Eng Ru
Отправить письмо

Применение и принцип работы сухих градирен. Градирня устройство и принцип действия


Принцип действия вентиляторной градирни | Вентиляторные градирни NCT

Мокрые градирни NCT и их применение

Область применения испарительных градирен чрезвычайно широка, но для простоты понимания ее можно разделить на две части:

Непосредственное охлаждение технологических процессов

dillerscheme1

    Примеры:
  • Охлаждение термопластавтоматов в производстве пластика
  • Охлаждение вакуумно-выпарных установок в производстве крахмала, подсолнечного масла, томатной пасты и проч.
  • Охлаждение сварочных станков
  • Охлаждение компрессоров сжатого воздуха
Охлаждение конденсаторов холодильных установок (чиллеров)

dillerscheme2

Самое большое применение градирни находят в области систем кондиционирования воздуха для водяного охлаждения конденсаторов чиллеров мощностью более 500 кВт. Холодильный коэффициент чиллера при замене воздушного охлаждения (Т конденсации = 45-55°С) на водяное охлаждение с помощью градирен (Т конденсации = 30-35°С) вырастает в два раза, а значит снижается электропотребление чиллера в два раза.

Для абсорбционных (работающих на тепловой энергии) и турбочиллеров градирни являются единственным вариантом. Нужно добавить, что цена градирни в два-три раза ниже цены воздушного конденсатора. Именно поэтому большинство крупных систем кондиционирования выполнены на мокрых градирнях (Москва-сити, Кремль, и так далее).

завод nct, градирня nct, схема градирни вентиляторной, мокрые градирни, принцип действия градирниМокрая градирня. Принцип действия

Охлаждаемая вода проходит через распределительную систему (1) и подается на форсунки (2), которые распыляют воду над оросителем (3), установленным в корпусе (4) градирни. За счет развитой поверхности оросителя обеспечивается равномерное стекание воды в виде тонкой пленки. При этом обеспечивается эффективное охлаждение воды встречным потоком наружного воздуха.

Небольшое количество воды испаряется, а основной объем охлажденной воды поступает в поддон (5) градирни. Перед возвратом в систему вода проходит механическую очистку в сетчатом фильтре. Для очистки фильтра и обслуживания рабочих механизмов градирни предназначен сервисный люк.

Испарившаяся вода компенсируется открытием клапана подпитки, подключенного к системе водоснабжения. Необходимый минимальный уровень воды в поддоне поддерживается совместной работой реле уровня воды и клапана подпитки. При аварийном превышении допустимого уровня, избыточная вода удаляется из градирни через переливной трубопровод.

Для защиты воды в поддоне градирни от замерзания, предусмотрена установка ТЭНов с управлением по термостату.

Наружный воздух, нагнетаемый радиальным вентилятором (6), подается на ороситель противотоком относительно воды. Проходя через ороситель, воздух насыщается влагой, отводит теплоту испарения воды и выбрасывается в атмосферу. Для предотвращения капельного уноса в градирне установлен каплеуловитель (7).

Рабочее колесо вентилятора приводится в движение электродвигателем посредством клиноременной передачи.

Щит управления и автоматики предназначен для регулирования производительности и обеспечения безаварийной работы градирни.

 

nc-t.ru

особенности размещения и условия использования

В промышленности постоянно возникает необходимость в охлаждении водных запасов. В связи с ростом стоимости электрической энергии – применение и принцип работы сухих градирен становится очень актуальным. Градирня (теплообменник) это оборудование, которое используется для охлаждения воды или другой жидкости, как в промышленности, так и в различных системах кондиционирования.

Сухая градирня: принцип работы

При помощи сухих градирен происходит охлаждение водных запасов, которые участвуют в технологическом процессе на 5-7 градусов по Цельсию. Принцип работы сухой градирни (драйкулера) очень прост: охлаждаемая жидкость подается в теплообменник, двигаясь по нему, она охлаждается потоком воздуха, который подается вентилятором из окружающей среды. Теплообменник состоит из множества медных трубок с алюминиевым оребрением, суммарная площадь которых довольно высока. Вентиляторы, нагнетая наружный воздух, обеспечивают теплообмен, в результате чего происходит охлаждение жидкости, которая затем по трубопроводу подается по назначению.

Для предотвращения повреждения труб в процессе работы, предусмотрены ребра жесткости, выполненные из стали. Корпус выполнен также из стали и покрыт эмалью для предотвращения и защиты от коррозии.

Охлаждаемая в драйкулере жидкость, может быть различной: например, вода для потребителей, разнообразные водные растворы для нужд промышленности.

Сухая градирня

Сухая градирня

Используемые вентиляторы, оборудованы защитными решетками и имеют низкий коэффициент шума. Для экономии электроэнергии, вентиляторы, подающие вентиляторы можно оснастить регулятором, который будет контролировать скорость вращения лопастей. При необходимости точно контролировать температуру воздуха на выходе также необходимо установить регулятор.

Наибольшая эффективность использования драйкулеров в районах, где низкая средняя температура окружающей среды. Следует отметить, что температура охлаждаемой в градирне воды будет на 5 градусов по Цельсию выше температуры окружающей на входе в теплообменник. Это так называемый термодинамический предел. Для получения температуры на выходе из охладителя на пару градусов ниже можно применить специальную систему орошения. Суть ее заключается в том, что при высоких градусах окружающего воздуха, форсунками подается вода на трубки теплообменника. Испаряясь, вода дополнительно охлаждает рабочую жидкость и одновременно очищает теплообменник от нежелательного загрязнения. Грязная жидкость попадает в специальный резервуар, который по мере загрязнения надо чистить.

Особенности размещения градирен

Традиционно градирни устанавливают под открытым небом, однако имеются модели, которые могут монтироваться внутри помещения, например, подвального, при условии подведения системы воздуховодов. Варианты установки также могут быть различными: как вертикальное, так и горизонтальное расположение. В условиях экономии полезной площади их располагают на крыше или на стене производственного здания.

Необходимо помнить, что для рациональной работы драйкулера, необходимы большие воздушные потоки, поэтому при установке необходимо это учитывать и обеспечить свободную подачу воздуха к вентиляторам.

При наружной установке охладителя, следует помнить, что при минусовых температурах возможно замерзание воды, которая используется. Для предотвращения этого, в холодное время года необходимо использовать гликоль.

Также возможно организация тандема драйкулера с чиллером, который выполняет роль охладителя. При этом необходимо чиллер установить внутри помещения, а градирню снаружи.

Условия, рекомендуемые при использовании сухих градирен

При применении и принципе работы сухой градирни необходимо правильно рассчитать параметры температур наружной среды в каждом сезоне. Это напрямую влияет на выбор мощности градирни и как следствие на качество ее работы.

Для эффективности, необходимо контролировать параметры, которые позволят применять ее с наибольшей эффективностью. Осуществлять контроль параметров возможно, с помощью:

Промышленные градирни

Промышленные градирни

  1. Датчиков (измеряют температуру теплоносителя и окружающей среды, делая возможным контроль всей системы охлаждения).
  2. Регуляторов вращения (регулируют скорость вращения лопастей и как следствие объем подаваемого в систему воздуха).
  3. Вентиляторов (правильный выбор количества обеспечит охлаждение рабочей жидкости до требуемого предела).

В зимнее время при низких температурах обслуживание и эксплуатация градирен может усложниться из-за обледенения конструкции. Как правило, при снижении температуры от – 10 градусов по Цельсию начинается процесс обледенения, который может вызвать поломку системы. Для исключения данной ситуации необходимо уменьшить поток подаваемого воздуха. Это можно достичь за счет отключения вентилятора или за счет перевода его в режим работы на пониженных оборотах.

Если возникла необходимость в установке сухого теплообменника, то необходимо заранее рассчитать необходимую мощность, чтобы приобретенное оборудование справлялось с объемами, необходимыми для производства. Перед установкой учитывается множество параметров, и только квалифицированный специалист сможет правильно учесть все факторы, обуславливающие эффективность в каждом конкретном случае.

Область применения сухих градирен

Градирни сухого типа

Градирни сухого типа

За счет энергосбережения, простоты применения и принципов работы сухих градирен их широко используют в промышленности. В настоящее время многие производственные процессы требуют охлаждения водных запасов и других жидкостей. Поэтому установка драйкулера на предприятиях химической, пищевой, перерабатывающих отраслях существенно помогает снизить себестоимость готовой продукции, за счет рационализации затрат на производство.

Также они используются при производстве пластмасс, в стекольном производстве, машиностроении, деревообрабатывающей промышленности. Достойное место занимают в технологических процессах атомных и тепловых электрических станций. Незаменимы они при охлаждении конденсаторов и электрогенераторов.

Драйкулеры применяются на производствах, где надо избавиться от избыточного тепла, где существует разница в температурах воды и окружающей среды.

Немаловажным является то, что как такового нет испарения воды, так как теплоотдача происходит в трубках устройства с тепловым обменом. Из этого следует, что влажность в помещении (если охладитель установлен в здании) не будет повышаться. Также, за счет замкнутого цикла устройства теплового обмена, не загрязняется атмосферная среда (если охладитель установлен на площадке возле производственного здания). Последний факт имеет огромное значение для предприятий, т.к. требуется соблюдение санитарно-гигиенических норм.

Сухие градирни: преимущества и недостатки применения

Современные сухие градирни

Современные сухие градирни

Наличие неоспоримых выгод при применении драйкулеров объясняет их массовое использование. Рассмотрим основные преимущества использования охладителей.

  • Существенная экономия электрической энергии (энергия расходуется только на привод вентиляторов, а в холодное время года экономия увеличивается за счет частичного отключения вентиляторной системы).
  • Не существует расхода воды из-за применения закрытого контура.
  • Нет загрязнения производственной воды.
  • Относительная дешевизна при сравнении с другими аналогами и короткий срок окупаемости.
  • Большой выбор охлаждаемых жидкостей (вода, масло, водные растворы).
  • Выбор варианта монтажа (внешняя установка или внутренняя, горизонтальная или вертикальная, установка на крыше или стене).
  • Дешевизна обслуживания и ремонта.
  • Надежность насоса и трубопровода.
  • Простота при выполнении монтажных работ и процесс эксплуатации.
  • Не увеличивает процент влажности.
  • Нет выброса вредных веществ в атмосферу.
  • Возможность использования в холодную погоду любого антифриза.
  • При необходимости возможна установка новых блоков к уже существующим.

К недостаткам драйкулеров относится невозможность охлаждения рабочего вещества до состояния ниже температуры окружающей среды. Из-за этого фактора область их использования несколько ниже. В летний период, при повышенных температурах, эффективность снижается.

oventilyatsii.ru

Принцип работы градирня

Принцип работы градирня

Работает градирня следующим образом. Вода из резервуара подается насосом в конденсатор холодильной установки, из которого поступает к водораспределителю. Вытекая через отверстия водораспределительной вращающейся под давлением реактивной силы трубы, она равномерно орошает насадку. Проходя насадку, вода охлаждается идущим ей навстречу воздухом и стекает в резервуар. Отсюда она опять подается насосом в конд«йатор. Охлаждение воды происходит за счет частичного ее испарения и теплообмена с воздухом. Испарившаяся часть воды компенсируется свежей из водопровода. В холодильных установках, работающих по схеме, показанной на 49, б, предусматривается работа конденсатора как на рециркуляционной воде, так и на свежей водопроводной воде.

При рассмотрении цикла холодильной машины с процессом переохлаждения жидкого холодильного агента отмечалось, что одним из способов практического осуществления этого процесса является применение специальных аппаратов: в аммиачных машинах— переохладителей, а во фреоновых — теплообменников.

Принцип работы градирня

Установка переохладителя в аммиачных машинах не всегда является обязательной. В виде отдельного аппарата его целесообразно применять только на больших холодильных установках и особенно на тех из них, которые снабжены оросительными конденсаторами. Теплообменник же для фреоновых машин всегда необходим. Он нужен не только для переохлаждения жидкого холодильного агента, но и для перегрева парообразного фреона, поступающего из испарителя в компрессор.

Конструктивно переохладители в большинстве случаев выполняют в виде двухтрубного (труба в трубе) про-тивоточного аппарата, по внутренней трубе которого протекает охлаждающая вода, а в межтрубном пространстве противотоком течет жидкий аммиак. Внутренние трубы ставят обычно диаметром 38X3,5 мм, а наружные диаметром 57X3,5 мм. Отдельные пары труб соединяют в секции. В одном переохладителе может быть несколько параллельных секций. В пределах секции вода и аммиак проходят последовательно из одной пары труб в другую, каждый в своем направлении. Вода входит в секцию снизу, а аммиак сверху.

www.vseholodilniki.ru

Градирни, типы и принцип действия

ВВЕДЕНИЕ

 

Во многих промышленных процессах приходится отводить большие количества тепла. Для этой цели в качестве теплоносителя обычно применяют воду, циркулирующую в системе. К этой воде обычно добавляются различные химические соединения, в том числе и различные хроматы, являющиеся ингибиторами коррозии. Охлаждающая вода, содержащая добавки, проходит через теплообменник, нагревается, а затем поступает в градирню, где охлаждается и снова подается в теплообменник.

Поскольку в градирне происходит испарение, концентрация различных добавок и других твердых веществ, растворенных в охлаждающей воде, повышается. Чтобы поддерживать концентрацию растворенных веществ на допустимом уровне некоторая часть охлаждающей воды постоянно отводится из градирни и сбрасывается в сток.

Эти сточные воды обычно называют сбросовым потоком.

 

 

Глава 1. ГРАДИРНИ, ТИПЫ И ПРИНЦИП ДЕЙСТВИЯ

 

Любая конденсационная паротурбинная электростанция включает в себя четыре обязательных элемента:

 энергетический котел, или просто котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540 °С и давлением 13—24 МПа по одному или нескольким трубопроводам подается в паровую турбину;

 турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя;

 конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;

 питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной.

Таким образом, в ПТУ над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию.

Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности.

 

 

Основными элементами рассматриваемой электростанции являются котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии.

Основным элементом котельной установки является котел. Газ для работы котла подается от газораспределительной станции, подключенной к магистральному газопроводу (на рисунке не показан), к газораспределительному пункту (ГРП) 1. Здесь его давление снижается до нескольких атмосфер и он подается к горелкам 2, расположенным в поде котла (такие горелки называются подовыми).

Собственно котел представляет собой (вариант) П-образную конструкцию с газоходами прямоугольного сечения. Левая ее часть называется топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в данном случае газа. Для этого к горелкам специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25. На рис. 2.2 показан так называемый вращающийся воздухоподогреватель, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота она нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки котла подается в его топку — камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.

Стены топки облицованы экранами 19 — трубами, к которым подается питательная вода из экономайзера 24. На схеме изображен так называемый прямоточный котел, в экранах которого питательная вода, проходя трубную систему котла только 1 раз, нагревается и испаряется, превращаясь в сухой насыщенный пар. Широкое распространение получили барабанные котлы, в экранах которых осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.

Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.

Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровой турбине.

Мощная паровая турбина обычно состоит из нескольких как бы отдельных турбин — цилиндров.

К первому цилиндру — цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД — 23,5 МПа, 540 °С, т.е. 240 ат/540 °С). На выходе из ЦВД давление пара составляет 3—3,5 МПа (30—35 ат), а температура — 300— 340 °С. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в так называемый промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540 °С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0,2—0,3 МПа (2—3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.

Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему.

И котел, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем лишь ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в энергоблоке 1200 МВт за 1 с испаряется, проходит через турбину и конденсируется более 1 т воды). Поэтому нормальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты.

Пар, покидающий ЦНД турбины, поступает в конденсатор 12 — теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из реки, водохранилища или специального охладительного устройства (градирни). На рис. 2.2 показана так называемая система оборотного водоснабжения с градирней. Градирня — это железобетонная пустотелая вытяжная башня (рис. 2.3 и 2.4) высотой до 150 м и выходным диаметром 40—70 м, которая создает самотягу для воздуха, поступающего снизу через воздухо-направляющие щиты.

