Eng Ru
Отправить письмо

Схемы и характеристики генераторов постоянного тока с самовозбуждением. Условия самовозбуждения. Генератор постоянного тока с самовозбуждением


Внешняя характеристика генератора постоянного тока с самовозбуждением

Генераторы постоянного тока имеют параллельное возбуждение. Обмотки полюсов включены на якорную обмотку через сопротивление угольного столба. Генератор работает на самовозбуждении за счет остаточной намагниченности железа полюсов.

Внешняя характеристика (рис.3.4.а.) представляет собой зависимость напряжения на зажимах генератора Ù от тока нагрузки Iн при постоянной скорости вращения n и постоянном сопротивлении цепи возбуждения Rв, т. е.

U = f (Iя) при n = const и Rв = const.

Верхняя кривая для максимальных объектов - нижняя для минимальных. Из рассмотрения кривых видно, что с увеличением тока нагрузки (уменьшением сопротивления во внешней цепи) напряжение генератора уменьшается и внешняя характеристика генератора, работающего на самовозбуждении, имеет характерный изгиб влево. Снижение напряжения при нагрузке обусловлено тремя причинами: омическим падением напряжения в якоре, реакцией якоря и уменьшением тока возбуждения, вызванным понижением напряжения на зажимах генератора.

Рис. 3.4. Внешняя характеристика ГПТ:

а) без регулятора напряжения;

б) с регулятором напряжения.

При токе нагрузки, меньше номинального, напряжение уменьшается медленно. В этом случае уменьшение напряжения происходит в основном вследствие увеличения омического падения напряжения в якоре. Реакция якоря при такой нагрузке почти полностью компенсируется дополнительными полюсами, а уменьшение тока возбуждения незначительно и почти не оказывает влияния на уменьшение напряжения.

При токах нагрузки, больших номинального, сильное влияние начинает оказывать реакция якоря, так как дополнительные полюса не могут компенсировать ее размагничивающего действия.

Влияние этих двух причин приводит к быстрому уменьшению напряжения, а, следовательно, и к значительному уменьшению тока возбуждения генератора, что в свою очередь усиливает снижение ЭДС и напряжения генератора.

Такой быстрый спад напряжения приводит к тому, что напряжение уменьшается в большей степени, чем сопротивление внешней цепи R. Поэтому ток нагрузки, равный Iя = U/R достигнув своего максимального значения, начинает уменьшаться.

Максимальный ток, который может быть получен от генератора при данной скорости вращения и при данном сопротивлении цепи возбуждения, называется критическим током (Iкр). При дальнейшем уменьшении сопротивления нагрузки до нуля ток нагрузки уменьшается до величины тока короткого замыкания Iкз, которая определяется величиной остаточной ЭДС. По величине токи короткого замыкания (КЗ) близки к номинальному току генератора.

Авиационные генераторы работают в комплекте с регуляторами напряжения, которые, начиная с холостого хода и до определенной нагрузки, поддерживают напряжение генераторов практически постоянным, равным номинальному значению (рис. 3.4.б). Напряжение на зажимах генератора начинает изменяться только после прекращения действия регулятора. Характер изменения напряжения в этом случае будет таким же, как и без регуляторов напряжения.

Авиационные генераторы постоянного тока типа СТГ.

Генератор может использоваться как электрический стартер при запуске маршевого авиадвигателя. В процессе запуска он работает как электродвигатель, после запуска - переводится в режим генератора.

Для использования стартер - генератора в стартерном и генераторном режимах он соединяется с газотурбинным авиадвигателем с помощью автоматически переключающегося редуктора, который при запуске передает вращающий момент от стартер - генератора на авиадвигатель, а после запуска - от авиадвигателя к стартер - генератору. Этот редуктор может быть встроенным в авиадвигатель, либо в стартер-генератор (например, в СТГ-18ТМО-1000).

Стартер - генераторы типа СТГ для обеспечения работы в двух режимах имеет в своей конструкции специальный привод, в который входит редуктор и две муфты. Кинематическая схема генератора СТГ показана на рис. 3.5.

Рис. 3.5 Кинематическая схема генератора типа СТГ.

Муфта - это механизм временного соединения валов. М1 -это обгонная муфта, М2 - муфта сцепления - расцепления. Одновременно они не могут приходить в зацепление. В зацепление они приходят - автоматически, в зависимости от направления приложения крутящего момента. В генераторном режиме момент приложен со стороны АД, при этом в зацеплении находится муфта М1. В стартерном режиме момент приложен со стороны якоря генератора, при этом в зацеплении находится муфта М2, а вращение передается через понижающий редуктор.

Схема обгонной муфты приведена на рис. 3.6, схема муфты сцепления - расцепления - на рис. 3.7.

Рис.3.6. Обгонная муфта.

Обгонная муфта выполнена на хвостовой части гибкого вала, который имеет углубления. В углублениях находятся ролики (2). При крутящем моменте на гибком валу против часовой стрелки ролики заклиниваются между гибким (1) и полым (2) валом. При крутящем моменте на полом валу (в стартерном режиме) против часовой стрелки, ролики утопают в углубления и выходят из зацепления.

Рис. 3.7. Муфта сцепления - расцепления

Муфта сцепления - расцепления имеет неподвижное храповое колесо (2) и храповик (1) с пружиной на валу. При крутящем моменте на валу против часовой стрелки (в стартерном режиме) храповик приходит в зацепление. При вращении вала по часовой стрелке (генераторный режим) зацепления нет, при этом храповик объезжает зубья храпового колеса. На небольших оборотах вращения слышны щелчки храповика, например, при вращении винта по ходу вращения от руки. На больших оборотах вращения, когда работает АД, противовес храповика под действием центробежных сил сживает пружину, а храповик прижимается к валу и не объезжает зубья.

На некоторых приводах используют ППМ. Конструкция ППМ показана на рис. 3.8.

Рис. 3.8 Предельная предохранительная муфта.

Она состоит из трех частей: левой половинки (1), которая вставляется в шестерню редуктора АД, правой половинки (3), которая надевается на гибкий вал генератора, стержня с проточкой посередине(2). Вал с половинками соединен штифтами (4). Половинки между собой соединяются скошенными с одной стороны зубьями. В стартерном режиме момент от правой половинки к левой передается через зубья, при этом стержень не работает. В генераторном режиме момент от левой половинки к правой передается через стержень. Если якорь заклинит, то стержень ломается по проточке. При повороте половинок зубья приходят в соприкосновение скошенными сторонами, при этом половинки разойдутся, а механическая связь прервется.

Безколлекторные генераторы постоянного тока

Н

Рис. 3.9. Схема бесколлекторного генератора постоянного тока.

аличие скользящего контакта между коллектором и щетками в генераторах постоянного тока снижает надежность работы электрической машины, особенно на больших высотах полета, при низком атмосферном давлении. Для устранения этого недостатка в последнее время на ВС в энергосистемах постоянного тока разработаны безколлекторные генераторы постоянного тока.Безколлекторный генератор (рис. 3.9.) представляет собой трехфазный синхронный генератор с рабочей обмоткой РОГ, расположенной в пазах статора, и вращающейся обмоткой возбуждения ОВГ, расположенной на роторе. Питание обмотки возбуждения генератора осуществляется от возбудителя, рабочая обмотка которого РОВ и выпрямители ВВ расположены на одном валу и вращаются вместе с индуктором генератора. Возбудитель представляет собой шестифазный синхронный генератор, обмотка возбуждения которого ОВВ расположена на статоре и питается от главного генератора через регулятор напряжения. На корпусе генератора устанавливаются выпрямители ВГ, и через них генератор осуществляет питание бортовой сети постоянным током напряжением 28,5 В.

В приведенной схеме взаимодействие элементов генератора между собой осуществляется без скользящих контактов.

Относительный вес бесколлекторных генераторов (вес на единицу мощности) составляет около 2 кГ/кВт.

АППАРАТУРА РЕГУЛИРОВАНИЯ И ЗАЩИТЫ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

studfiles.net

Способы возбуждения машин постоянного тока

 

Возбуждение электрических машин постоянного тока, с использованием постоянных магнитов, создающих магнитный поток, который вращаясь в магнитном поле, способствует наведению ЭДС (электродвижущей силы), классифицирует магнитоэлектрические МПТ на два основных типа: независимого возбуждения и самовозбуждения. Действие происходит в якоре устройства и определяется как возбуждение.

Недостатки применения постоянных магнитов

  1. Небольшая величина индукции.
  2. Отсутствие регулирования параметров магнитного потока.

Магнитоэлектрические генераторы относятся к машинам малой мощности. Для изготовления постоянных магнитов используется высококачественный магнитный сплав, это может быть: альни (АН), альниси (АНК) или магнико, альнико (АНКО). Благодаря использованию этих металлов для изготовления постоянных магнитов, происходит сохранение первоначальных характеристик в течение длительного временного периода. Для магнитоэлектрических генераторов характерен небольшой расход меди, невысокие потери, малый вес и размеры, небольшие потери мощности, отсутствие потерь на возбуждение, высокий КПД. Главный недостаток машин магнитоэлектрического типа – сложность регулирования.

Использование электромагнитного способа возбуждения характеризуется прохождением постоянного тока по возбуждающей обмотке, состоящей из полюсов, соединенных последовательно. Рабочие параметры МПТ характеризуются методом возбуждения относительно к цепи якоря оборудования.

Главная квалификация МПТ различных типов, подразделяемых на двигатели и машины генераторного вида, подразделяется по принципу возбуждения:

  1. Машина, питаемая от стороннего источника будет считаться устройством независимого возбуждения.
  2. МПТ шунтовая, использующая для выполнения возбуждения параллельно соединенные обмотки.
  3. МПТ сериесная — возбуждение происходит за счет использования обмотки соединенной последовательно.
  4. МПТ компаудного или смешанного типа, сочетающая для выполнения возбуждения оба типа соединения машинных обмоток.

Генератор постоянного тока с независимым возбуждением

В случае, если обмотка или, как еще говорят, цепь возбуждения машины запитана от электросети, от аккумулятора или стороннего генератора, то она будет принадлежать к классу машин с возбуждением независимого типа.

На рисунке показано присоединение машины с независимым возбуждением. Присоединение машины с независимым возбуждением

В устройстве генератора, в схеме, в обязательном порядке присутствует, регулирующий Iвозб – реостат и нагрузочное сопротивление (R). К главным параметрам, по которым можно судить о качествах машины, относятся несколько видов характеристик, это: внешняя, регулировочная и параметр характеризующий работу генератора во время холостого хода.

Характеристика х. х. выражена через влияние Iвозб. на ЭДС электрической машины, количество оборотов остается неизменным. Она показывает величину напряжения на клеммах, U должно быть равным величине ЭДС якоря при отключенной цепи и свидетельствует о магнитной насыщенности, явлении гистерезиса на элементах устройства.

Внешняя характеристика определяется зависимостью величины U, замеренного на контактах МПТ от Iнагр, в то время как скорость и Rцепи возбужд., останутся неизменными.

Демонстрация регулировочной характеристикой в результате изменения Iвозб, показывает влияние на него Iраб.

Характеристика нагрузки демонстрирует влияние на U замеренного  на клеммах машины Iвозб, она идентична с  характеристикой х. х. С ее помощью определяется воздействие на магнитное поле якорного тока.

Характеристика генератора от Iк.з прослеживается по замкнутой цепи по данным амперметра, подключенного к якорной цепи, подвержена влиянию Iк.з. и тока находящегося в шунтовой обмотке.

Для оборудования такого типа представляет опасность возникновение короткого замыкания якорной обмотки, вследствие того, что Iк.з. намного больше значения Iном.

Использование генераторного оборудования независимого возбуждения желательно применять в случаях с важностью регулирования величины напряжения в самых широких границах, например, для питания электролитических ванн.

Cамовозбуждение генератора постоянного тока

В том случае, если энергия, нужная для возбуждения машины, берется из якоря самого устройства, то эта МПТ будет машиной с самовозбуждением.

На схемах ниже МПТ с самовозбуждением магнитного потока: а – параллельное, в – последовательное, с – смешанное возбуждение.

Обмотки возбуждения и якоря для любых самовозбуждающихся машин подразделяются на три типа и классифицируются по соединению, это:

  1. Шунтовые – параллельное соединение обмоток.
  2. Сериесные – последовательное соединение.
  3. Компаудные – со смешанным соединением.

Некоторые типы современных двигателей, при разных типах присоединений в сеть обмоток, подразумевают прямое подключение возбуждающей обмотки в электрическую сеть.

Генераторы шунтового типа параллельного возбуждения

Главное условие самовозбуждения заключается в появлении тока на полюсах и ярме генератора при использовании остаточного Φ (магнитного потока).

Вследствие данного явления, якорь совершает вращательное действие и приводит к появлению ЭДС, вызывающей Iвозб, способствует прекращению действия Ф. Возбуждение такого типа требует выполнение условий присутствия согласного действия остаточного Ф и потока приращения – это служит вторым условием самовозбуждения.

Схема подключения шунтового генератора

Падение напряжения характеризуется 3 главными условиями, это:

  1. Повышение Iя повышает IаRа, и снижает U.
  2. Появление реакции якоря приводит к понижению величин ЭДС и U.
  3. Понижение значения U приводит у снижению Iа и ЭДС.

Генератор сериесного типа с обмотками

В сериесных МПТ, характеристика х. х. снимается после поступления на обмотку напряжения от другого источника.

Внешняя характеристика показывает, как происходит повышение якорного тока и Iвозб. с повышением значения U, вследствие влияния на нее увеличения нагрузки. Насыщение электротехнической стали в магнитопроводе препятствует повышению Ф. После появления реакции якоря и явления падения напряжения, происходит уменьшение напряжения. Использование таких машин происходит крайне редко, в экстраординарных случаях.

Подключение сериесной машины

Компаундное возбуждение

В конструкции оборудования присутствует две обмотки: одна со свойствами от параллельного генератора, выполняющая базовую функцию, и обмотка со свойствами последовательного генератора, используемая в виде дополнительной обмотки возбуждения. Обе обмотки сообщают машине свойства обоих типов машин. Кроме того, в конструкции, кроме основного комплекта щеток, имеется вспомогательный щеточный механизм, сдвинутый на угол 90о.

Последовательно соединенные обмотки сериесной машины дает ей возможность увеличить значение Ф сообразно величине I, следующему по этой обмотке.

Характеристика х.х. этой машины похожа на характеристику шунтовой обмотки, Ф соответствует Uном во время холостого тока.

Согласное присоединение обмоток, суммирующее магнитодвижущие силы, если используется встречное (дифференциальное) подключение, способствует созданию эффекта резкого падения напряжения, это действие видно из внешней характеристики.

Присоединение генератора компаундного типа

Присоединение согласным способом подразумевает, что базовая функция отводится обмотке, присоединенной в параллель, компенсирующая роль выполняется обмоткой с качествами, характерными для сериесной машины, это способствует размагничиванию реакции якоря и предотвращает процесс падения U. Таким образом, происходит регулировка U в заданных нагрузочных границах, автоматически.

Встречное присоединение используется при достижении крутопадающей характеристики в моделях генераторов, используемых для сварки.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

podvi.ru

Условия самовозбуждения генераторов постоянного тока

⇐ ПредыдущаяСтр 13 из 15Следующая ⇒

 

Для работы генераторов постоянного тока (исключая генераторы с независимым возбуждением) обязательно должны выполняться условия самовозбуждения. Рассмотрим эти условия для генератора параллельного возбуждения в соответствии со схемой его включения, рис.14.1. Станина и полюсы генератора, находящегося в отключенном состоянии, практически всегда имеют незначительную намагниченность. Эта намагниченность вызывает существование небольшого по величине магнитного потока, который принято называть остаточным магнитным потоком Фост. Он, как правило, составляет (2...3 )% от нормального рабочего потока генератора, что является достаточным для возможности его самовозбуждения [1,6,12]: Подсоединим обмотку возбуждения параллельно обмотке якоря. Будем считать, что дополнительное сопротивлениеRв в цепи обмотки возбуждения выведено (равно нулю). Нагрузку генератора следует отключить выключателем QF, рис.14.1. Далее приведем во вращение якорь генератора с его номинальной частотой вращения приводным двигателем. За счет наличия остаточного магнитного потока на выводах генератора появится небольшая ЭДС (ее принято также называть остаточной ЭДС обозначенной на характеристике холостого хода, кривая 1, рис14.2 как Еост). Она составляет (2...3 )% от номинального напряжения генератора [12]. Эта ЭДС вызовет появление тока якоря Iя, который в общем случае представляем собой сумму тока нагрузки Iн и тока обмотки возбужденияIв , ш есть Iя = Iн + Iв. Поскольку на генератор нагрузка пока не подана, то весь ток якоря будет поступать в обмотку возбуждения.

