Генератор электрических импульсов на таймере 555. Генератор импульсов на 555 таймере с регулировкой частоты и скважностиГенератор на базе таймера NE555Красный светодиод подключен на выход генератора и при малой выходной частоте — мигает. По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении — вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы. Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций Частоты продавец указал неверно. Реально измеренные частоты генератора при питающем напряжении 12В 1 — от 0,5Гц до 50Гц 2 — от 35Гц до 3,5kГц 3 — от 650Гц до 65кГц 4 — от 50кГц до 600кГцOn-Line расчёт цепей генератора (примерный) Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов. Напряжение питания 4,5-16В, максимальная нагрузка на выходе — 200мА Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V — частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово. На остальных диапазонах стабильность импульсов приемлемая. Вот что он выдаёт на 1 диапазоне На максимальном сопротивлении подстроечников В режиме меандр (верхний 300 Ом, нижний на максимуме) В режиме максимальной частоты (верхний 300 Ом, нижний на минимум) В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме) Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R) Вот готовая доработанная схема Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны. Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы :) Продолжение следует… mysku.ru Генератор электрических импульсов на таймере 555Электрический импульс — это кратковременный всплеск напряжения или силы тока. То есть это такое событие в цепи, при котором напряжение резко повышается в несколько раз, а затем так же резко падает к исходной величине. Самый понятный пример — электрический импульс, заставляющий наше сердце биться. Самое же большое количество импульсов возникает у нас в нервных клетках головного и спинного мозга. Мы мыслим и решаем уроки благодаря электрическим импульсам! А что в электронике? В электронике импульсы применяются повсеместно. Например, в микроконтроллерах или даже в полноценных процессорах домашнего компьютера электрические импульсы задают ритм его работы. Они еще называются тактовыми, или синхро-импульсами. Порой быстродействие вычислительных машин сравнивают именно при помощи значений тактовой частоты. Все данные внутри электронных устройств тоже передаются при помощи импульсов. Наш интернет, проводной и беспроводной, сотовая связь и даже пульт от телевизора — все используют импульсный сигнал. Попробуем выполнить несколько заданий и на собственном опыте понять особенности генерации электрических импульсов. А начнем мы со знакомства с их важными характеристиками. 1. Период и скважность импульсного сигналаПредставим себе, что мы готовимся к встрече Нового Года и нам просто необходимо сделать мигающую гирлянду. Поскольку мы не знаем, как заставить её мигать самостоятельно, сделаем гирлянду с кнопкой. Будем сами нажимать на кнопку, соединяя тем самым цепь гирлянды с источником питания и заставляя лампочки зажигаться. Принципиальная схема гирлянды с ручным управлением будет выглядеть так: Внешний вид макетСобираем схему и проводим небольшой тест. Попробуем управлять гирляндой согласно нехитрому алгоритму:
Это алгоритм периодического процесса. Нажимая на кнопку по алгоритму мы тем самым генерируем настоящий импульсный сигнал! Изобразим на графике его временную диаграмму. У данного сигнала мы можем определить период повторения и частоту. Период повторения (T) — это отрезок времени, за который гирлянда возвращается в исходное состояние. На рисунке хорошо виден этот отрезок, он равен трем секундам. Величина обратная периоду повторения называется частотой периодического сигнала (F). Частота сигнала измеряется в Герцах. В нашем случае: F = 1/T = 1/3 = 0.33 Гц Период повторения можно разбить на две части: когда гирлянда горит и когда она не горит. Отрезок времени, в течение которого гирлянда горит называется длительностью импульса (t). А теперь самое интересное! Отношение периода повторения (T) к длительности импульса (t) называется скважностью. S = T / t Скважность нашего сигнала равна S = 3/1 = 3. Скважность величина безразмерная. В англоязычной литературе принят другой термин — коэффициент заполнения (Duty cycle). Это величина, обратная скважности. D = 1 / S = t / T В случае нашей гирлянды коэффициент заполнения равен: D = 1 / 3 = 0.33(3) ≈ 33% Этот параметр более нагляден. D = 33% означает, что треть периода занята импульсом. А, например, при D = 50% длительность высокого уровня сигнала на выходе таймера будет равна длительности низкого уровня. 2. Генерация импульсного сигнала при помощи микросхемы 555Теперь попробуем заменить человека и кнопку, ведь мы не хотим весь праздник включать и выключать гирлянду каждые 3 секунды. В качестве автоматического генератора импульсов используем очень известную микросхему семейства 555. Микросхема 555 — это генератор одиночных или периодических импульсов с заданными характеристиками. По-другому данный класс микросхем называют таймерами. Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов. Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим, именно в нем таймер будет непрерывно генерировать импульсы с заданными параметрами. Для примера, подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так. Принципиальная схемаВнешний вид макетаПримечание. Конденсатор C2 в схеме можно не использовать. В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала. Делается это с помощью несложных формул, взятых из технической документации к микросхеме. T = 1/F = 0.693*(Ra + 2*Rb)*C; (1) t = 0.693*(Ra + Rb)*C; (2) Ra = T*1.44*(2*D-1)/C; (3) Rb = T*1.44*(1-D)/C. (4) Здесь F — частота сигнала; T — период импульса; t — его длительность; Ra и Rb — искомые сопротивления. Исходя из этих формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления). Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%. Чтобы обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые позволяют варьировать параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера! Собственно, в предложенной выше схеме мы это уже и сделали. Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень. Раз так, то нам нужно настроить сопротивления Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0.66, получаем: Ra = 3*1.44*(2*0.66 — 1)/0.0001 = 13824 Ом Rb = 3*1.44*(1-D)/0.0001 = 14688 Ом На самом деле, если мы будет использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется поставить последовательно несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности можем добавить еще два резистора по 200 Ом. В результате должно получиться что-то подобное: В этой схеме используются резисторы на 15 КОм. 3. Подключение группы светодиодов к таймеру 555Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду. В новой схеме пять светодиодов будут включаться на 0.5 сек каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку. Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, используем биполярный транзистор, работающий с режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000. Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельно соединенных светодиодов должен быть равен I = 20 мА*5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид: 100 мА = (9В-2В)/R; отсюда R2 = 7В/0.1А = 70 Ом. Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом. А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее. Принципиальная схемаВнешний вид макетаПримечание. Конденсатор C2 в схеме можно не использовать. Собираем схему, подключаем батарейку и наблюдаем за результатом. Если все работает как надо, закрепим полученные знания, сделав несколько забавных устройств. Задания
ЗаключениеКак уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что большинству электронных устройств свойственны периодические процессы. Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже периодический, причем с изменяющимся коэффициентом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора основана на тактовом сигнале, имеющем очень точную частоту. На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее! Полезные ссылкиСборник проектов на таймере 555 Вконтакте Google+ robotclass.ru ГЕНЕРАТОР ИМПУЛЬСОВ С РЕГУЛИРОВКОЙ ЧАСТОТЫКак-то попросили меня сделать простую мигалку, чтоб реле управлять или маломощной лампочкой мигать. Собирать простейший мультивибратор, будь то симметричный или не симметричный, как-то банально, да и схема нестабильна и не совсем надежна, при том что работать она должна при напряжение 24 вольта в грузовом автомобиле, да и еще размеры иметь не слишком большие. СхемаПоискав по сети схемы, решил по даташиту включить популярную микросхему NE555N. Прецизионный таймер, стоимость которого очень мала – порядка 10 рубликов за микросхему в дип корпусе! Но так как нагрузка у нас не совсем слабая, и может потребоваться большие токи относительно питания таймера, то нам нужен какой-то ключ, которым и будет управлять сам таймер. Можно взять обычный транзистор, но он будет греться ввиду больших потерь из-за больших падений на переходах – поэтому взял высоковольтный полевой транзистор на несколько ампер тока, такому ключу при токе даже в 2 ампера не потребуется радиатор вообще. Сам таймер 555 имеет ограничения в питающем напряжение – порядка 18 вольт, хотя уже и при 15 может смело вылететь, поэтому собираем цепочку из ограничительного резистора и стабилитрона с фильтрующим конденсатором по входу питания! В схему введен регулятор, дабы можно было вращая ручку регулятора изменить частоту импульсов вспышки лампочки или срабатывания реле. Если же регулировка не требуется, можно подстроить частоту на нужные, замерить сопротивление и впаять потом готовое. На приведённой выше - сразу 2 регулятора, которыми меняется скважность (отношение включенного состояния выхода к выключенному). Если требуется соотношение 1:1 - убираем всё кроме одного переменного резистора. ВидеоЧасть элементов выполнено в дип корпусах, часть в смд - для компактности и лучшей компоновки в целом. Схема генератора импульсов заработала после включения практически сразу, осталось только подстроить под нужную частоту. Плату желательно залить термоклеем или поставить в корпус из пластика, дабы автовладельцы не догадались ее прикрутить напрямую к корпусу или положить на что-то металлическое. Поделитесь полезной информацией с друзьями: elwo.ru
mikroshema-k.ru Конструкции на интегральном таймере 555Для начинающих радиолюбителей переход от создания простейших схем с применением резисторов, конденсаторов, диодов к созданию печатных плат с различными микросхемами, означает переход на новый уровень мастерства. Однако при этом схемы основываются на базе простейших микросхем, одной из которых является микросхема интегрального таймера NE555.Изучение любой микросхемы следует начинать с фирменной документации - DATA SHEET. Для начала следует обратить внимание на расположение выводов и их назначение для таймер NE555 (рисунок 1). Иностранные компании, как правило, не предоставляют принципиальные схемы своих устройств. Однако микросхема таймера NE555 является достаточно популярной и имеет свой отечественный аналог КР1006ВИ1, схема которого представлена на рисунке 2. Рисунок 1 Рисунок 2 Далее рассмотрим простейшие схемы на базе микросхемы интегрального таймера NE555. 1. Одновибратор на базе NE555 (рисунок 3). Рисунок 3 Работа схемы: на вывод 2 микросхемы подается импульс низкого уровня. На выходе 3 микросхемы получается прямоугольный импульс, длительность которого определяется времязадающей RC-цепочкой (ΔT = 1,1*R*C). Сигнал высокого уровня на выводе 3 формируется до тех пор, пока не зарядится времязадающий конденсатор С до напряжения 2/3Uпит. Диаграммы работы одновибратора показаны на рисунке 4. Для формирования импульса запуска работы микросхемы можно воспользоваться механической кнопкой (рисунок 5) или полупроводниковым элементом. Рисунок 4 Рисунок 5 Назначение схемы одновибратора на базе микросхемы интегрального таймера NE555 – создание временных выдержек от нескольких миллисекунд до нескольких часов. 2 Генераторы на базе интегрального таймера NE555 Генератор на базе NE555 способен вырабатывать импульсы с максимальной частотой в несколько килогерц для прямоугольных импульсов и с частотой в несколько мегагерц для импульсов не прямоугольной формы. Частота, как и в случае с одновибратором, будет определяться параметрами времязадающей цепи. 2.1 Генератор импульсов формы меандр на базе NE555 Схема такого генератора представлена на рисунке 6, а временные диаграммы работы генератора на рисунке 7. Отличительной особенностью генератора импульсов формы меандр является то, что время импульса и время паузы равны между собой. Рисунок 6 Рисунок 7 Принцип действия схемы аналогичен схеме одновибратора. Исключение составляет лишь отсутствующий импульс запуска работы микросхемы таймера на выводе 2. Частота вырабатываемых импульсов определяется выражением f = 0,722/(R1*C1). 2.2 Генератор импульсов с регулируемой скважностью на базе NE555 Регулирование скважности вырабатываемых импульсов позволяет строить на базе NE555 широтно-импульсные генераторы. Скважность определяется отношением времени импульса к длительности импульса. Обратной величиной скважности является коэффициент заполнения (англ. Duty cycle). Схема генератора импульсов с регулируемой скважностью на базе NE555 представлена на рисунке 8. Рисунок 8 Принцип работы схемы: время импульса и время паузы определяется временем заряда конденсатора С1. Сигнал высокого уровня формируется при заряде С1 по цепи R1-RP1-VD1. При достижении напряжения 2/3Uпит таймер переключается и конденсатор С1 разряжается по цепи VD2-RP1-R1. По достижению 1/3Uпит таймер снова переключается и цикл повторяется. Регулировка времени заряда и разряда конденсатора С1 осуществляется переменным резистором RP1. При этом происходит изменение скважности выходных импульсов при постоянном периоде следования импульса. Для проверки работоспособности микросхемы интегрального таймера NE555 можно собрать схему, представленную на рисунке 9 (схема в симуляторе Multisim). Рисунок 9 Регулировка выходного напряжения осуществляется переменным резистором R1. На приведенной схеме достаточно просто разобраться в алгоритме работы таймера. При величине питающего напряжения 12В опорное значение напряжения для переключения микросхемы составляет 4В и 8В. При напряжении 7,8В (Рисунок 10) на выходе таймера – высокий уровень сигнала (светодиод LED1 не горит). При достижении 8В (рисунок 11) произойдет переключение микросхемы – загорается светодиод LED1. Дальнейшее увеличение напряжение никаких изменений в работе таймера не вызовет. Всего комментариев: 0 ukrelektrik.com Генератор импульсов с регулируемой скважностью и частотойЧитать все новости ➔ Иногда в радиолюбительском деле нужен генератор с изменяемым коэффициентом заполнения (КЗ) для проверки различных схем, силовых выходных каскадов ИИП и тп. А также для проверки самой микросхемы ШИМ. Генератор собран на распространённом ШИМе UC3843 компании Unitrode или аналогичном. Для увеличения надёжности по питанию на входе стоит интегральный стабилизатор LM7812, так как потребляемый ток непосредственно самим генератором (без нагрузки) не превышает 25..30мА, я применил стабилизатор в ТО92 исполнении. Диод D1 защита от дурака (или просто невнимательности). Резистор R5 ограничивает выходной ток, защищая микросхему в случае короткого замыкания выхода. Резистор R1 ограничивает максимальную частоту и является времязадающим вместе с конденсатором С1. Конденсаторы С4, С5 шунтируют питание стабилизатора, С3 питание ШИМа, а конденсатор С2 фильтрует выходное напряжение источника опорного напряжения, которое при исправной микросхеме должно быть около 5 вольт. Далее, переменники:RV1 (50 кОм) - является частью времязадающей RC цепочки и, соответственно, регулирует частоту генератора, в верхнем положении частота минимальна.RV2 (5 кОм) - регурирует коэффициент заполнения генератора (КЗ, скважность).RV3 (1 кОм) - позволяет подстроить более точно рабочую точку цепи обратной связи для того, чтобы регулятор RV2 позволял регулировать КЗ от минимума до максимума. Конструкция в налаживании не нуждается и при исправных деталях и правильном монтае начинает работать сразу. Буржуйский 2N2222 можно заменить на наш КТ3102 или любой подобный. Конденсаторы С2, С3, С4 и С5 являются не обязательными для работоспособности схемы, как впрочем и R5. При указанных на схеме номиналах частота генератора регулируется примерно от 16,9 кГц до 250 кГц, ближе к максимальной частоте фронты немного пологие и составляют около 0.2мксек, максимальная скважность ограничена примерно на уровне 90% Схема работоспособна в диапазоне от 12 до 30в, если удалить стабилизатор, то нижняя граница расширится до 9в, но тогда будет опасно питать конструкция напряжением выше 20в: как показала практика при 30в питания UC3843 разлетается на куски, стараясь попасть в глаза или лицо. Я выполнил конструкцию на одностороннем стеклотекстолите толщиной 1,5мм при помощи ЛУТ, размеры платы 30х37мм, перемычек нет. После распайки компонентов и промывки от флюса рекомендую покрыть сторону с дорожками цапонлаком. Я применял как smd, так и классически компоненты, желающие могут изменить разводку, как им будет удобнее.Микросхема вставляется в DIP8 панельку, что позволяет проверять микросхемы, ничего не перепаивая. Плату в формате lay для Sprint Layout можно скачать по этой ссылке. Вот так это выглядит:
Возможно, Вам это будет интересно:meandr.org Конструкции на интегральном таймере 555 - Статьи по электронике - Каталог статейПуть в радиолюбительство начинается, как правило, с попытки сборки несложных схем. Если сразу же после сборки схема начинает подавать признаки жизни, - мигать, пищать, щелкать или разговаривать, то путь в радиолюбительство почти открыт. Насчет «разговаривать», скорее всего, получится не сразу, для этого придется прочитать немало книг, спаять и наладить некоторое количество схем, может быть, сжечь большую или маленькую кучу деталей (лучше маленькую). А вот мигалки и пищалки получаются практически у всех и сразу. И лучшего элемента, чем интегральный таймер NE555 найти для этих опытов, просто не удастся. Для начала рассмотрим схемы генераторов, но перед этим обратимся к фирменной документации - DATA SHEET. Прежде всего, обратим внимание на графическое начертание таймера, которое показано на рисунке 1. А на рисунке 2 показано изображение таймера из отечественного справочника. Здесь оно приведено просто для возможности сравнения обозначений сигналов у них и у нас, к тому же «наша» функциональная схема показана более подробно и понятно. Далее показаны еще два рисунка, позаимствованные из даташита. Ну, просто, как рекомендации фирмы производителя.
Рисунок 1. Рисунок 2.
Одновибратор на базе 555 На рисунке 3 изображена схема одновибратора. Нет, это не половинка мультивибратора, хотя сам он вырабатывать колебания не может. Ему требуется посторонняя помощь, пусть даже небольшая. Рисунок 3. Схема одновибратора Логика действия одновибратора достаточно проста. На вход запуска 2 подается кратковременный импульс низкого уровня, как показано на рисунке. В результате на выходе 3 получается прямоугольный импульс длительностью ΔT = 1,1*R*C. Если подставить в формулу R в омах, а C в фарадах, то время T получится в секундах. Соответственно при килоомах и микрофарадах результат будет в миллисекундах. А на рисунке 4 показано, как сформировать запускающий импульс с помощью простой механической кнопки, хотя это вполне может быть полупроводниковый элемент, - микросхема или транзистор. Рисунок 4. В целом одновибратор (иногда называют моновибратор, а у бравых военных в ходу было слово кипп-реле) работает следующим образом. При нажатии на кнопку, импульс низкого уровня на выводе 2 приводит к тому, что на выходе таймера 3 устанавливается высокий уровень. Неспроста этот сигнал (вывод 2) в отечественных справочниках называется запуском. Транзистор, соединенный с выводом 7 (DISCHARGE) в этом состоянии закрыт. Поэтому, ничто не мешает заряжаться времязадающему конденсатору C. Во времена кипп-реле, конечно, никаких 555 не было, все делалось на лампах, в лучшем случае на дискретных транзисторах, но алгоритм работы был такой же. Пока конденсатор заряжается, на выходе удерживается напряжение высокого уровня. Если в это время на вход 2 подать еще импульс, состояние выхода не изменится, длительность выходного импульса таким образом уменьшить или увеличить нельзя, повторного запуска одновибратора не произойдет. Другое дело, если подать импульс сброса (низкий уровень) на 4 вывод. На выходе 3 сразу же появится низкий уровень. Сигнал «сброс» имеет высший приоритет, и поэтому может быть подан в любой момент. По мере заряда напряжение на конденсаторе возрастает, и, в конце концов, достигает уровня 2/3U. Как было рассказано в предыдущей статье, это есть уровень срабатывания, порог, верхнего компаратора, который приводит к сбросу таймера, что является окончанием выходного импульса. На выводе 3, появляется низкий уровень и в этот же момент открывается транзистор VT3, который разряжает конденсатор C. На этом формирование импульса заканчивается. Если после окончания выходного импульса, но не раньше, подать еще один запускающий импульс, то на выходе сформируется выходной, такой же, как и первый. Конечно, для нормальной работы одновибратора запускающий импульс должен быть короче, чем импульс, формирующийся на выходе. На рисунке 5 показан график работы одновибратора. Рисунок 5. График работы одновибратора Как можно использовать одновибратор? Или как говаривал кот Матроскин: «А какая от этого одновибратора польза будет?» Можно ответить, что достаточно большая. Дело в том, что диапазон выдержек времени, который можно получить от этого одновибратора, может достигать не только несколько миллисекунд, но и доходить до нескольких часов. Все зависит от параметров времязадающей RC цепочки. Вот, пожалуйста, почти готовое решение для освещения длинного коридора. Достаточно дополнить таймер исполнительным реле или нехитрой тиристорной схемой, а в концах коридора поставить пару кнопок! Кнопку нажал, прошел коридор, и не надо заботиться о выключении лампочки. Все произойдет автоматически по окончании выдержки времени. Ну, это просто информация к размышлению. Освещение в длинном коридоре, конечно, не единственный вариант применения одновибратора. Как проверить 555? Проще всего спаять несложную схему, для этого почти не понадобится навесных деталей, если не считать таковыми единственный переменный резистор и светодиод для индикации состояния выхода. У микросхемы следует соединить выводы 2 и 6 и подать на них напряжение, изменяемое переменным резистором. К выходу таймера можно подсоединить вольтметр или светодиод, конечно же, с ограничительным резистором. Но можно ничего и не паять, более того, провести опыты даже при «наличии отсутствия» собственно микросхемы. Подобные исследования можно проделать с помощью программы – симулятора Multisim. Конечно, такое исследование очень примитивно, но, тем не менее, позволяет познакомиться с логикой работы таймера 555. Результаты «лабораторной работы» показаны на рисунках 6, 7 и 8. Рисунок 6. На этом рисунке можно увидеть, что входное напряжение регулируется переменным резистором R1. Около него можно рассмотреть надпись «Key = A», говорящую о том, что величину резистора можно изменять, нажимая клавишу A. Минимальный шаг регулировки 1%, вот только огорчает, что регулирование возможно лишь в сторону увеличения сопротивления, а уменьшение возможно только «мышкой». На этом рисунке резистор «уведен» до самой «земли», напряжение на его движке близко к нулю (для наглядности измеряется мультиметром). При таком положении движка на выходе таймера высокий уровень, поэтому выходной транзистор закрыт, и светодиод LED1 не светится, о чем говорят его белые стрелки. На следующем рисунке показано, что напряжение несколько увеличилось. Рисунок 7. Но увеличение происходило не просто так, а с соблюдением некоторых границ, а, именно, порогов срабатывания компараторов. Дело в том, что 1/3 и 2/3, если выразить в десятичных дробях в процентах будут 33,33… и 66,66… соответственно. Именно в процентах показана введенная часть переменного резистора в программе Multisim. При напряжении питания 12В это получится 4 и 8 вольт, что достаточно удобно для исследования. Так вот, на рисунке 6 показано, что резистор введен на 65%, а напряжение на нем 7,8В, что несколько меньше расчетных 8 вольт. При этом светодиод на выходе погашен, т.е. на выходе таймера до сих пор высокий уровень. Рисунок 8. Дальнейшее незначительное увеличение напряжения на входах 2 и 6, всего на 1 процент (меньше не дают возможности программы) приводит к зажиганию светодиода LED1, что и показано на рисунке 8, - стрелочки возле светодиода приобрели красный оттенок. Такое поведение схемы говорит о том, что симулятор Multisim работает достаточно точно. Если продолжить увеличивать напряжение на выводах 2 и 6, то никакого изменения на выходе таймера не произойдет. Генераторы на таймере 555 Диапазон частот, генерируемый таймером, достаточно широк: от самой низкой частоты, период которой может достигать нескольких часов, до частот в несколько десятков килогерц. Все зависит от элементов времязадающей цепи. Если не требуется строго прямоугольная форма сигнала, то можно сгенерировать частоту до нескольких мегагерц. Иногда такое вполне допускается, - форма не важна, но импульсы присутствуют. Чаще всего такая небрежность по поводу формы импульсов допускается в цифровой технике. Например, счетчик импульсов реагирует на фронт или спад импульса. Согласитесь, в этом случае «прямоугольность» импульса никакого значения не имеет. Генератор импульсов формы меандр Один из возможных вариантов генератора импульсов формы меандр показан на рисунке 9. Рисунок 9. Схема генераторов импульсов формы меандр Временные диаграммы работы генератора показаны на рисунке 10. Рисунок 10. Временные диаграммы работы генератора Верхний график иллюстрирует сигнал на выходе (вывод 3) таймера. А на нижнем графике показано, как изменяется напряжение на времязадающем конденсаторе. Все происходит точно так же, как уже было рассмотрено в схеме одновибратора показанной на рисунке 3, только не используется запускающий одиночный импульс на выводе 2. Дело в том, что при включении схемы на конденсаторе C1 напряжение равно нулю, именно оно и переведет выход таймера в состояние высокого уровня, как показано на рисунке 10. Конденсатор C1 начинает заряжаться через резистор R1. Напряжение на конденсаторе возрастает по экспоненте до тех пор, пока не достигнет порога верхнего порога срабатывания 2/3*U. В результате таймер переключается в нулевое состояние, поэтому конденсатор C1 начинает разряжаться до нижнего порога срабатывания 1/3*U. По достижении этого порога на выходе таймера устанавливается высокий уровень и все начинается сначала. Формируется новый период колебаний. Здесь следует обратить внимание на то, что конденсатор C1 заряжается и разряжается через один и тот же резистор R1. Поэтому время заряда и разряда равны, а, следовательно, форма колебаний на выходе такого генератора близка к меандру. Частота колебаний такого генератора описывается очень сложной формулой f = 0,722/(R1*C1). Если сопротивление резистора R1 при расчетах указать в Омах, а емкость конденсатора C1 в Фарадах, то частота получится в Герцах. Если же в этой формуле сопротивление будет выражено в килоомах (КОм), а емкость конденсатора в микрофарадах (мкФ) результат получится в килогерцах (КГц). Чтобы получился генератор с регулируемой частотой, то достаточно резистор R1 заменить переменным. Генератор импульсов с регулируемой скважностью Меандр, конечно, хорошо, но иногда возникают ситуации, требующие регулирования скважности импульсов. Именно так осуществляется регулирование частоты вращения двигателей постоянного тока (ШИМ регуляторы), это которые с постоянным магнитом. Меандром называют прямоугольные импульсы, у которых время импульса (высокий уровень t1) равно времени паузы (низкий уровень t2). Такое название в электронику пришло из архитектуры, где меандром называют рисунок кирпичной кладки. Суммарное время импульса и паузы называют периодом импульса (T = t1 + t2). Скважность и Duty cycle Отношение периода импульса к его длительности S = T/t1 называется скважностью. Это величина безразмерная. У меандра этот показатель равен 2, поскольку t1 = t2 = 0,5*T. В англоязычной литературе вместо скважности чаще применяется обратная величина, - коэффициент заполнения (англ. Duty cycle) D = 1/S, выражается в процентах. Если несколько усовершенствовать генератор, показанный на рисунке 9, можно получить генератор с регулируемой скважностью. Схема такого генератора показана на рисунке 11. Рисунок 11. В этой схеме заряд конденсатора C1 происходит по цепи R1, RP1, VD1. Когда напряжение на конденсаторе достигнет верхнего порога 2/3*U, таймер переключается в состояние низкого уровня и конденсатор C1 разряжается по цепи VD2, RP1, R1 до тех пор, пока напряжение на конденсаторе не упадет до нижнего порога 1/3*U, после чего цикл повторяется. Изменение положения движка RP1 дает возможность регулировать длительность заряда и разряда: если длительность заряда возрастает, то уменьшается время разряда. При этом период следования импульса остается неизменным, меняется только скважность, или коэффициент заполнения. Ну, это как кому удобней. На основе таймера 555 можно сконструировать не только генераторы, но и еще много полезных устройств, о которых будет рассказано в следующей статье. Кстати, существуют программы – калькуляторы для расчета частоты генераторов на таймере 555, а в программе – симуляторе Multisim для этих целей есть специальная закладка. Борис Аладышкин, http://electrik.info elektromehanika.org |