 

 

 

 

Внутри градирни на высоте 10—20 м устанавливают оросительное (разбрызгивающее устройство). Воздух, движущийся вверх, заставляет часть капель (примерно 1,5—2 %) испаряться, за счет чего охлаждается вода, поступающая из конденсатора и нагретая в нем. Охлажденная вода собирается внизу в бассейне, перетекает в аванкамеру 10 (см. рис. 2.2), и оттуда циркуляционным насосом 9 она подается в конденсатор 12. Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор из реки и сбрасывается в нее ниже по течению. Пар, поступающий из турбины в межтрубное пространство конденсатора, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через группу регенеративных подогревателей низкого давления (ПНД) 3 в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация — удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла.

Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД).

Регенеративный подогрев конденсата в ПНД и ПВД — это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей!), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240—280 °С. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата.

Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140—160 °С и направляются с помощью дымососа 27 к дымовой трубе 26. Дымовая труба создает разрежение в топке и газоходах котла; кроме того, она рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях.

Если на ТЭС используется твердое топливо, то она снабжается топливоподачей и пылеприготовительной установкой. Прибывающий на ТЭС в специальных вагонах уголь разгружается, дробится до размера кусков 20—25 мм и ленточным транспортером подается в бункер, вмещающий запас угля на несколько часов работы. Из бункера уголь поступает в специальные мельницы, в которых он размалывается до пылевидного состояния. В мельницу непрерывно специальным дутьевым вентилятором подается воздух, нагретый в воздухоподогревателе. Горячий воздух смешивается с угольной пылью и через горелки котла подается в его топку в зону горения.

Пылеугольная ТЭС снабжается специальными электрофильтрами, в которых происходит улавливание сухой летучей зоны. Зола, образующаяся при горении топлива и не унесенная потоком газов, удаляется из донной части топки и транспортируется на золоотвалы.

Схематическое изображение оборудования и связей между ним, представленное на рис. 2.2, достаточно наглядно. Но представление всех связей даже для схемы, показанной на рис. 2.2, вызывает немалые трудности. Поэтому, для изображения оборудования электростанции во всей его взаимосвязи по пару, конденсату, питательной воде используют тепловые схемы — графическое изображение отдельных элементов и трубопроводов с помощью условных обозначений. Привыкнув к условным обозначениям, легко прочитать даже самую сложную тепловую схему. Пример тепловой схемы рассмотренной ТЭС приведен на рис. 2.5. При этом для более легкой идентификации мы сохранили одинаковые номера для одинакового оборудования.

 

 

 

Глава 2. ИЗВЛЕЧЕНИЕ ХРОМА ИЗ ВОДЫ, ИСПОЛЬЗУЕМОЙ В ГРАДИРНЯХ

 

Во многих промышленных процессах приходится отводить большие количества тепла. Для этой цели в качестве теплоносителя обычно применяют воду, циркулирующую в системе. К этой воде обычно добавляются различные химические соединения, в том числе и различные хроматы, являющиеся ингибиторами коррозии. Охлаждающая вода, содержащая добавки, проходит через теплообменник, нагревается, а затем поступает в градирню, где охлаждается и снова подается в теплообменник.

Поскольку в градирне происходит испарение, концентрация различных добавок и других твердых веществ, растворенных в охлаждающей воде, повышается. Чтобы поддерживать концентрацию растворенных веществ на допустимом уровне некоторая часть охлаждающей воды постоянно отводится из градирни и сбрасывается в сток.

Эти сточные воды обычно называют сбросовым потоком. Естественно, что в систему необходимо добавлять свежую воду, чтобы компенсировать уменьшение объема охлаждающего агента за счет испарения и сброса. К свежей воде также необходимо добавлять хроматы и другие химические агенты, так как часть их была удалена из системы вместе со сбросовой водой.

Необходимость дополнительного введения относительно дорогостоящих ингибиторов коррозии приводит к повышению стоимости процесса охлаждения. Кроме того, наличие относительно высоких концентраций этих веществ в сбросовых водах вызывает трудности при их удалении. Это связано с тем, что шестивалентный хром токсичен и его сброс в канализации и водоемы строго регламентируется законодательством по охране окружающей среды.

Процесс предусматривает предварительную обработку охлаждающей воды, содержащей шестивалентный хром, в результате которой последний в основном превращается в бихроматы. После этого раствор подвергают обратимому осмосу через пористую мембрану, позволяющую проходить ионам бихромата. В результате этого процесса происходит значительное уменьшение жесткости воды и снижения концентрации растворенных твердых веществ. Умягченная охлаждающая вода, содержащая ионы бихромата, может быть направлена для повторного использования в процессе. Вода, сбрасываемая в сток, содержит значительно меньшие количества вредных соединений хрома.

Процесс 2 представляет собой метод диализа для селективного удаления хроматов из сбросовых вод градирен, содержащих также соединения кальция и магния. Предпочтительный перенос хроматов через стенки пористых мембран достигается путем воздействия на обратимую реакцию диссоциации хромовой кислоты за счет подбора соответствующих значений рН. Желательно, чтобы сбросовые воды контактировали с внешней поверхностью мембраны, при одновременной циркуляции свежей воды, не содержащей хроматов, через отверстия мембраны. Циркулирующая вода собирает частицы, проникающие через мембрану, которые могут быть повторно 1 использованы для ингибирования коррозии.