Появившийся ток в обмотке возбуждения, обусловленный остаточной ЭДС и вращением якоря, имеющий в общем случае незначительную величину ( на рис.2 - это условно ток Iв1), вызовет дополнительный магнитный поток в генераторе. При этом в зависимости от направления тока- Iв1 в обмотке возбуждения, дополнительный магнитный поток может усиливать или ослаблять остаточный магнитный поток. Для самовозбуждения эти потоки должны быть направлены согласно, увеличивая основной магнитный поток главных полюсов.

Суммарный магнитный поток генератора, образовавшийся при протекании в обмотке возбуждения тока Iв1, вызовет при существующих оборотах якоря появление нового (большего) значения ЭДС. По существу можно допустить, что эта ЭДС практически равна напряжению холостого хода U1 на выходе генератора, так как сопротивление обмотки якоря значительно меньше сопротивления цепи обмотки возбуждения, присоединяемой к выводам генератора, рис.14.1.

Напряжение U1 будет прикладываться к обмотке возбуждения (считая, что дополнительное сопротивление, подключаемое к этой об­мотке, равно нулю ), рис.14.1, и вызовет в ней ток Iв2. Причем ток Iв2 будет уже больше тока Iв1, рис.14.2, и определится из соотношения

(4)

где Roв - сопротивление обмотки возбуждения.

В общем случае при дополнительном сопротивлении в цепи обмотки возбуждения Rвне равном нулю, в произведении выражения (4) учитывается и его значение, произведение по выражению (4) представляет собой прямую линию прямая 2, рис.14.2 ), проходящую через начало координат под углом α1 соответствующим величине сопротивления обмотки

Рис.14.1. Схема включения генератора параллельного возбуждения для пояснения условий самовозбуждения.

 

Рис.14.2. К пояснению условий самовозбуждения генератора постоянного тока параллельного возбуждения.

Далее ток Iв2 увеличит результирующий магнитный поток генератора, а также и напряжение на его выходе U2в соответствии с характеристикой холостого хода, зависимость 1, рис.14.2. Процесс самовозбуждения, сопровождающийся взаимным увеличением тока возбуждения и напряжения на выходе генератора, можно условно изобразить ступенчатой линией с использованием характеристики холостого хода ( зависимость 1 ) и напряжения на обмотке возбуждения (зависимость 2), рис.14.2.

На самом же деле процесс самовозбуждения идет непрерывно и заканчивается при пересечении характеристики холостого хода2 и прямой 1 в точке D, рис.14.2, при установившемся токе возбужденияIву и установившемся напряжении на выходе генератора Uy. В этой точке практически наступает полное насыщение магнитной системы генератора и увеличение тока возбуждения уже не приводит к уве­личению магнитного потока, а соответственно и к увеличению напря­жения генератора.

Процесс самовозбуждения и его окончание более подробно можно пояснить с учетом изменяющихся во времени величин тока возбуждения и напряжения генератора следующим образом.

Уравнение изменения электрических величин в процессе самовозбуждения может быть составлено с учетом второго закона Кирхгофа

 

(5)

 

где Uв- изменяющееся во времени напряжение на входе цепи возбуждения, равное напря­жению генератора в режиме холостого хода;

Eв - ЭДС самоиндукции обмотки возбуждения, при изменении в ней тока возбуждения;

Iв - изменяющийся во времени ток в обмотке возбуждения;

Rсв- суммарное сопротивление в цепи обмотки возбуждения ( Rcв = Roв+ Rв ).

С учетом выражения для ЭДС самоиндукции обмотки возбуждения представим равенство ( 5 ) следующим образом:

(6)

гдеLв - индуктивность обмотки возбуждения, зависящая от насыщения магнитной системы генератора.

В соответствии с рис.14.2 напряжение, подводимое к цепи обмотки возбуждения Uв, представляет собой ордината от оси абсцисс до характеристики холостого хода ( отрезок А В ).

Падение напряжения в цепи обмотки возбуждения ( iв- Rсв ) выражается ординатой до прямой 2 ( отрезок АС ), а ординаты между линиями 1 и 2 представляют собой ЭДС самоиндукции обмотки возбуждения ев, отрезок ВС.

Исходя из выражения (6) видно, что процесс самовозбуждения будет продолжаться до тех пор, пока будет происходить изменение (увеличение ) тока в цепи обмотки возбуждения, а соответственно и увеличение напряжения на выходе генератора. При прекращении изменения тока возбуждения ЭДС самоиндукции обмотки возбуждения станет равной нулю, то есть

 

(7)

и тогда напряжение, прикладываемое к цепи обмотки возбуждения, будет равным падению напряжения в ней

(8)

Это условие выполняется при пересечении линий 1 и 2 в точке D, рис. 2. Действительно, если считать, что обмотка возбуждения обладает соответствующей индуктивностью (Lв > 0), то тогда в точ­ке D будет равно нулю именно изменение тока в обмотке возбуждения, то есть

(9)

 

Последнее равенство означает, что в точке D появляется уста­новившееся (неизменное во времени) значение тока возбуждения Iву, а соответственно и неизменное напряжение на выходе генератора Uy при постоянной его частоте вращения. То есть процесс самовозбуждения генератора заканчивается.

На рис. 14.2 наклон прямой 2 соответствует определенному суммарному сопротивлениюRcв в цепи обмотки возбуждения. При увеличении этого сопротивления наклон (угол наклона прямой к оси абсцисс) будет возрастать. При каком - то критическом сопротивлении Rкp прямая 3, отражающая зависимость падения напряжения в цепи обмотки возбуждения, будет касательной к характеристике холостого хода 1 (угол а2). Еэти же суммарное сопротивление в цепи обмотки возбуждения превысит его критическое значение, то генератор возбуждаться не будет.

Таким образом, самовозбуждение генератора возможно при наличии следующих условий [4,12]:

1.Существование в генераторе остаточного магнитного потока.

2.Создаваемый магнитный поток, током возбуждения, должен совпадать по направлению с остаточным магнитным потоком генератора.

3.Суммарное сопротивление цепи обмотки возбуждения должно быть меньше критического.

Следует также учитывать, что при неправильном подключении обмотки возбуждения к обмотке якоря (то есть появление тока возбуждения противоположного направления) появится магнитный поток, направленный встречно по отношению к ос­таточному магнитному потоку. В этом случае генератор не только не запустится, но даже может произойти его полное размагничивание.

Правильное же подсоединение обмотки возбуждения будет сразу сопровождаться увеличением напряжения на выходе генератора.

Если сразу не удалось осуществить правильное присоединение обмотки возбуждения, то следует поменять местами ее выводы, подсоединяемые к обмотке якоря. Отсутствие самовозбуждения и в этом случае может указывать на то, что при первом неверном присоединении обмотки возбуждения генератор размагнитился.

Исчезнувший по каким - либо причинам остаточный магнитный поток ( машина размагничена полностью ) можно восстановить посторонним источником постоянного тока даже незначительной мощности. Для этого его следует подсоединить к обмотке возбуждения на некоторое незначительное время, что и восстановит намагниченность машины.

 

Читайте также:

lektsia.com

Схемы и характеристики генераторов постоянного тока с самовозбуждением. Условия самовозбуждения

Поиск Лекций

К генераторам с самовозбуждением относят генераторы параллельного, последовательного и смешанного возбуждения. Чтобы произошло самовозбуждение, должны выполняться следующие условия:

1. генератор должен быть намагничен (наличие остаточного магнитного потока (МП) в полюсах). При вращении якоря остаточный МП наводит в ОЯ небольшую ЭДС, под действием которой в ОВ создается ток, вызывающий дополнительный МП. Если дополнительный и остаточный МП совпадают по направлению, то происходит дальнейшее увеличение ЭДС и тока возбуждения (Iв). Нарастание МП прекращается при достижении равновесия E = Iв · Rв.

2. Совпадение созданного и остаточного МП по направлению. В точке А заканчивается процесс самовозбуждения (установившееся состояние).

3. Сопротивление цепи ОВ должно быть меньше некоторого критического значения Rв < Rв.кр. ( Rв.кр. = Rв1 на рисунке). Если в цепи ОВ, то прямая падения напряжения пойдет выше, и возбуждения не произойдет.

4. Если частота вращения генератора меньше некоторой критической величины, то ХХХ будет иметь вид (2) на рисунке, возбуждение не произойдет. Поэтому nГ > nГ.кр.

Если самовозбуждение генератора не происходит необходимо изменить направление вращения якоря или полярность ОВ, или уменьшить сопротивление в цепи ОВ, или увеличить частоту вращения генератора.

Характеристики генератора параллельного возбуждения:

1) Характеристика холостого хода (ХХХ). Снимается только в одном квадранте (т.к. при изменении направления тока возбуждения самовозбуждение пропадает). РХХХ – расчетная ХХХ.

2) Внешняя характеристика. Снимается при постоянном сопротивлении в цепи ОВ.

 

1 - характеристика Г независимого возбуждения.

2 - характеристика Г параллельного возбуждения.

3 - характеристика Г последовательного возбуждения.

31 - ХХХ Г с последовательным возбуждением.

При увеличении тока нагрузки напряжение на зажимах Г независимого возбуждения снижается из-за увеличения падения напряжения в ОЯ и размагничивающего действия реакции якоря.

 

3) Характеристика КЗ.Снимается по схеме с независимым возбуждением (показана основная характеристика – характеристика размагниченной машины). При наличии остаточной намагниченности характеристика смещается параллельно самой себе (вверх) на величину Iао.

4) Нагрузочная характеристика (НХ).Зависимость напряжения на зажимах машины от тока возбуждения при постоянном токе якоря равном номинальному.

НХ имеет такую же форму как и ХХХ (но проходит ниже ее из-за падения напряжения в ОЯ и размагничивающего действия реакции якоря). НХ может быть построена по ХХХ с помощью характеристического (реактивного) треугольника АВС: катет АВ – падение напряжения в ОЯ (Ia*Ra),катет СВ размагничивающее действие реакции якоря в масштабе тока возбуждения. Реактивный треугольник может быть построен по ХХХ и ХКЗ.

 

 

5) Регулировочная характеристика. Зависимость тока возбуждения от тока якоря при неизменном напряжении, равном номинальному. Используя реактивный треугольник и ХХХ можно построить эту характеристику:

 

Характеристики генератора последовательного возбуждения:

В этом случае Ia = Iв = I.

ХХХ и ХКЗ снимаются по схемам с независимым возбуждением. Для снятия регулировочной характеристики параллельно ОВ включается реостат, регулирующий ток возбуждения. Внешняя характеристика (ВХ) по виду совпадает с нагрузочной (НХ) (т.к. Ia = Iв) и проходит ниже ХХХ.

 

 

 

 

Характеристики генератора смешанного возбуждения:

ХХХ снимается по схеме с параллельным возбуждением и имеет тот же вид как и для Г с параллельным возбуждением. ХКЗ снимается по схеме с независимым возбуждением.

Вид внешней характеристики (ВХ) зависит от способа соединения последовательной и параллельной ОВ генератора:

1) включены встречно – МП направлены навстречу друг другу, и последовательная обмотка размагничивает машину.

2) включены согласно – МП последовательной ОВ является подмагничивающим и может обеспечить стабилизацию напряжения.

4 – ВХ при встречном включении обмоток.

5 – ВХ при встречном включении обмоток с сильной последовательной обмоткой.

1 – ВХ при согласном включении обмоток.

 

poisk-ru.ru

Схемы и характеристики генераторов постоянного тока с самовозбуждением. Условия самовозбуждения

К генераторам с самовозбуждением относят генераторы параллельного, последовательного и смешанного возбуждения. Чтобы произошло самовозбуждение, должны выполняться следующие условия:

1. генератор должен быть намагничен (наличие остаточного магнитного потока (МП) в полюсах). При вращении якоря остаточный МП наводит в ОЯ небольшую ЭДС, под действием которой в ОВ создается ток, вызывающий дополнительный МП. Если дополнительный и остаточный МП совпадают по направлению, то происходит дальнейшее увеличение ЭДС и тока возбуждения (Iв). Нарастание МП прекращается при достижении равновесия E = Iв · Rв.

2. Совпадение созданного и остаточного МП по направлению. В точке А заканчивается процесс самовозбуждения (установившееся состояние).

3. Сопротивление цепи ОВ должно быть меньше некоторого критического значения Rв < Rв.кр. ( Rв.кр. = Rв1 на рисунке). Если в цепи ОВ, то прямая падения напряжения пойдет выше, и возбуждения не произойдет.

4. Если частота вращения генератора меньше некоторой критической величины, то ХХХ будет иметь вид (2) на рисунке, возбуждение не произойдет. Поэтому nГ > nГ.кр.

Если самовозбуждение генератора не происходит необходимо изменить направление вращения якоря или полярность ОВ, или уменьшить сопротивление в цепи ОВ, или увеличить частоту вращения генератора.

Характеристики генератора параллельного возбуждения:

1) Характеристика холостого хода (ХХХ). Снимается только в одном квадранте (т.к. при изменении направления тока возбуждения самовозбуждение пропадает). РХХХ – расчетная ХХХ.

2) Внешняя характеристика. Снимается при постоянном сопротивлении в цепи ОВ.

 

1 - характеристика Г независимого возбуждения.

2 - характеристика Г параллельного возбуждения.

3 - характеристика Г последовательного возбуждения.

31 - ХХХ Г с последовательным возбуждением.

При увеличении тока нагрузки напряжение на зажимах Г независимого возбуждения снижается из-за увеличения падения напряжения в ОЯ и размагничивающего действия реакции якоря.

 

3) Характеристика КЗ.Снимается по схеме с независимым возбуждением (показана основная характеристика – характеристика размагниченной машины). При наличии остаточной намагниченности характеристика смещается параллельно самой себе (вверх) на величину Iао.

4) Нагрузочная характеристика (НХ).Зависимость напряжения на зажимах машины от тока возбуждения при постоянном токе якоря равном номинальному.

НХ имеет такую же форму как и ХХХ (но проходит ниже ее из-за падения напряжения в ОЯ и размагничивающего действия реакции якоря). НХ может быть построена по ХХХ с помощью характеристического (реактивного) треугольника АВС: катет АВ – падение напряжения в ОЯ (Ia*Ra),катет СВ размагничивающее действие реакции якоря в масштабе тока возбуждения. Реактивный треугольник может быть построен по ХХХ и ХКЗ.

 

 

5) Регулировочная характеристика. Зависимость тока возбуждения от тока якоря при неизменном напряжении, равном номинальному. Используя реактивный треугольник и ХХХ можно построить эту характеристику:

 

Характеристики генератора последовательного возбуждения:

В этом случае Ia = Iв = I.

ХХХ и ХКЗ снимаются по схемам с независимым возбуждением. Для снятия регулировочной характеристики параллельно ОВ включается реостат, регулирующий ток возбуждения. Внешняя характеристика (ВХ) по виду совпадает с нагрузочной (НХ) (т.к. Ia = Iв) и проходит ниже ХХХ.

 

 

 

 

Характеристики генератора смешанного возбуждения:

ХХХ снимается по схеме с параллельным возбуждением и имеет тот же вид как и для Г с параллельным возбуждением. ХКЗ снимается по схеме с независимым возбуждением.

Вид внешней характеристики (ВХ) зависит от способа соединения последовательной и параллельной ОВ генератора:

1) включены встречно – МП направлены навстречу друг другу, и последовательная обмотка размагничивает машину.

2) включены согласно – МП последовательной ОВ является подмагничивающим и может обеспечить стабилизацию напряжения.

4 – ВХ при встречном включении обмоток.

5 – ВХ при встречном включении обмоток с сильной последовательной обмоткой.

1 – ВХ при согласном включении обмоток.

 



infopedia.su

Генератор постоянного тока с параллельным возбуждением

Генератор постоянного тока с параллельным возбуждением — электрическая машина постоянного тока для преобразования механической энергии в электрическую. У генератора с параллельным возбуждением обмотка присоединена к зажимам якоря параллельно цепи нагрузки. Ток якоря IЯ=I+IВ, где IВ=2...3%In. Для возбуждения необходимо, чтобы магнитный поток, создаваемый током возбуждения, совпадал по направлению с потоком остаточной индукции. Только в этом случае ток в обмотке возбуждения, созданный остаточной эдс Еост, намагничивает машину, магнитный поток генератора наростает и эдс увеличивается. Последнее вызывает новое увеличение IВ, а следовательно, и потока Ф. Процесс продолжается до тех пор, пока эдс не становится равной падению напряжения в обмотке возбуждения. Если же генератор не возбуждается, то в обмотке необходимо изменить направление тока IВ. Характеристика холостого хода генератора такая же, как и для генератора независимого возбуждения.

Внешняя характеристика генератора параллельного возбуждения U = f(IВ) при n=const и rВ=const получается так же, как и для генератора с независимым возбуждением, и имеет такой же вид. Однако изменение напряжения ΔU достигает 30%. Это обусловленно тем, что обмотка возбуждения подсоединена к зажимам якоря. При сбросе нагрузки напряжение, а вместе с ней и ток возбуждения растет - IВ=U/rВ.

Магнитный поток и эдс увеличиваются быстрее, чем в генераторе независимого возбуждения.

Генератор с независимым возбуждением

Схема генератора этого типа дана на фиг. 281. Ток возбуждения, подаваемый от постороннего источника напряжения в обмотку возбуждения полюсов, не зависит от условий работы самого генератора. Реостат в цепи возбуждения позволяет менять величину тока возбуждения, что приводит к изменению магнитного потока машины, а это, в свою очередь, ведет к изменению э. д. с. или напряжения генератора. Этот реостат часто называют регулировочным. Реостат имеет третий добавочный контакт, позволяющий при выключении обмотки возбуждения замыкать ее накоротко. Этим предохраняются последние контакты реостата от обгорания, так как при выключении цепи, содержащей большую индуктивность, быстро исчезающий ток вызывает э. д. с. самоиндукции, поддерживающую дугу между рычагом и последним контактом реостата.

Обмотка возбуждения состоит из большого числа витков медной изолированной проволоки. При постоянном числе оборотов якоря и отсутствии нагрузки генератора (холостом ходе) э. д. с. машины зависит только от тока возбуждения. Изменяя сопротивление цепи возбуждения регулировочным реостатом, замечая показания амперметра в цепи возбуждения и вольтметра, подключенного к щеткам генератора, устанавливаем зависимость между э. д. с. генератора при холостом ходе машины и током возбуждения. Эта зависимость представляется кривой, называемой характеристикой холостого хода (фиг. 282).

При первом намагничивании генератора и при отсутствии тока возбуждения (Ів=0) вольтметр машины покажет нуль при любом числе оборотов якоря. Увеличение тока возбуждения будет сопровождаться вначале пропорциональным увеличением э. д. с. генератора. Соответствующая часть характеристики холостого хода будет прямолинейной. Но дальнейшее увеличение тока возбуждения вызовет магнитное насыщение машины, отчего кривая будет иметь изгиб. Если теперь уменьшать ток возбуждения генератора, то можно заметить, что при тех же самых значениях тока возбуждения э. д. с. генератора будет иметь большие значения, чем при намагничивании, и кривая размагничивания пройдет несколько выше, чем кривая намагничивания. Это объясняется явлением гистерезиса. При уменьшении тока возбуждения до нуля генератор за счет остаточного магнетизма будет иметь некоторую э. д. с. Чем дальше за перегибом характеристики лежит точка, соответству ющая э. д. с. генератора при нормальной работе, тем меньше изменяется э. д. с. машины в зависимости от тока возбуждения. Возможность регулировки напряжения в случае работы машины за перегибом характеристики невелика. Наоборот, если генератор будет работать на прямолинейной части характеристики, то небольшие изменения тока возбуждения вызовут значительные изменения э. д. с. генератора. Таким образом, характеристика холостого хода показывает магнитные свойства генератора.

Основным требованием к любому генератору является постоянство напряжения при различных нагрузках. Но так как при работе генератора на внешнюю сеть напряжение его с нагрузкой изменяется, то лучшей машиной будет та, которая меньше изменяет напряжение при одинаковых изменениях нагрузки.

Напряжение генератора с независимым возбуждением изменяется с нагрузкой от двух причин:

1. Вследствие падения напряжения в обмотке якоря и переходном контакте щеток.

Э. д. с. генератора (Е) отличается от напряжения на щетках (U) на величину падения напряжения в обмотке якоря Iяrя.

Если, например, э. д. с. генератора равна 120 В, а сопротивление обмотки якоря равно 0,01 ом, то при токе генератора 50 А напряжение машины будет:

при токе 200 A

U= 120 - 200 0,01 = 118 В.

Из этих примеров видно, что с увеличением нагрузки генератора напряжение его уменьшается. Чтобы уменьшить падение напряжения в сопротивлении rя, обмотку якоря машин постоянного тока изготовляют из медной проволоки н стержней большого сечения. Сопротивление обмотки якоря получается в этом случае очень малым, порядка десятых, сотых и даже тысячных долей ома.

При холостой работе генератора Iя = 0, поэтому

U = E.

2. Второй причиной уменьшения напряжения у генератора с независимым возбуждением при увеличении его нагрузки является действие реакции якоря, приводящее к уменьшению магнитного потока и э. д. с. машины.

Если постепенно нагружать генератор, отмечая по показаниям амперметра, включенного в цепь якоря, величину тока нагрузки, оставляя неизменным окорость вращения генератора н ток возбуждения, то можно получить зависимость напряжения на зажимах ма-шины от тока нагрузки. Эта зависимость называется внешней характеристикой. На фиг. 283 показана внешняя характеристика генератора с независимым возбуждением. По горизонтальной оси отложен ток нагрузки, по верти кальной оси — напряжение генератора. Характеристика показывает, как меняется напряжение генератора с изменением нагрузки. У генераторов с независимым возбуждением при номинальной нагрузке, постоянной скорости и постоянном токе возбуждения понижение напряжения может составлять 5—8% от номинального. Для поддержания напряжения генератора постоянным изменяют ток возбуждения при помощи регулировочного реостата.

Как видно из фиг. 281, в цепь якоря генератора включены плавкие предохранители, которые защищают обмотку якоря, если короткое замыкание происходит во внешней сети. Изменение направления вращения генератора с независимым возбуждением приводит к изменению полярности щеток.

studfiles.net

Генераторы постоянного тока. Способы возбуждения генераторов постоянного тока?

Генера́тор постоя́нного то́ка — электрическая машина, преобразующая механическую энергию в электрическую энергию постоянного тока.

СПОСОБЫ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Генераторы постоянного тока могут быть выполнены с магнит­ным и электромагнитным возбуждением. Для создания магнитногопотока в генераторах первого типа используют постоянные магниты,

а в генераторах второго типа — электромагниты. Постоянные, магниты применяют лишь в машинах очень малых мощностей. Таким образом, электромагнитное возбуждение является наиболее широко используемым способом для создания магнитного потока. При этом способе возбуждения магнитный поток создается током, протекающим по обмотке возбуждения.

В зависимости от способа питания обмотки возбуждения генераторы постоянного тока могут быть с независимым возбужде­нием и с самовозбуждением.

При независимом возбуждении (рис. 143, а) обмотка возбуж­дения включается в сеть вспомогательного источника энергии по­стоянного тока. Для регулирования тока возбуждения Iв в цепи обмотки включено сопротивление rр. При таком возбуждении ток Iв не зависит от тока в якоре Iя.

Недостатком генераторов независимого возбуждения является потребность в дополнительном источнике энергии. Несмотря на то что этот источник обычно имеет малую мощность (несколько процентов мощности генераторов), необходимость в нем является большим неудобством, поэтому генераторы независимого возбуж­дения находят очень ограниченное применение только в машинах высоких напряжений, у которых питание обмотки возбуждения от цепи якоря недопустимо по конструктивным соображениям.

Генераторы с самовозбуждением в зависимости от включения обмотки возбуждения могут быть параллельного (рис. 143, б), по­следовательного (рис. 143, в) и смешанного (рис.143, г) возбуж­дения.

У генераторов параллельного возбуждения ток мал (несколько процентов номинального тока якоря), и обмотка возбуждения имеет большое число витков. При последовательном возбуждении ток возбуждения равен току якоря и обмотка возбуждения имеет малое число витков.

При смешанном возбуждении на полюсах генератора помеща­ются две обмотки возбуждения — параллельная и последователь­ная.

Процесс самовозбуждения генераторов постоянного тока про­текает одинаково при любой схеме возбуждения. Так, например, в генераторах параллельного возбуждения, получивших наиболее широкое применение, процесс самовозбуждения протекает следую­щим образом.

Какой-либо первичный двигатель вращает якорь генератора, магнитная цепь (ярмо и сердечники полюсов) которого имеет не­большой остаточный магнитный поток Ф0. Этим магнитным пото­ком в обмотке вращающегося якоря индуктируется э. д. с. Е0, со­ставляющая несколько процентов номинального напряжения ма­шины.

Под действием э. д. с. Е0в замкнутой цепи, состоящей из якоря и обмотки возбуждения, протекает ток Iв. Намагничивающая сила обмотки возбуждения Iвw (w— число витков) направлена согласно с потоком остаточного магнетизма, увеличивая магнитный поток машины Ф, что вызывает увеличение как э. д. с. в обмотке якоря Е, так и тока в обмотке возбуждения Iв. Увеличение последнего вызывает дальнейшее увеличение Ф, что в свою очередь увели­чивает Е и Iв.

Из-за насыщения стали магнитной цепи машины самовозбуж­дение происходит не беспредельно, а до какого-то определенного напряжения, зависящего от скорости вращения якоря машины и сопротивления в цепи обмотки возбуждения. При насыщении стали Магнитной цепи увеличение магнитного потока замедляется и про­цесс самовозбуждения заканчивается. Увеличение сопротивления в цепи обмотки возбуждения уменьшает как ток в ней, так и маг­нитный поток, возбуждаемый этим током. Поэтому уменьшается э.д. с. и напряжение, до которого возбуждается генератор.

Изменение скорости вращения якоря генератора вызывает из­менение э.д. с, которая пропорциональна скорости, вследствие чего Изменяется и напряжение, до которого возбуждается генератор.

Самовозбуждение генератора будет происходить лишь при определенных условиях, которые сводятся к следующим:

1>Наличие потока остаточного магнетизма. При отсутствия этого потока не будет создаваться э. д. с.Е0,под действием котором в обмотке возбуждения начинает протекать ток, так что возбуждение генератора будет невозможным. Если машина размагничена и не имеет остаточного намагничивания, то по обмотке возбуждения надо пропустить постоянный ток от какого-либо постороннего источника электрической энергии. После отключения обмотки возбуждения машина будет иметь вновь остаточный магнитный поток.

2. Обмотка возбуждения должна быть включена согласно с потоком остаточного магнетизма, т. е. так, чтобы намагничивающая сила этой обмотки увеличивала поток остаточного магнетизма.

При встречном включении обмотки возбуждения ее намагничивающая сила будет уменьшать остаточный магнитный поток и при длительной работе может полностью размагнитить машину. Если обмотка возбуждения оказалась включенной встречно, то необходимо изменить направление тока в ней, т. е. поменять ме­стами провода, подходящие к зажимам этой обмотки.

3. Сопротивление цепи обмотки возбуждения должно быть чрезмерно большим, при очень большом сопротивлении цепи воз­буждения самовозбуждение генератора невозможно.

4. Сопротивление внешней нагрузки должно быть велико, так как при малом сопротивлении ток возбуждения будет также мал и самовозбуждения не произойдет.



infopedia.su


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта