для заочников / внутризаводское / электрические нагрузки. Характер нагрузки потребителя электрической энергии видыэлектрические нагрузкиЭлектрические нагрузки. Графики электрических нагрузок. Показатели графиков электрических нагрузок. Электрические нагрузки являются исходными данными для решения комплекса вопросов при проектировании системы электроснабжения цеха и в целом промышленного предприятия. Определение электрических нагрузок является первым этапом проектирование любой системы электроснабжения и производится для выбора трансформаторов цеховых трансформаторных подстанций, токоведущих элементов, компенсирующих установок, защитных устройств и т.д. Исходными данными для определения электрических нагрузок являются количество и мощность приёмников электроэнергии, находящихся в цехе, категория по степени надёжности, характеристика помещения по окружающей среде. Расчетные значения нагрузок - это нагрузки, соответствующие такой неизменной токовой нагрузке, которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию (не превышая допустимых значений) на элемент системы электроснабжения. Зная электрические нагрузки, можно выбрать нужную мощность силовых трансформаторов, мощность и место подключения компенсирующих устройств, выбрать и проверить токоведущие части по условию допустимого нагрева, рассчитать потери и колебания напряжения, выбрать виды защит. Электрическая нагрузка-величина,характеризующая потребление мощности отдельными приемниками или потребителями. Приемником электроэнергии называют устройство (аппарат, агрегат, механизм), в котором происходит преобразование электрической энергии в другой вид энергии для ее использования. Потребитель - предприятие, организация, территориально обособленный цех, строительная площадка, квартира, у которых приемники электроэнергии присоединены к электрической сети и используют электрическую энергию. Графики электрических нагрузок одна из основных характеристик режимов работы приемников (потребителей) электрической энергии и являются исходным материалом для расчетов электрических сетей. Графики электрических нагрузок представляют собой характер изменения электрической величины во времени. По электрическим показателям рассматриваются графики по активной, реактивной и полной мощности, графики по току. Если нагрузка создается одним ЭП, графики называют индивидуальными и все показатели, относящиеся к нему, обозначают строчными буквами p(t), q(t), s(t), и i(t). В случае, когда нагрузка характеризует группу электроприемников, её графики называют групповыми и все показатели, относящиеся к ней, обозначают прописными буквами P(t), Q(t), S(t), I(t). По рассматриваемому промежутку времени различают сменные, суточные, квартальные, сезонные, годовые графики. В справочной литературе приводятся графики электрических нагрузок по отраслям промышленности (машиностроение, химическая, нефтеперерабатывающая промышленности и др.), которыми можно пользоваться при проектировании СЭС заводов данной отрасли. Режимы работы ЭП разнообразны и это, несомненно, окажет влияние на форму результирующего графика – графика группы электроприемников (потребителя). От режимов потребления электроэнергии зависят режимы работы электроустановок: основного оборудования, линий электропередачи и трансформаторных подстанций. Значение и структура потребления электрической энергии имеют вероятностный характер, поэтому расчетные (прогнозируемые) графики отличаются от реальных. Построение графиков электрических нагрузок проектируемого объекта дает возможность выбрать все элементы СЭС с их оптимальными параметрами, а также выполнить наиболее рациональную схему электроснабжения, обеспечивающую необходимые уровни напряжения, и определить потребление активной и реактивной энергии. Индивидуальные графики необходимы для определения нагрузок отдельных электроприемников (электрических печей, преобразовательных агрегатов, главных приводов прокатных станов и т.п.). При проектировании СЭС промышленных предприятий чаще используются групповые графики нагрузок. Групповые графики нагрузок (узла нагрузки или предприятия в целом) дают возможность определить потребление активной и реактивной энергии (узла нагрузки), правильно выбрать элементы питающих сетей, а также спроектировать рациональную схему СЭС. В практике проектирования наибольшее применение находят суточные и годовые графики. Форма графиков очень разнообразна и, в основном, зависит от технологического процесса производства и режима работы предприятия (односменный, двухсменный или трехсменный). На рисунке представлены экспериментальные зависимости изменения активной мощности за рассматриваемый промежуток времени (t) для индивидуальных ЭП и их суммарный (групповой) график.
При практических расчетах функцию P t , полученную путем снятия показаний измерительных приборов, преобразуют в ступенчатый график, tц const принимая, что за принятый интервал осреднения ∆t нагрузка остается неизменной и равной ее среднему значению за указанный интервал. Интервал осреднения принимается равным 30 мин. Для учебных расчетов интервал осреднения принимается равным или 1 час. Графики нагрузок индивидуальных приемников На рисунке представлены графики активной мощности индивидуальных электроприемников, работающих в различных режимах. Как видно из рисунка режимы работы разнообразны и, как правило, зависят от технологического процесса. Графики нагрузок ЭП по активной, реактивной, полной мощности и графики по току рассматриваются за определенный промежуток времени (за характерный час, смену, сутки). Условно (теоретически) графики нагрузок можно разделить на: периодические; циклические; нециклические и нерегулярные (случайные). - Периодический (рис. а), когда tц const ,tр tп иw const . Время цикла tц tр tп;tр, tп - время соответственно работы ЭП и паузы, ч., смена, сутки; w – электроэнергия потребляемая ЭП за время цикла одинакова, т.е. w1= w2. - Циклический (рис. б), когда tц const ,tр const иw const . Время паузы tп1 tп2 ...tпi, а длительность работы ЭП одинакова от цикла к циклу, поэтому за промежуток времени, например смену, количество потребленной электроэнергии одинаково. - Нециклический (рис. в), при ,т.к.tр1 tр2 ...tрi, tп1 tп2 ...tпi, но количество электроэнергии, потребляемой ЭП за рассматриваемый промежуток времени, практически постоянно, т.е. можно принятьwсм const
и w1w2. Рисунок Индивидуальные графики электрических нагрузок На практике режимы работы ЭП носят случайный характер, за исключением, автоматических технологических линий. Индивидуальные графики необходимы для определения расчетных величин и коэффициентов, характеризующих эти графики. Групповые графики электрических нагрузок При проектировании СЭС применяются в основном групповые графики электрических нагрузок. Графики нагрузок группы ЭП по активной, реактивной, полной мощности и графики по току рассматриваются за определенный промежуток времени (за характерный час, смену, сутки). В практике проектирования наибольшее применение, при расчете электрических нагрузок СЭС, получили графики изменения нагрузок за наиболее загруженную смену, характерные суточные и годовые графики. По характерным суточным графикам нагрузок можно судить о режиме работы электроустановок и, как следствие, о режиме работы всего предприятия (односменный, двухсменный и трехсменный режимы работы). Важным графиком является годовой - годовая упорядоченная диаграмма нагрузок. Существуют и такие графики как квартальные, сезонные (за зимний и летний периоды). На рисунке представлен суточный график активной мощности характерный для двухсменного режима работы. Рисунок Суточный график активной мощности Pmax максимальная мощность;Pmin минимальная мощность; Pс средняя мощность;Pс.к. средняя квадратичная мощность. Графики нагрузок по отдельным группам ЭП (узлам нагрузки) и объекта в целом дают возможность определить потребление активной и реактивной tз.1. энергии предприятием, правильно и рационально выбрать элементы системы электроснабжения, а также рационально спроектировать СЭС. Годовые графики нагрузок Годовой график активной мощности по убыванию максимумов представляет собой годовую упорядоченную диаграмму нагрузок. Приближенно годовой график по продолжительности можно построить по двум характерным суточным графикам нагрузок электроустановки или предприятия в целом (за зимние и летние сутки). Строятся графики активной мощности за характерные сутки - зимние, летние и выходные дни. При этом условно принимают, что продолжительность зимнего периода 213 суток (7 мес.), а летнего—152суток (5 мес.) – для сибирского региона. Построение начинают с максимальной мощности и выполняют в порядке постепенного снижения мощностей, для чего через оба суточных графика проводят ряд горизонтальных линий, расстояние между которыми выбирают в соответствии с желательной точностью построения. В виде примера покажем построение годового графика по продолжительности. Продолжительность потребления максимальной мощности P1 по зимнему графику по летнему нет. Годовая продолжительность T1 (tз.1) 213. Откладывая полученное значениеT1 по оси абсцисс годового графика, находим точку «а». Продолжительность мощностиP2 : по зимнему графикуtз.1 по летнемуtл.2 . Годовая продолжительность T2 (tз.1) 213 tл.2 152. На годовом графике это соответствует точке «б». Аналогичным образом строится третья и все последующие ступени годового графика в порядке снижения мощностей. Суммарная продолжительность годового графика должна составлять 8760 часов. Выполнив все построения, получают годовой график по убыванию, смотри. летнего и весеннего периодов по 91 суток, а осеннего - 92 суток. По годовому графику определяют потребленную электроэнергию электроустановкой, подразделением или предприятием в целом за год и число часов использования максимальных нагрузок потребителем в течение года. Рисунок Построение годового графика по продолжительности ВЕЛИЧИНЫ И ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ СУТОЧНЫЕ ГРАФИКИ 1. Потребление электрической энергии Wза определенное время (сутки, смену), кВт ч: WСУТКИР1 t1 P2 t2 . . . Pntn, где n - количество интервалов времени (при равномерной разбивке для суточного графикаn = 24 или 48). 2. Средняя нагрузка PС за определенное время (сутки, смену), кВт: РС WСУТ. t В условиях эксплуатации средняя нагрузка за сутки определяется по показаниям счетчиков активной и реактивной энергии делением на 24. 3. Средняя нагрузка за наиболее загруженную смену РСМ. За наиболее загруженную смену средняя нагрузка определяется продолжительностью смены:
Наиболее загруженной считают смену характерных суток, в которой потребление энергии данной группой электроприемников является наибольшим. Обычно наиболее загруженной является дневная смена, поскольку в дневное время в работе находится наибольшее количество агрегатов. Характерными сутками являются зимние сутки с максимальным потреблением энергии. В этом случае средняя нагрузка за наиболее загруженную смену (так называемая среднемаксимальная) определяется по выражению, кВт: 16 Р РСМ88 . studfiles.net 1 виды потребителейВопрос 1.1. Основные виды потребителей электрической энергии. Потребители эл.эн. делятся на три категории по надежности электроснабжения. Основа сути всей электроэнергетики это неразрывная связь между производством и потреблением, так как еще не открыты возможности складирования большого вида электроэнергии. 1.категория: к этой категории относится потребитель, перерыв в электроснабжении которого не допустим, так как это связано с опасностью для жизни людей или черевато крупными техногенными авариями. Поэтому все потребители относящиеся к этой группе должны получать питание как минимум от двух независимых источников питания. К отдельной группе потребителей относятся АЭС они кроме всего прочего должны иметь резерв в виде дизель генераторов, а вторичные цепи должны иметь целый ряд основных и резервных источников питания цепей оперативного тока. 2. категория: к этой категории относятся потребители перерыв в электроснабжении которых ведет за собой простой технологического оборудования, а ущерб от простоя оборудования очень велик и превышает в денежном эквиваленте постройку резервных линии. Яркии пример это сталеплавильные печи (с электродуговыми установками) и установки металопроката – при прекращении электроснабжения которых они приходят в негодность и их реконструкция или ремонт становятся практически невозможными. Они также должны питаться от двух независимых источникови перерыв в их электроснабжении допускается на время перевода питания с основного на резервное. 3. категория: это потребителиперерыв в электроснабжении которых допускается на время отыскание и устранение неполадок,как правило имеют питание только от одного источника (в первых редакциях ПУЭ указывалось время не более 1 суток). Графики нагрузок электроустановок. Интегральные характеристики графиков нагрузок. Самыми основными графиками являются суточные и годовые График зависимости мощности от времени. Р(t). В суточном графике площадь, ограниченная ступенчатой кривой P(t), соответствует суточной выработке электроэнергии или суточному потреблениюЭ(t). где n– число ступеней графика,Tmax– число часов использования максимума нагрузки, КЗ- коэффициент заполнения. Годовые графики складываются из месячных максимумов, это делается для того чтобы представлять загрузку оборудования энергосистем, станции и т.д. это позволяет планировать ремонты электрооборудования и планировать экономичную работу системы. Годовые графики также бывают по продолжительности, они показывают продолжительность работы оборудования в течении года с различными нагрузками. Построение графика начинается с определенияпродолжительности максимальной мощности в течении года. Для этого определяется ее продолжительность в течении суток зимой и летом и умножается на число суток зимой и летом соответственно. Зима 213 суток, лето 152 суток. Эток график используется притехнико-экономичесих расчетах. Назначение графиков нагрузки
Участие электростанции в покрытии графика нагрузки энергосистем Для улучшения работы энергосистемы в целом необходимо увеличивать маневренность электрооборудования; сооружение пиковых электростанции; блоки повышенной маневренности на газомазуте с мощностью 500МВт; а также использование газотурбинных установок и поддержания в целосности ЕЭС РФ. studfiles.net 1. Характеристики потребителей электроэнергии и определение категории электроснабженияЭлектроснабжение объекта может осуществляться от собственной электростанции, энергетической системы при наличии собственной электростанции. Требования, представляемые к надёжности электроснабжения от источников питания, определяются потребляемой мощностью объекта и его видом. Приёмники электрической энергии в отношении обеспечения надёжности электроснабжения разделяются на несколько категорий. Первая категория – электроприёмники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный экономический ущерб, повреждение дорогостоящего оборудования, расстройство сложного технологического процесса, массовый брак продукции. Из состава электроприёмников первой категории выделяется особая группа (нулевая категория) электроприёмников, бесперебойная работа которых не обходима для безаварийного останова производства с целью предотвращения угрозы для жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования. Вторая категория – электроприёмники, перерыв электроснабжения которых приводит к массовым недоотпускам продукции, массовым простоям рабочих, механизмов. Допустимый интервал продолжительности нарушения электроснабжения для электроприёмников второй категории не более 30 минут. Третья категория – все остальные электроприёмники, не подходящие под определение первой и второй категорий. Электроприёмники первой категории должны обеспечиваться электроэнергией от двух независимых источников питания, при отключении одного из них переключение на резервный должно осуществляться автоматически. Согласно определению ПУЭ независимыми источниками питания являются такие, на которых сохраняется напряжение при исчезновении его на других источниках, питающих эти электроприёмники. Согласно ПУЭ к независимым источникам могут быть отнесены две секции или системы шин одной или двух электростанций или подстанций при соблюдении следующих условий: - каждая эта секция или система шин питается от независимых источников. - секции шин не связаны между собой или же имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций шин. Для электроснабжения электроприёмников особой группы должен предусматриваться дополнительный третий источник питания, мощность которого должна обеспечивать безаварийную остановку процесса. Электроприёмники второй категории рекомендуется обеспечивать от двух независимых источников питания, переключение можно осуществлять не автоматически. Электроснабжение электроприёмников третьей категории может выполняться от одного источника при условии, что перерывы электроснабжения. необходимые для ремонта и замены поврежденного оборудования, не превышают одних суток. Электрооборудование ремонтно-механического цеха относится ко 2 и 3 категориям и могут питаться от одного источника, при условии, что перерывы электроснабжения не превышает одних суток. [3,с.28] 2. Выбор рода тока, напряжения и схемы внутреннего электроснабженияstudfiles.net Электрические нагрузки и их значениеДля правильного выбора и проверки проводников (кабелей и шин), а также трансформаторов по экономической плотности тока и соответственно пропускной способности, расчета потерь и отклонений напряжений, выбора устройств компенсации и защиты необходимо знать электрические нагрузки проектируемого объекта. Основой рационального решения вопросов электроснабжения современных предприятий и энергосистем является правильное определение электрических нагрузок. При завышении нагрузок – появляются излишние затраты, а также недоиспользование мощностей дорогостоящего оборудования. При занижении – может приводить к перегрузкам энергосистемы и недоотпускам продукции. Ни первый, ни второй вариант не являются приемлемыми. Данную задачу осложняет еще и то, что имеется довольно много факторов и зависимостей, трудно поддающихся учету при проектировании. Режимы работы предприятийГрафики и режимы работы предприятий и энергосистем довольно не стабильны и изменяются во времени, как показано на рисунке ниже: Где: 1 и 2 – это активная и реактивная мощности соответственно. На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее. Довольно много существует различных методов проведения расчетов электрических нагрузок, обзор и анализ их мы не будем приводить в данной статье. Эти методики постоянно совершенствуются как практически, так и теоретически и базируются на обследованиях наиболее характерных предприятиях. Обследования – основа для практического внедрения методик. Определение нагрузокДля подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:
Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников. Виды электрических нагрузокДля того, чтоб выполнить проект системы электроснабжения нужно определить следующие виды нагрузок:
В отдельных отраслях при проектировании систем электроснабжения могут вводить некоторые уточнения и допущения, которые базируются на довольно хорошем знании специфики технологического процесса данной отрасли, а также выявлении, более детальном для данной отрасли, расчетных коэффициентов, расходов энергии, числа часов использования максимума. Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок. elenergi.ru Электрическая нагрузка. Виды электрических нагрузок.