 

Воздействие выбрасываемых из градирен аэрозолей на окружающую среду

 

Работающая градирня выбрасывает в атмосферу нагретый до 35-45°С насыщенный водяными парами воздух, содержащий капли воды размером 100–500 мкм в количестве 0,5–1 г на 1 м3 воздуха. С парами в атмосферу поступает примерно 95% тепла, отводимого от охлаждаемого оборудования, а оставшаяся часть тепла отводится в водоисточники с продувочной водой. Интенсивность теплового потока на выходе из градирни в зависимости от тепловой нагрузки может достигать 250–300 кВт/м2. Он создает факел тумана (паровой факел), поднимающийся на высоту до 150–300 м и распространяющийся в направлении ветра на 2–10 км. Наличие парового факела является неотъемлемым признаком мокрых градирен, работающих по принципу испарительного охлаждения воды.

При работе на промплощадке большого количества мокрых градирен и определенном сочетании погодных условий группа факелов может формировать в районе предприятия местный микроклимат с повышенной влажностью атмосферного воздуха. Кроме того, при наличии в атмосферном воздухе газообразных примесей выходящая из градирни влага может с ними взаимодействовать и образовывать вредные для окружающей среды соединения.

Капли воды распространяются в атмосфере в районе градирен и увлажняют поверхность земли и близрасположенные сооружения, а в зимний период вызывают их обледенение.

Градирни размещают по отношению к жилым застройкам с учетом розы ветров. При этом следует предусматривать санитарно-защитные зоны. Зона выпадения капельной влаги на поверхности земли — имеет форму элипса с большой осью, проходящей через центр градирни в направлении ветра. Наибольшая интенсивность выпадения капель на поверхность земли в этой зоне находится на большой оси элипса на расстоянии примерно двух высот градирни. Размер зоны зависит от высоты градирни, скорости ветра, степени турбулентности воздуха в приземном слое, концентрации и крупности капель, а также от температуры и влажности атмосферного воздуха.

При оценке вредности выноса хрома из градирен необходимо принимать во внимание концентрацию шестивалентного хрома в воздухе, создаваемого за счет других источников (фоновые концентрации).

 

Глава 4. ОЧИСТКА СТОЧНЫХ ВОД ОТ ИОНОВ ХРОМА

 

В зависимости от степени загрязнения и предъявляемых санитарных требований сточные воды могут быть спущены в водоем либо сразу, либо после очистки (механической, химической, биологической). Бытовые сточные воды образуются в результате приготовления пищи, мытья посуды, уборки помещений, функционирования санитарных узлов, прачечных и бань. Такая вода представляет неустойчивую полидисперсную систему, в которой содержатся растворенные частицы – от грубых до высокодисперсных (молекулы и ионы). Относительно постоянный состав имеют загрязнения растительного и животного происхождения. Все это – органические вещества.

К неорганическим загрязнениям относят песок, глину, частицы руды, шлак, мел, минеральные соли, масла. Бытовые сточные воды содержат микроорганизмы. Это могут быть бактерии, дрожжевые и плесневые грибки, мелкие водоросли, яйца гельминтов, вирусы. Атмосферные сточные воды образуются в результате выпадения атмосферных осадков. К ним кроме дождевых относятся воды, образующиеся при таянии снега, полива улиц. Загрязнены эти воды органическими и минеральными веществами, содержащимися в атмосфере и на грунте.

Промышленные сточные воды образуются в результате деятельности производственных предприятий. Каждое производство имеет индивидуальные загрязнители.

Например, сточные воды гальванических цехов содержат цианиды, ионы меди и хрома. Концентрация загрязнителей редко бывает ниже 10 мг/л. Иногда, если перед промывкой изделия не дают стекать электролиту, концентрация возрастает до 1000 мг/л (смертельная доза цианидов щелочных металлов – 1 мг на 1 кг массы организма). Сточные воды кожевенных заводов опасны тем, что могут содержать споры возбудителей сибирской язвы. Споры сибирской язвы отличаются исключительной приспособляемостью и сопротивлением по отношению к химическим и физическим воздействиям. Они переносят нагревание при 100 °С в течение длительного времени. Обычные дезинфицирующие вещества – хлор и его производные, формальдегид, сулема, кислоты – убивают споры только после очень длительного воздействия и в высокой концентрации обеззараживающего агента. По степени загрязненности сточные воды кожевенного завода, образующиеся при выработке 1 т шкур, эквивалентны бытовым водам населенного пункта с 5000 жителей.

Эти два примера показывают, что сточные воды промышленных предприятий многообразны по химическому составу и способы их очистки различны.

 

Рис. 1. Очистные сооружения

Рис. 1. Очистные сооружения

 

Пояснения к схеме

Осаждение фосфатов. Присутствие в сточных водах соединений фосфора способствует росту бактерий, что приводит к помутнению воды. Обычно сточные воды содержат 1,5–3,7 г фосфора в пересчете на одного человека в сутки. При обычной обработке эти примеси не удаляются. Одним из методов удаления фосфатов является их коагуляция соединениями алюминия и кальция. При этом протекают следующие реакции:

 

Аl(ОН)3 + + 3Н+ + 4NаОН = NаАlО2 + Nа3РО4 + 5Н2О,

2Na3PO4 + 3СаСl2 = Са3(РО4)2 + 6NaCl.

 

Выпадающий фосфат кальция удаляют фильтрованием. Удаление азота. В сточных водах содержится много связанного азота. Как и фосфаты, соединения азота ускоряют рост водорослей. Аммиак удаляется из сточных вод аэрацией (удается извлечь до 92% аммиака). Для очистки от нитратов применяют коагуляцию соединениями железа и известью с последующей фильтрацией осадков либо адсорбцию ионообменными смолами. Бактериальные фильтры и водоросли для очистки от органических веществ. В фильтрах используют следующие бактерии: Proteus № 9, Saccharomyces Torulopsis (Candida Utilis), Trichosporan, Pseudomonas № 14, Rhodoturola. Обычно применяют смесь бактериальных фильтров, нанесенных на керамзит. При очистке воды эффективны также водоросли, поглощающие из воды органические вещества: Ankystrodesmus, Pharmidium, Pediastrum. Принцип очистки водорослями состоит в использовании питательных веществ, находящихся в сточных водах. Водоросли собирают с поверхности водоема и удаляют. Очищенная таким образом вода соответствует по своему качеству стандартам на питьевую воду.

 

Растворенное в воде вещество

Kонцентрация, мг/л

до очистки

после очистки (проба через 4 часа)

KMnO4

10

0,4

Свободный аммиак

10

0,2

Фосфаты

5

0

Нитраты

10

1

 

 

Стерилизация. В сточных водах, прошедших очистку, могут содержаться дизентерийные бактерии, палочки Коха (возбудители туберкулеза, холеры), бациллы тифа и лихорадки, вирусы гепатита, полиомиелита, аденовирусы (глазные инфекции). Известно, что бактерии очень чувствительны к стерилизации, а вирусы очень стойки к действию окислителей. Способы стерилизации: а) хлорирование; б) озонирование; в) ультрафиолетовое облучение;

г) электролиз (анод из Аg).

Лучший способ уничтожения вирусов – дать воде отстояться перед очисткой, при этом вирусы погибают, т. к. являются пищей для микроорганизмов. В очищенной от микробов воде вирусы могут жить долгое время. Новые биологические методы очистки надо применять с учетом печального опыта других стран, например Японии. С загрязнением воды связана болезнь Минамата. В 1950-х гг. предприятие по переработке руды сбрасывало отходы, содержащие ртуть, в воды залива Минамата. В результате поглощения бактериями соединения ртути (СН3)2Hg (диметилртуть) получилась пищевая цепь: диметилртуть бактерии рыбы с содержанием ртути до 50 мг/г человек. Люди, питаясь рыбой, получали сильнейшие отравления. С 1955 по 1959 г. каждый третий ребенок рождался с психическими и физическими аномалиями. Рыбный промысел в заливе до сих пор запрещен. Полагают, что на дне залива находится около 600 т ртути. Это пример загрязнения и кумуляции ртути по цепи питания.

Методы очистки промышленных сточных вод

Промышленные сточные воды очищать гораздо сложнее, т. к. они содержат большее количество примесей, подавляющих рост бактерий. А ведь именно бактерии осуществляют процесс биологического распада в естественных условиях.Методы, применяемые для очистки промышленных сточных вод те же, что и при очистке от бытовых загрязнителей: коагуляция, фильтрация, осаждение, биохимические методы. Однако при удалении отдельных веществ возникают особые трудности. К числу таких веществ относятся металлы, их соли, долгоживущие радиоактивные изотопы (рис. 2).

 

Рис. 2. Накопление тяжелых металлов по цепям питания в пресноводном биоценозе: 1 – скопа; 2, 10 – щука; 3 – гнездо скопы; 4, 5 – ондатра; 6, 11 – окунь; 7, 13, 16 – бактерии и фитопланктон; 8, 12 – плотва; 9 – речной рак; 14 – мотыль; 15 – зоопланктон

Рис. 2. Накопление тяжелых металлов по цепям питания в пресноводном биоценозе: 1 – скопа; 2, 10 – щука; 3 – гнездо скопы; 4, 5 – ондатра; 6, 11 – окунь; 7, 13, 16 – бактерии и фитопланктон; 8, 12 – плотва; 9 – речной рак; 14 – мотыль; 15 – зоопланктон

 

Очистка воды от ионов металлов

Ионы металлов Cr, Hg, Pb, Be весьма токсичны, поэтому необходимо удалять даже их следовые количества.

Осаждение. Основной принцип состоит в подборе реагентов, способных образовать нерастворяемые соли металлов. Для характеристики растворимости солей используют постоянную величину, называемую произведением растворимости (ПР). Произведение концентраций ионов малорастворимой соли в насыщенном при данной температуре растворе есть величина постоянная. Например, для соли A+B– ПР = [A+]•[B–], где концентрации ионов [A+] и [B–] измеряются в моль/л. Значения ПР при 10 °С для некоторых солей таковы:

 

HgS

2•10–49

Hg2Cl2

2•10–18

Pb(COO)2

2,7•10–8

PbS

3,4•10–28

CdS

3,6•10–29

CuS

2•10–47

ZnS

1,2•10–23

 

Для более полного осаждения катиона A+ добавляют избыток аниона B–. Ионный обмен – с помощью катионитов можно удалить большинство металлов (Cd, Сu, Zn, Нg, Сr, Pb). Если концентрация металла мала, ионный обмен объединяют с методом осаждения.

Большинство органических веществ в растворах окисляют сильными окислителями до СО2 и Н2О, оксидов серы и азота. Сложные вещества, имеющие активные группы, удаляют адсорбцией активированным углем и кремнеземом. Для удаления масел и красок используют электрический ток. При пропускании тока образуется водород, который увлекает эти вещества на поверхность, где их легко собрать.

Короткоживущие изотопы – вещества, их содержащие, концентрируют, оставляют на хранение под водой или в шахтах, чтобы активность упала до нуля. Среднеживущие изотопы. Например, 90Sr имеет период полураспада 23 года. Раствор, содержащий 90Sr, концентрируют, а затем помещают в цилиндрические бочки, изготовленные из прочной нержавеющей стали. Бочки сбрасывают в океан на глубину 10 км. Подсчитано, что при медленном разрушении бочек только через 1000 лет содержимое бочки появится на поверхности океана. К тому времени изотопы распадутся и станут неопасными. Долгоживущие радиоактивные отходы – на практике сбрасывают в открытый океан (метод бесконечного разбавления).

znakka4estva.ru

что это такое? Виды, характеристики, устройство и принцип действия :: ashanet.ru

Эксплуатация промышленных энергетических станций сопряжена с множеством технологических процессов, часть из которых выполняют тепловые и охлаждающие сооружения. Они предназначены для регуляции температур рабочих сред и коммуникационной инфраструктуры в системах ТЭЦ и АЭС. Наиболее заметным и производительным объектом такого типа является градирня. Что это такое? В общем понимании это башенное сооружение, внутри которого происходят микроклиматические процессы обработки различных сред посредством направления атмосферного воздуха. На практике встречаются разные виды данной конструкции, отличающиеся и техническим устройством, и функциональностью.

Конструкция башенной градирни

Башенная конструкция градирни

Наиболее распространенная формация градирни, которая чаще выполняется на железобетонной основе в виде конуса. Внутри размещаются обязательные функциональные блоки – система водоснабжения, ороситель, емкость и сопутствующая запорно-регулирующая арматура. Классическая башенная градирня, фото которой представлено выше, может обслуживать не только воду как рабочий ресурс энергоблока, но и технические жидкости с топливными элементами. Активной средой воздействия является наружный воздух, для поступления которого предусматриваются отверстия в нижней части (подошве) сооружения. Через вентиляционные каналы воздушная масса поднимается вверх и благодаря естественной тяге охлаждает целевые жидкости в резервуарах.

Плюсы и минусы башенной градирни

Среди преимуществ башенных конструкций можно отметить отсутствие потребителей электроэнергии. То есть функциональные системы и агрегат не нуждаются в специальной подводке источников питания и действуют автономно. На это же сделан акцент и в реализации воздухозаборного устройства градирни, принцип действия которого основывается на естественном замещении теплого воздуха холодным. Впрочем, реализация вентиляционных и охлаждающих систем может быть разной. Если говорить о недостатках башенной градирни, то на первый план выйдет дороговизна строительства и низкий потенциал охлаждающего эффекта. Причем в зимнее время требуются специальные обслуживающие мероприятия по защите коммуникаций от переохлаждения.

Конструкция эжекторной градирни

Промышленный комплекс градирни

Главным отличием этой разновидности градирни является применение стали в корпусе. Причем не частично, а в качестве основного материала. Внутри конструкции устанавливается высоконапорный трубопровод с эжекторами – распределительными патрубками. В процессе работы функционального блока происходит распыление воды через сопла эжекторов с последующим поднесением воздушных потоков в зону разрежения. Контакт с холодными потоками охлаждает мелкодисперсинонные капли жидкости, что обуславливает высокую эффективность данной системы с точки зрения выполнения целевой задачи. Но, производительность металлической градирни с эжекторами обеспечивается не сама собой путем естественных физических процессов как в случае с башенными конструкциями, а за счет работы насосов. Благодаря насосным станциям в распыляющих механизмах поддерживается достаточное давление, что в итоге упрощает процесс охлаждения.

Принцип работы градирни

Как видно, задачи охлаждения целевых жидкостных сред выполняются благодаря продуву потоками холодного воздуха. В то же время могут выполняться и дополнительные, а также промежуточные функции наподобие испарения. Каждый раз по мере выделения конденсата через контуры подачи воды происходит ее восполнение в рабочей зоне. Или наполняются емкости эжекторов, или происходит подача жидкости на стенки поверхности оросителя. Важно подчеркнуть и наличие фильтрационных барьеров, которые отделяют водопроводный канал от резервуара градирни. Принцип действия очистительных мембран определяется назначением обслуживаемой жидкости – как минимум, реализуется грубая крупнофракционная задержка механических примесей, но в современных системах может присутствовать и комплексная тонкая обработка воды с элементами биохимической фильтрации.

Ороситель градирни

Что же происходит с жидкостью после охлаждения? Это тоже зависит от характера общего технологического процесса, в котором косвенно участвует градирня. Как правило, горячая вода является использованным продуктом производства, поэтому ее сбрасывают в подключенные очистительные или сточные каналы. Также применяется схема и постоянной циркуляции жидкости, при которой охлажденная среда возвращается на первичный технологический участок для температурной регуляции оборудования ТЭЦ и АЭС.

Характеристики градирни

К основным эксплуатационным параметрам можно отнести производительность и температурные режимы, с которыми в принципе может работать конкретная станция. Что касается первого значения, то крупные градирни могут охлаждать ресурс на скорости порядка 200 м3/ч. Высота таких сооружений составляет 150-170 м при диаметре основы около 150 м. Температурные величины, как уже отмечалось, напрямую зависят от принципа работы станции. Например, конструкции с естественной циркуляцией воздуха работают с теплой жидкостью на 30-40 °C. В таком состоянии она поступает в резервуар, а после охлаждения ее температура понижается до 15-20 °C. Не делает воду ледяной и эжекторный комплекс. Его преимущество скорее заключается в возможностях работы с входящими температурами свыше 60 °C. Степень понижения может достигать 20 °C. На работоспособность эжекторов влияет и величина плотности орошения градирни. Что это за показатель? Он определяет удельную величину жидкостного расхода на 1 м2 орошаемой площади. Оптимальные значения приходятся на диапазон от 6 до 12 м3/ч.

Вентиляторно-испарительный блок градирни

Особенности «сухих» конструкций

В таких системах предусматриваются теплообменные конструкции с радиаторами, которые выводят потоки уже нагретого воздуха. Их отвод за пределы рабочей площадки по специальным каналам обеспечивают вентиляторные установки. При компоновке подобных конструкций инженеры стараются минимизировать или вовсе исключить прямой контакт процессов охлаждения (обдува) с тепловой передачей и циркуляцией горячих потоков. К плюсам «сухой» градирни относят высокое качество охлажденной воды (отсутствие загрязнений, сохранение объема и т. д.), возможность работы с высокими температурами и долговечность конструкционных поверхностей. Минимальная степень увлажнения воздушной среды снижает риски коррозийного поражения металлических элементов сооружения, поэтому продлевается и эксплуатационный ресурс оборудования.

Особенности «мокрой» градирни

Также подобные станции называют испарительными, так как принцип их работы основывается на передаче тепловой энергии от жидкости воздуху в результате непосредственного контакта сред. Как же функционирует «мокрая» градирня и что это такое с точки зрения технического устройства? Внутренняя компоновка функциональных блоков так же предусматривает наличие вентиляторных установок (отдельно стоящих или секционных), которые выводят оставшийся воздух, но главную функцию испарения выполняет конденсационный змеевик. Это контур, в котором циркулирует жидкость под воздействием высоких температур. Завершается движение воды ее распылением через мелкоформатные форсунки под интенсивным обдувом вентиляторами.

Конденсаторная установка градирни

Система орошения градирни

Один из ключевых компонентов градирни, от которого зависит охлаждающая способность сооружения. Собственно, задача оросителя заключается в обеспечении максимальной площади мелкодисперсионного (капельного) распределения воды для контакта с потоками воздуха. Этот элемент инфраструктуры может иметь разное конструкционное исполнение – например, встречаются брызгальные, пленочные, капельные и другие типы устройств. В качестве материала для изготовления чаще применяют легкие пластиковые сплавы на основе полипропилена и полиэтилена. В частности, пленочный ороситель градирни выполняется из высокотехнологичных полимеров, обеспечивающих эффективное охлаждение при минимальных ресурсах. Но, эти же устройства имеют ряд недостатков, среди которых забивание разделительных секций мелкими взвесями и примесями. Опять же, стоит подчеркнуть значимость предварительной фильтрации воды не только для качества жидкости как таковой.

Система водораспределения

Если ороситель отвечает непосредственно за распыление, то водораспределители выполняют равномерную регуляцию потоков по соплам и патрубкам. На сегодняшний день чаще используются напорные водораспределительные агрегаты, базирующиеся на системе трубопроводов и подсоединенных к ним форсунок. Для изготовления такого коллектора применяются металлические и композитные материалы, а также пластмассовые сопла. На этапе распределения воды работа градирни может обеспечиваться автономными факелами с радиусом действия порядка 150-200 см. Интенсивность подачи воды к оросителю будет зависеть от принципа действия сопла – это может быть центробежная, ударная или струйная установка.

Спринклерные распылители для градирни

Вентиляционная система

Параметры вентилятора будут определяться площадью орошения. Стандартная система предусматривает использование вытяжных и нагнетательных установок с разными мощностными потенциалами. Например, если рабочая площадь составляет не более 15 м2, то тяга нагнетательного вентилятора может полностью обслуживать функции воздуховода. Конструкция таких агрегатов обычно формируется двумя элементами – диффузором и рабочим колесом. Для изготовления корпуса применяются композитные материалы, позволяющие интегрировать ребра жесткости под корпус. Диффузор может выполнять задачи регуляции давления, которое возникает при интенсивном охлаждении градирен на выходе по направлению воздушного потока. В свою очередь, рабочее колесо формируется комбинацией лопастей и ступицы, а в процессе работы создает постоянный охлаждающий поток. Диаметр такого колеса имеет от 2,5 м до 20 м в зависимости от масштабов сооружения.

Заключение

Охладительные градирни

За исключение отдельных технико-конструкционных решений внутри станции конструкция градирни как промышленного объекта может показаться принципиально устаревшей. Но есть ли альтернатива таким сооружениям? Задачи охлаждения различных технических жидкостей в больших объемах также решаются с помощью брызгальных бассейнов и прудов-охладителей. Но и в этих случаях наблюдаются те же проблемы в виде низкой производительности, которые дополняются и спецификой использования естественных рабочих сред. В том же пруду регулярно цветет вода, что требует выполнения специальных мер по биологическому обслуживанию объекта.

И на этом фоне не так уж плоха градирня. Что это с точки зрения самих эксплуатирующих предприятий? Как минимум оптимальное по финансовым и трудовым затратам технологическое средство для поддержки вспомогательных процессов охлаждения рабочего оборудования. Причем в некоторых случаях такая переработка технической жидкости является единственно оправданным способом, так как производительность в плане температурной регуляции вполне укладывается в нормативы отвода производственных стоков.

ashanet.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта