as the particle zoo, the current state of the classification of all elementary particles is explained by the Standard Model. It describes the strong, weak, and electromagnetic fundamental interactions, the species of gauge bosons are the gluons, W−, W+ and Z bosons, and the photons. The Standard Model also contains 24 fundamental particles, which are the constituents of all matter, finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson. Early in the morning on 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson, the worlds major particle physics laboratories are, Brookhaven National Laboratory. Its main facility is the Relativistic Heavy Ion Collider, which collides heavy ions such as gold ions and it is the worlds first heavy ion collider, and the worlds only polarized proton collider. Its main projects are now the electron-positron colliders VEPP-2000, operated since 2006 and its main project is now the Large Hadron Collider, which had its first beam circulation on 10 September 2008, and is now the worlds most energetic collider of protons. It also became the most energetic collider of heavy ions after it began colliding lead ions and its main facility is the Hadron Elektron Ring Anlage, which collides electrons and positrons with protons 8. Ядерная физика – Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions. Other forms of matter are also studied. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, discoveries in nuclear physics have led to applications in many fields. Such applications are studied in the field of nuclear engineering, Particle physics evolved out of nuclear physics and the two fields are typically taught in close association. Nuclear astrophysics, the application of physics to astrophysics, is crucial in explaining the inner workings of stars. The discovery of the electron by J. J. Thomson a year later was an indication that the atom had internal structure, in the years that followed, radioactivity was extensively investigated, notably by Marie and Pierre Curie as well as by Ernest Rutherford and his collaborators. By the turn of the physicists had also discovered three types of radiation emanating from atoms, which they named alpha, beta, and gamma radiation. Experiments by Otto Hahn in 1911 and by James Chadwick in 1914 discovered that the beta decay spectrum was continuous rather than discrete. That is, electrons were ejected from the atom with a range of energies, rather than the discrete amounts of energy that were observed in gamma. This was a problem for physics at the time, because it seemed to indicate that energy was not conserved in these decays. The 1903 Nobel Prize in Physics was awarded jointly to Becquerel for his discovery and to Marie, Rutherford was awarded the Nobel Prize in Chemistry in 1908 for his investigations into the disintegration of the elements and the chemistry of radioactive substances. In 1905 Albert Einstein formulated the idea of mass–energy equivalence, in 1906 Ernest Rutherford published Retardation of the α Particle from Radium in passing through matter. Hans Geiger expanded on this work in a communication to the Royal Society with experiments he and Rutherford had done, passing alpha particles through air, aluminum foil and gold leaf. More work was published in 1909 by Geiger and Ernest Marsden, in 1911–1912 Rutherford went before the Royal Society to explain the experiments and propound the new theory of the atomic nucleus as we now understand it. The plum pudding model had predicted that the particles should come out of the foil with their trajectories being at most slightly bent. But Rutherford instructed his team to look for something that shocked him to observe and he likened it to firing a bullet at tissue paper and having it bounce off. As an example, in this model consisted of a nucleus with 14 protons and 7 electrons. The Rutherford model worked well until studies of nuclear spin were carried out by Franco Rasetti at the California Institute of Technology in 1929 9. Физика твёрдого тела – Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics, solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a basis of materials science. It also has applications, for example in the technology of transistors and semiconductors. Solid materials are formed from densely packed atoms, which interact intensely and these interactions produce the mechanical, thermal, electrical, magnetic and optical properties of solids. Depending on the involved and the conditions in which it was formed. The bulk of physics, as a general theory, is focused on crystals. Primarily, this is because the periodicity of atoms in a crystal — its defining characteristic — facilitates mathematical modeling, likewise, crystalline materials often have electrical, magnetic, optical, or mechanical properties that can be exploited for engineering purposes. The forces between the atoms in a crystal can take a variety of forms, for example, in a crystal of sodium chloride, the crystal is made up of ionic sodium and chlorine, and held together with ionic bonds. In others, the atoms share electrons and form covalent bonds, in metals, electrons are shared amongst the whole crystal in metallic bonding. Finally, the noble gases do not undergo any of these types of bonding, in solid form, the noble gases are held together with van der Waals forces resulting from the polarisation of the electronic charge cloud on each atom. The differences between the types of solid result from the differences between their bonding, the DSSP catered to industrial physicists, and solid-state physics became associated with the technological applications made possible by research on solids. By the early 1960s, the DSSP was the largest division of the American Physical Society, large communities of solid state physicists also emerged in Europe after World War II, in particular in England, Germany, and the Soviet Union. In the United States and Europe, solid state became a prominent field through its investigations into semiconductors, superconductivity, nuclear magnetic resonance, today, solid-state physics is broadly considered to be the subfield of condensed matter physics that focuses on the properties of solids with regular crystal lattices. Many properties of materials are affected by their crystal structure and this structure can be investigated using a range of crystallographic techniques, including X-ray crystallography, neutron diffraction and electron diffraction. The sizes of the crystals in a crystalline solid material vary depending on the material involved. Real crystals feature defects or irregularities in the arrangements. Properties of materials such as electrical conduction and heat capacity are investigated by solid state physics, an early model of electrical conduction was the Drude model, which applied kinetic theory to the electrons in a solid 10. Нанотехнология – Nanotechnology is manipulation of matter on an atomic, molecular, and supramolecular scale. It is therefore common to see the plural form nanotechnologies as well as nanoscale technologies to refer to the range of research. Because of the variety of applications, governments have invested billions of dollars in nanotechnology research. Until 2012, through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars, scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create new materials and devices with a vast range of applications, such as in nanomedicine, nanoelectronics, biomaterials energy production. These concerns have led to a debate among advocacy groups and governments on whether regulation of nanotechnology is warranted. The term nano-technology was first used by Norio Taniguchi in 1974, also in 1986, Drexler co-founded The Foresight Institute to help increase public awareness and understanding of nanotechnology concepts and implications. In the 1980s, two major breakthroughs sparked the growth of nanotechnology in modern era, the microscopes developers Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Laboratory received a Nobel Prize in Physics in 1986. Binnig, Quate and Gerber also invented the atomic force microscope that year. Second, Fullerenes were discovered in 1985 by Harry Kroto, Richard Smalley, and Robert Curl, in the early 2000s, the field garnered increased scientific, political, and commercial attention that led to both controversy and progress. Controversies emerged regarding the definitions and potential implications of nanotechnologies, exemplified by the Royal Societys report on nanotechnology, challenges were raised regarding the feasibility of applications envisioned by advocates of molecular nanotechnology, which culminated in a public debate between Drexler and Smalley in 2001 and 2003. Meanwhile, commercialization of products based on advancements in nanoscale technologies began emerging and these products are limited to bulk applications of nanomaterials and do not involve atomic control of matter. Governments moved to promote and fund research into nanotechnology, such as in the U. S, by the mid-2000s new and serious scientific attention began to flourish. Projects emerged to produce nanotechnology roadmaps which center on atomically precise manipulation of matter and discuss existing and projected capabilities, goals, Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced, one nanometer is one billionth, or 10−9, of a meter. By comparison, typical carbon-carbon bond lengths, or the spacing between atoms in a molecule, are in the range 0. 12–0.15 nm. On the other hand, the smallest cellular life-forms, the bacteria of the genus Mycoplasma, are around 200 nm in length, by convention, nanotechnology is taken as the scale range 1 to 100 nm following the definition used by the National Nanotechnology Initiative in the US. The lower limit is set by the size of atoms since nanotechnology must build its devices from atoms and molecules wikivisually.com |