Электрическая нагрузка. Виды электрических нагрузок. Электроприемники, включенные в электрическую сеть для работы, создают в сети нагрузки, которые выражаются в единицах мощности или тока. Электроприемники присоединяются к электрическим сетям в одиночку или группами. В состав группы могут входить электроприемники как одинакового, так и различного назначения и режима работы. Режим работы системы электроснабжения одинаковых приемников или их групп зависит от режима работы или сочетаний режимов работы одиночных приемников или их групп. В процессе работы электроприемников характер нагрузки в сети может оставаться неизменным, изменяться в отдельных или всех фазах, сопровождаться появлением высших гармоник тока или напряжения. В связи с этим нагрузку в сети можно разделить на спокойную симметричную (преобладающее большинство трехфазных электроприемников), резкопеременную, несимметричную и нелинейную. Резкопеременная, несимметричная и нелинейная нагрузка относятся к специфическим нагрузкам. Резкопеременная нагрузка характеризуется резкими набросами и провалами мощности или тока. Несимметричная нагрузка характеризуется неравномерной загрузкой фаз. Она вызывается однофазными и реже трехфазными приемниками с неравномерной загрузкой фаз. При несимметричной нагрузке в сети возникают токи прямой, обратной и нулевой последовательности. Нелинейная нагрузка создается электроприемниками с нелинейной вольт-амперной характеристикой. При нелинейной нагрузке в сети появляются высшие гармоники тока или напряжения, искажается синусоидальная форма тока или напряжения. Специфические нагрузки обычно создаются электродуговыми печами, сварочными установками, полупроводниковыми преобразовательными установками. Эти установки, в основном, принадлежат промышленным предприятиям. Учитывая связь электрических сетей промышленных предприятий и сетей сельскохозяйственного назначения через трансформаторные подстанции, можно считать, что специфические нагрузки промышленных предприятий оказывают влияние и на электрические сети сельскохозяйственного назначения. По мощности электроприемники сельскохозяйственного назначения можно разделить на три группы: большой мощности (свыше 50 кВт), средней мощности (от 1 до 50 кВт) и малой мощности (до 1 кВт). Некоторые приемники используют для работы постоянный ток и токи повышенной (до 400 Гц) или высокой частоты (до 10 кГц). Во время работы одни группы приемников могут допускать перерывы в электроснабжении, в то же время перерыв в электроснабжении других недопустим. По надежности и бесперебойности электроснабжения электроприемники делятся на три категории. К первой категории относятся электроприемники и комплексы электроприемников, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб (повреждение основного оборудования), расстройство технологического процесса. Эти приемники должны иметь возможность обеспечения электроэнергией не менее чем от двух независимых источников питания. Нарушение их электроснабжения допускается только на время автоматического восстановления электроснабжения от второго источника. Ко второй категории относятся электроприемники и комплексы электроприемников, перерыв электроснабжения которых приводит к массовому недовыпуску продукции, простоям рабочих и механизмов. Электроснабжение приемников второй категории должно обеспечиваться от двух независимых источников питания. Перерыв в электроснабжении допускается на время, необходимое для автоматического и оперативного переключения на второй источник. К третьей категории относятся электроприемники и комплексы электроприемников, не попадающие под определения первой и второй категорий. Электроснабжение их может осуществляться от одного источника питания. Перерыв электроснабжения допускается на время проведения восстановительных работ, но не более одних суток. Работа большинства электроприемников сопровождается потреблением из сети не только активной, но и реактивной мощности [1, 3]. Активная мощность преобразуется в теплоту, механическую мощность на валу рабочей машины и т. п. Реактивная мощность расходуется на создание магнитных полей в электроприемниках. Ее основными потребителями являются асинхронные двигатели, трансформаторы, реакторы, индукционные печи, в которых ток отстает по фазе от напряжения. Потребителями реактивной мощности также являются электроустановки, работа которых сопровождается искажением синусоидальной кривой тока или напряжения. Потребление реактивной мощности характеризуется коэффициентом мощности сosφ, представляющим собой отношение активной мощности Р к полной мощности S. Удобным показателем является коэффициент реактивной мощности tgφ, выражающий отношение реактивной мощности Q к активной Р, т. е. он показывает, какая реактивная мощность потребляется на единицу активной мощности. Установки с опережающим током являются источниками реактивной мощности. Их применяют для компенсации реактивной нагрузки с индуктивным характером цепи. Таким образом, нагрузка в электрической сети представляется активными и реактивными нагрузками. Появление в распределительной сети электрической нагрузки вызывает нагрев токоведущих частей – проводов, кабелей, коммутационных аппаратов, обмоток электродвигателей и трансформаторов. Чрезмерный их нагрев может привести к преждевременному старению изоляции и ее износу. В связи с этим температура токоведущих частей не должна превышать допустимых значений. Сечение проводов и кабелей, коммутационных аппаратов должно выбираться по допустимому току нагрузки. Для определения допустимого (расчетного) тока нагрузки должна быть определена расчетная мощность нагрузки. За расчетную нагрузку при проектировании и эксплуатации СЭС принимается такая неизменная во времени нагрузка Iрсч, которая вызывает максимальный нагрев токоведущих и соседних с ними частей, характеризующийся установившейся температурой. Нагрев не должен превышать допустимого значения. Обычно установившееся тепловое состояние для большинства проводов и кабелей наступает за 30 минут (около трех постоянных времени нагрева – 3Т, т. е. постоянная времени нагрева Т = 10 мин). В установках с номинальным током нагрузки более 1000 А установившаяся температура достигается за время не менее 60 мин. lenels.ru Виды электрической мощности в электроэнергетикеРасчетная мощность – величина ожидаемой мощности на данном уровне электроснабжения. Данная мощность является важнейшим показателем, поскольку исходя из неё выбирается электрооборудование. Расчетная мощность показывает фактическую величину потребления энергопринимающими устройствами и зависит от конкретного потребителя (многоквартирные дома, различные отрасли производства). Получение величины расчетной мощности представляет собой сложную задачу, в которой должны учитываться различные факторы, такие как сезонность нагрузки, особенности технологии. На основании статистических данных разработаны таблицы коэффициентов использования, по которым величина расчетной мощности находится как произведение установленной мощности на коэффициент использования. Что такое реактивная мощность?Реактивная мощность – это мощность, которая обусловлена наличием в электрической сети устройств, которые создают магнитное поле (емкости и индуктивности). Интерес представляет не само магнитное поле, а характер прохождения по таким элементам переменного тока, а именно появление фазового сдвига между приложенным напряжением и током в элементах сети, таких как (электродвигатели, трансформаторы, конденсаторы). Реактивная мощность в сети может быть, как избыточная, так и дефицитная это обусловлено характером установленного оборудования. Избыточная реактивная мощность (преобладает емкостной характер сети) приводит к повышению напряжения сети, в то время как дефицитная (преобладание индуктивного характера сети) к снижению напряжения. Поскольку в распределительных сетях в большинстве случаев индуктивность преобладает над емкостью, т.е. имеется дефицит реактивной мощности, то в сеть искусственно вносятся емкостные элементы, призванные скомпенсировать индуктивный характер сети, как следствие уменьшить фазовый сдвиг между напряжением сети и током, а это значит передать потребителю в большей степени только активную мощность, а реактивную «сгенерировать» на месте. Этот принцип широко используют сетевые компании, обязывающие потребителей устанавливать компенсационные устройства, однако же установка данных устройств нужна в большей степени сетевой компании, а не каждому потребителю в отдельности. Измеряется в Вольт-Амперах реактивных (ВАр). Что такое трансформаторная мощность?Трансформаторная мощность – это суммарная мощность трансформаторов энергопринимающих устройств потребителя электрической энергии исчисляемая в МВт. Что такое установленная мощность?Установленная мощность – алгебраическая сумма номинальных мощностей электроустановок потребителя. Наибольшая активная электрическая мощность, с которой электроустановка может длительно работать без перегрузки в соответствии с техническими условиями или паспортом на оборудование. Что такое заявленная мощность?Заявленная мощность – это предельная величина потребляемой в текущий период регулирования мощности, определенная соглашением между сетевой организацией и потребителем услуг по передаче электрической энергии, исчисляемая в мегаваттах. См. также Постановление Правительства РФ №861 electro-faq.ru Надежность электроснабжения и качество электроэнергииКатегории электроприемников по надежности их электроснабжения в общем виде сформулированы в ПУЭ. Основным критерием, характеризующим надежность, является время перерывов электроснабжения. Ниже перечислены три категории электроприемников. Электроприемники I категории должны обеспечиваться электроэнергией от двух взаимно резервирующих независимых источников питания и допускают в аварийных режимах перерыв в электроснабжении на время автоматического восстановления питания. Электроприемники II категории должны обеспечиваться электроэнергией от двух взаимно резервирующих независимых источников питания и допускают в аварийных режимах перерыв в электроснабжении на время восстановления питания обслуживающим персоналом (дежурный персонал или выездные оперативные бригады). Электроприемники III категории могут получать питание от одного источника при условии, что в случаях аварий и неисправностей время для их устранения не превышает 1 сут. Степень обеспечения надежности электроснабжения жилых зданий и отдельных потребителей определена в СП 31-110-2003. В соответствии с этим различные потребители многоэтажных жилых домов, относящиеся к системам безопасности (пожарные насосы, системы подпора воздуха, дымоудаления, пожарной и охранной сигнализации и т.п.) относятся к I категории. Жилые 1-8 квартирные дома с электроплитами относятся к III категории. Жилые дома свыше 5 этажей с газовыми плитами — II категория, до 5 этажей — III категория. Строения на участках садоводческих товариществ — III категория. Однако для жилища повышенной комфортности и коттеджей заказчик вправе предъявить требования по обеспечению более высокой степени надежности электроснабжения, чем это предписано нормативными документами. Для многоэтажных многоквартирных жилых домов, независимо от комфортности отдельно взятой квартиры, надежность электроснабжения общедомовых потребителей решается в проектах электротехнической части всего дома. Учитывая, что, как правило, к любой квартире в многоквартирном доме проектами обеспечивается только один подвод питания, степень надежности электроснабжения такой квартиры будет определяться надежностью электроснабжения всего дома. Если в квартире имеются потребители, требующие более высокой категории надежности питания (например, компьютеры, системы безопасности - пожарной сигнализации, видеонаблюдения и т.п.), то целесообразно вопросы повышения надежности электроснабжения рассматривать в комплексе с вопросами качества электроэнергии (см. п. 8.2). Повышение надежности электроснабжения коттеджей может быть достигнуто: - обеспечением ввода от второго независимого источника питания; - установкой автономных источников питания дизель-генераторной электростанции или агрегатов бесперебойного питания; - решением электроснабжения отдельных потребителей в комплексе с вопросами качества электроэнергии. В первых двух случаях необходимо на вводах в коттедж в проектах электрооборудования коттеджа предусматривать автоматическое включение резервного ввода (АВР). Фирмой Schneider Electric предлагается целая серия типовых решений по реализации указанных АВР. Для бытовых целей, в том числе и для коттеджей, наиболее приемлемой является схема АВР для трехфазной системы электроснабжения, приведенная на рис. 8.1. Эта схема построена на базе применения в основном электрооборудования серии Multi 9, а также других серий модульного исполнения и может быть скомпонована в шкафах серии Pragma.
Рис. 8.1. Принципиальная схема АВР (чертеж Schneider Electric - ШЭРМ.317011.057-01Э3) Схема работает следующим образом. Вводные автоматические выключатели QF1 и QF2, а также выключатели защиты цепей контроля и управления Q1-Q6 постоянно включены. При наличии напряжения во всех фазах на вводах реле контроля напряжения KSV1 и KSV2 - подтянуты. Любой из вводов может быть основным или резервным, что определяется положением переключателя SA. Один из контактов КМ1 или КМ2, относящийся к основному вводу - включен. При исчезновении напряжения на основном вводе или на одной из его фаз обесточивается реле контроля напряжения основного ввода и включается цепочка управления контактора резервного ввода. При восстановлении напряжения на основном вводе срабатывает реле контроля напряжения этого ввода и вновь включается его контактор. Блок-контакты контактора имеют выдержку времени на отпускание, обеспечивающую предотвращение срабатывания АВР при кратковременных «посадках» напряжения на основном вводе. 8.2. Качество электроэнергииРоссийским стандартом ГОСТ 13109-97 установлены показатели и нормы качества электрической энергии (КЭ) в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных потребителей электрической энергии, или приемники электрической энергии (точки общего присоединения). Это в полной мере относится и к качеству электроэнергии, поставляемой электроснабжающими организациями бытовым потребителям. Нормы, установленные стандартом, включаются в технические условия на присоединение потребителей электрической энергии и в договоры на пользование электрической энергией. Для обеспечения норм стандарта в точках общего присоединения допускается устанавливать в технических условиях на присоединение потребителей, являющихся виновниками ухудшения КЭ, и в договорах на пользование электрической энергией с такими потребителями более жесткие нормы (с меньшими диапазонами изменения соответствующих показателей КЭ) по сравнению со стандартом. Нормы, установленные стандартом, применяют при проектировании и эксплуатации электрических сетей, а также при определении уровней помехоустойчивости приемников электрической энергии и уровней кондуктивных электромагнитных помех, вносимых этими приемниками. При этом под кондуктивной электромагнитной помехой в системе энергоснабжения понимается электромагнитная помеха, распространяющаяся по элементам электрической сети. Под понятием «уровень электромагнитной совместимости» в системе энергоснабжения подразумевается регламентированный уровень кондуктивной электромагнитной помехи, используемый в качестве эталонного для координации между допустимым уровнем помех, вносимым техническими средствами энергоснабжающей организации и потребителей электрической энергии, и уровнем помех, воспринимаемым техническими средствами без нарушения их нормального функционирования. В указанном ГОСТе установлены два вида норм КЭ: нормально допустимые и предельно допустимые. Для бытовых потребителей электроэнергии применимы нижеследующие нормы показателей КЭ. Отклонение напряжения, характеризующиеся показателем установившегося отклонения напряжения, для которого установлены следующие нормы нормально допустимые и предельно допустимые значения установившегося отклонения напряжения 5Uy на выводах приемников электрической энергии равные соответственно +5 и +10% от номинального напряжения электрической сети. В сетях напряжением 0,38 кВ это соответственно составляет: 361-399 В и 342-418 В. Колебания напряжения характеризуются следующими показателями: - размахом изменения напряжения; - дозой фликера. Фликер - это субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники, а доза фликера — мера восприимчивости человека к воздействию фликера за установленный интервал времени. Предельно допустимое значение суммы установившегося отклонения напряжения dUy и размаха изменений напряжений dU1 в точках присоединения к электрическим сетям напряжением 0,38 кВ равно ±10% от номинального напряжения. Предельно допустимое значение для кратковременной дозы фликера PSt равно 1,38, а для длительной дозы фликера PLt составляет 1,0. Кратковременную дозу фликера определяют на интервале времени наблюдения, равном 10 мин. Длительную дозу фликера определяют на интервале времени наблюдения, равном 2 ч. Предельно допустимое значение для кратковременной дозы фликера PSt в точках общего присоединения потребителей электрической энергии, располагающих лампами накаливания, в помещениях, где требуется значительное зрительное напряжение, равно 1,0, а для длительной дозы фликера PLt равно 0,74. Несинусоидальность напряжения характеризуется следующими показателями: - коэффициентом искажения синусоидальности кривой напряжения; - коэффициентом n-й гармонической составляющей напряжения. Нормально допустимые и предельно допустимые значения коэффициента искажения синусоидальности кривой напряжения в точках общего присоединения к электрическим сетям с номинальным напряжением 0,38 кВ составляют соответственно 8 и 12%. Нормально допустимые значения коэффициента n-й гармонической составляющей напряжения в точках общего присоединения к электрическим сетям с номинальным напряжением 0,38 кВ приведены в табл. 8.1. Таблица 8.1 Коэффициент n-й гармонической составляющей* напряжения при напряжении 380 В, %
'n - Номер гармонической составляющей напряжения. ** — Нормально допустимые значения, приведенные для п, равных 3 и 9, относятся к однофазным электрическим сетям. В трехфазных трехпроводных электрических сетях эти значения принимают вдвое меньшими приведенных в таблице Предельно допустимое значение коэффициента n-й гармонической составляющей напряжения вычисляют по формуле где Ku(n)пред - нормально допустимое значение коэффициента n-й гармонической составляющей напряжения, определяемое по табл. 8.1. Несимметрия напряжений характеризуется следующими показателями: - коэффициентом несимметрии напряжений по обратной последовательности; - коэффициентом несимметрии напряжений по нулевой последовательности. Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны 2,0 и 4,0% соответственно. Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны 2,0 и 4,0% соответственно. Отклонение частоты напряжения переменного тока в электрических сетях характеризуется показателем отклонения частоты, для которого установлены следующие нормы нормально допустимое и предельно допустимое значения отклонения частоты равные ±0,2 и +0,4 Гц соответственно. Импульс напряжения характеризуется его амплитудой и длительностью значения грозовых импульсных напряжений, регламентированных ГОСТом. В воздушной сети 0,38 кВ не превышают 10 кВ, во внутренней сети зданий 6 кВ. Коммутационные импульсные напряжения в сетях 0,38 кВ при их длительности на уровне 0,5 амплитуды импульса и длительности, равной 1000-1500 мкс, составляют 4,5 кВ. Временные перенапряжения в точках присоединения к электрической сети общего назначения в зависимости от их длительности определяются коэффициентом временного перенапряжения: где Umax - амплитуда импульса; Uнmax; - амплитуда номинального напряжения. Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений приведены ниже: Длительность временного перенапряжения tперU, с…………….. До 1 До 20 До 60 Коэффициент временного перенапряжения KперU, отн.ед……. 1,47 1,31 1,15 Способы вычислений и измерений рассмотренных показателей и норм КЭ приведены также в ГОСТ 13109-97. Все электроприборы рассчитываются и выпускаются для работы от сети с качеством электроэнергии, соответствующим требованиям ГОСТ 13109-97. Однако в реальных условиях характеристики систем электроснабжения не являются стабильными, они непрерывно изменяются под воздействием различных факторов. К таким факторам относятся, например: перегрузка существующих сетей, подключение к сети потребителей источников высших гармоник (в бытовом секторе это могут быть статические преобразователи частоты на насосных агрегатах), включение-отключение электроприводов, аварийные ситуации (обрыв линий, короткие замыкания и пр.). Кроме того, к нестабильности приводят удары молнии в элементы электросети и ее вторичные проявления. Возникающие при этих воздействиях отклонения величины или формы напряжения от требований ГОСТ 13109-97 - возмущения, помехи - отрицательно сказываются на работе электрооборудования. Так, кратковременные повышения напряжения в сети на величину более 110% от номинального значения на время более одного периода синусоиды (20 мс), которые могут возникнуть при отключении энергоемкого оборудования (электродвигатели лифтов, вентиляционных систем, насосов и т.п.) при питании их от одних сборных шин с потребителями квартир, может привести к: - сбросу оперативной памяти компьютеров; - возникновению ошибок в работе компьютеров; - выходу из строя чувствительной телерадиоаппаратуры; - мерцанию электрического освещения. Аналогичные неисправности могут произойти и при кратковременных (до 20 мс) посадках напряжения до величины менее 80-85% от номинального значения, которые связаны с включением энергоемкого оборудования. При высоковольтных (около 6 кВ) кратковременных импульсах длительностью до 10 мс, вызываемых, как правило, ударами молнии или искрениями в силовых переключателях на вводных устройствах, может произойти: - сброс оперативной памяти компьютеров; - выход из строя элементов аппаратуры. Снижение частоты питающей сети ниже аварийной величины приводит к срабатыванию частотной защиты и отключению многих потребителей электроэнергии. Отклонение частоты от установленных в ГОСТ 13109-97 значений может привести к: - выходу из строя накопителей информации; - «зависанию» компьютерной системы; - программным сбоям; - потере данных. По данным фирмы Merlin Gerin, 45% всех неисправностей вызваны низким качеством напряжения питающих сетей, 20% - перерывами электропитания, остальные 35% - неисправностью электрооборудования потребителя и человеческим фактором. Таким образом, для надежности работы электрооборудования и приборов необходимо бесперебойное питание их электроэнергией с показателями качества, находящимися в допустимых пределах, регламентированных ГОСТ 13109-97. Для этой цели используются следующие средства: 1. При длительных перерывах в электроснабжении автономные источники - дизельгенераторные установки (ДГУ), обеспечивающие электроснабжение либо всей установки, либо наиболее ответственных потребителей (в зависимости от требований и возможностей заказчика)5. 2. При кратковременных посадках или повышениях напряжения, а также отклонениях частоты - применение статических агрегатов бесперебойного питания (АБП) для питания чувствительных к помехам наиболее ответственных потребителей: компьютерной техники, а также систем связи, пожарной и охранной сигнализации. 3. При снижениях или повышениях напряжения питающей сети - стабилизаторы напряжения для обеспечения нормальной работы радио- и телевизионной аппаратуры. 4. При импульсных перенапряжениях - ограничители перенапряжения для защиты всех видов электрооборудования. Стабилизаторы напряжения выпускаются различными фирмами и широко представлены на рынке. Их выбор не зависит от электрооборудования питающей сети и определяется напряжением защищаемого устройства, его мощностью и напряжением питающей сети. Оптимально применять ограничители перенапряжения того же производителя, что и аппаратура питающих распределительных устройств. Ограничители перенапряжения, входящие в номенклатуру Multi 9 фирмы Schneider Electric, удачно сочетаются с различными автоматическими выключателями той же серии6. Для защиты в домашних условиях от перенапряжений, помех и вторичного проявления молний высокочувствительного и дорогостоящего оборудования фирмой Merlin Gerin выпускается серия устройств Pulsar CL, технические характеристики которых приведены в табл. 8.2. Pulsar CL1 Tel позволяет подключить телефон, факс или модем, а CL1 TV - телевидение, видео- и аудиотехнику, обеспечивая защиту от перенапряжений в питающей сети. Pulsar CL5 допускает подключение до пяти розеток с потребителями разного назначения, а в модификациях Tel или TV дополнительно предусмотрено подключение телефона, факса, модема или теле-, видео-, аудиоаппаратуры. Pulsar CL8 имеет 8 розеток для подключения потребителей, а также выходы для подключения телефона, факса, модема, теле-, видео-, аудиотехники. В устройствах серии CL имеется возможность монтажа на стене в местах расположения защищаемого оборудования. Таблица 8.2 Основные технические характеристики устройств защиты от перенапряжений Pulsar CL
8.3.Источники бесперебойного питания для бытовых потребителей электроэнергииИсточники бесперебойного питания (ИБП) - устройство для питания электрической нагрузки при исчезновении питающего напряжения, а также для коррекции его параметров. Агрегат бесперебойного питания (АБП) - устройство для преобразования энергии аккумуляторных батарей в энергию переменного тока с напряжением синусоидальной формы и заданной частотой. В международной практике используется термин UPS Systems, объединяющий понятия ИБП и АБП в единый комплекс устройств непрерывного питания. Рассмотрим известные схемы построения АБП. Off-Line (англ. - вне линии) или Standby (англ. - дежурный) - схема АБП, при которой в нормальном режиме работы нагрузка питается от сети (рис. 8.2 а), а при аварийном режиме включается питание от аккумуляторных батарей (АБ) через преобразователь (П) постоянного тока в переменный (рис. 8.2 б). Переключение нагрузки (отключение от сети и подключение к АБП) осуществляется автоматически статическим переключателем со временем переключения ~ 4 мс. АБП, работающие в режиме Off-Line, используются для питания персональных компьютеров или рабочих станций локальных вычислительных сетей. Практически все недорогие маломощные АБП, предлагаемые на отечественном рынке, построены по схеме Off-Line. В бытовых условиях такие АБП в сочетании с другими видами электрических защит и принятыми мерами электробезопасности вполне обеспечивают нормальное функционирование указанного класса потребителей электроэнергии. Рис. 8. 2. АБП по схеме Off-Line а) нормальный режим б) аварийный режим ЗУ - зарядное устройство АБ - аккумуляторная батарея П - преобразователь (инвертор) Ф - фильтр On-Line (англ. - в линии) - схема АБП, при которой входное напряжение выпрямляется (В), а затем преобразуется (с помощью инвертора (П)) в переменное (рис. 8.3). При аварии, т.е. при исчезновении напряжения, питание инвертора осуществляется от аккумуляторной батареи (АБ), постоянно подключенной к его входу. Рис. 8. 3. АБП по схеме On-Line В - выпрямитель П - преобразователь (инвертор) АБ - аккумуляторная батарея Б - баланс В АБП, построенных по схеме On-Line, наряду с двойным преобразованием напряжения, как правило, предусматривается режим работы «Байпас» (Б) (Bypass - от англ. обход). В этом режиме нагрузка подключена непосредственно к сети с отфильтрованным и защищенным от выбросов напряжением, что позволяет повысить надежность и избежать применения АБП большей, чем это необходимо, мощности. Существуют автоматический и ручной режимы «Байпас». Автоматический переход в режим «Байпас» производится устройством управления АБП в случае перегрузки на его выходе или при неполадках в его узлах. Таким образом, критическая нагрузка защищается не только от колебаний питающего напряжения, но и от неполадок в самом АБП. Ручное переключение в режим «Байпас» предусмотрено для возможности проведения сервисного обслуживания АБП. Основным преимуществом АБП со схемой On-Line заключается в полной фильтрации и сглаживании любых колебаний входного напряжения и высоковольтных импульсов на входе АБП и нулевым временем переключения в аварийный режим без каких-либо переходных процессов на выходе. К недостаткам схемы On-Line относятся относительная сложность и более высокая стоимость, а также наличие дополнительных энергозатрат на двойное преобразование, снижающих общий КПД системы. АБП, работающие по схеме On-Line, используются для питания файловых серверов и рабочих станций локальных вычислительных сетей, а также любого другого оборудования, предъявляющего повышенные требования к качеству сетевого электропитания. Line-Interactive (рис. 8.4) - гибридная схема АБП, аналогичная Off-Line, но отличающаяся наличием ступенчатого стабилизатора (бустера) (Б), построенного на основе автотрансформатора. Системы, работающие по схеме Line-Interactive, по сравнению с Off-Line способны выдерживать долговременные глубокие «посадки» и «проседания» входного сетевого напряжения без перехода на аккумуляторные батареи. Преимущества режима Line-Interactive заключается в простоте реализации и экономичности, а недостатки - в наличии некоторого времени переключения (~ 4 мс) при переходе на аварийный режим. Схема Line-Interactive является компромиссом между дорогостоящими системами On-Line и системами Off-Line. АБП, работающие по схеме Line-Interactive, используются для питания персональных компьютеров, рабочих станций и файловых серверов локальных вычислительных сетей, офисного и другого оборудования, предъявляющего высокие требования к колебаниям напряжения в электросети. Фирмой Merlin Gerin, входящей в состав Schneider Electric, выпускается широкая номенклатура агрегатов бесперебойного питания различной мощности, предназначенная как для бытового применения, так и для питания локальных вычислительных сетей, телекоммуникаций, вычислительных центров, промышленных объектов. Рис. 8. 4. АПБ по схеме Line-Interactiv АБ - аккумуляторная батарея ЗУ - зарядное устройство П - преобразователь (инвертор) Ф - фильтр Б - бустер В табл. 8.3. приведены основные технические данные АБП фирмы Merlin Germ, которые рекомендуется использовать в домашних условиях. Агрегаты типа Pulsar ellipse обеспечивают защиту от одного до трех компьютеров. Компьютер подключается к АБП через одну из розеток. Подключение гарантирует защиту компьютера от перенапряжения, «бросков» и «просадок» в сети, а также от различных помех. Защита от исчезновения питания в сети осуществляется с помощью аккумуляторной батареи. Применяемые аккумуляторные батареи - компактные свинцово-кислотные, необслуживаемые. Кроме розеток с батарейной поддержкой одна или несколько розеток обеспечивают только защиту от перенапряжения для периферии: принтеров, сканеров и адаптеров. Pulsar ellipse устанавливается вертикально или горизонтально в удобном для обслуживания месте, например под монитор. Эти АБП имеют возможность прямого подключения к розеткам бытовой розеточной сети. В модификациях USBS предусмотрена защита информационных линий телефон-факс-Интернет. Микропроцессорная система управления максимально интегрирована в Windows XP/2000/ME/98 и совместима с другими комплексами программного обеспечения. Функцией программирования розеток устанавливается необходимое время разряда батареи для более продолжительного питания наиболее критических нагрузок. В случае длительного пропадания электропитания в сети программное обеспечение переключает компьютер в «спящий режим», при восстановлении питания - компьютер перезапускается с настройкой первоначального состояния. Агрегаты Pulsar ellipse premium по мощности и конструкции аналогичны Pulsar ellipse, однако они построены по Line-Interactive схеме с бустером для автоматического регулирования напряжения. Такая схема обеспечивает эффективную защиту от всех возмущений в питающей сети. Колебания и отклонения напряжения автоматически корректируются бустером, не допуская перегрузки аккумуляторной батареи. Широкий диапазон входного напряжения исключает частый переход на батареи в аварийных режимах, что обеспечивает достаточную емкость батареи для резервного питания нагрузки. Порог перехода на питание от батарей настраивается с использованием программного обеспечения. Микропроцессорная система управления этого АБП основана на использовании программного обеспечения Personal Solution-Pac, которое совместимо с операционными системами Windows XP/2000/NT, Linux, Apple Mac, SUN Solaris, SCO UnixWare or Novell Netware. В АБП модификации Premium 500 предусмотрена розетка для подключения оборудования, требующего защиты только от перенапряжения (принтеры, сканеры и т.п.). В модификациях Premium 650/800/1200 имеется возможность программирования питания при разряде аккумуляторной батареи, таким образом, чтобы обеспечить питание наиболее ответственных потребителей, подключенных к данному АБП. АБП серии Pulsar Evolution построены по Line-Interactive технологии. Эти АБП обеспечивают защиту от 1 до 5 серверов. Его применение оптимально в условиях ограниченного рабочего пространства. Pulsar Evolution 500 изготавливается в виде стойки, устанавливаемой в столе, в настольном варианте или монтируемой на стене. Pulsar Evolution 800/1100/1500 изготавливается в виде стойки 19” или в виде «башни» для вертикальной установки в рабочем столе или другом удобном месте. Pulsar Evolution 2200/2300 изготавливается универсальным и может быть смонтирован на 19 дюймовых стойках или установлен в виде «башни». АБП серии Pulsar Extreme С построен по On-Line технологии с двойным преобразованием и с автоматическим байпасом. Обеспечивается непрерывное регулирование напряжения и частоты. Эти АБП имеют исполнения в виде стойки 19” и в виде «башни». Дополнительной особенностью АБП серии Pulsar Extreme С является возможность комплектования их от 1 до 4 аккумуляторных батарей. Это позволяет продлить время автономной работы АБП мощностью до 1 кВА - до 6 ч, до 2 кВА - до 3 ч. Таблица 8.3 Основные технические данные АБП фирмы Merlin Gerin
* — в числителе данные для АБП типа "башня", в знаменателе - для АБП типа "стойка" www.eti.su |