Eng Ru
Отправить письмо

Открытый урок "Действия электрического тока и его направление". Направление электрического тока


Постоянный электрический ток

3.8.3Сила и плотность тока

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд. Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда q, прошедшего через поперечное сечение проводника за время t, к этому самому времени:

Измеряется сила тока в амперах (A)11. При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл.

Подчеркнём, что формула (3.41) определяет абсолютную величину, или модуль силы тока. Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает

снаправлением обхода, и отрицательной, если ток течёт против направления обхода12.

Вслучае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за 1 с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину

плотности тока:

где I сила тока, S площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (3.41) имеем также:

j = Stq :

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (3.42), плотность тока измеряется в А/м2.

3.8.4Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к 300000 км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсегодоли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между

11Единица силы тока определяется через магнитное взаимодействие проводов с током. А именно, пусть имеются два параллельных провода, очень длинных и тонких, расположенных в вакууме на расстоянии 1 м друг от друга. По этим проводам течёт одинаковый ток. Мы говорим, что сила тока равна 1 A, если сила взаимодействия проводов равна 2 107 Н на каждый метр провода.

12Сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке.

studfiles.net

Направление электрического тока ⋆ diodov.net

Направление электрического тока принято считать от плюса к минусу генератора или источника питания, и принимается, что он протекает в металлических проводниках. Однако I образуется не только в проводниках, но и в газах и жидкостях. Атомы металлов связаны в прочную кристаллическую решетку, поэтому свободно перемещаться могут только свободные электроны; ионы остаться неподвижными. Атомы газов и жидкостей могут свободно перемещаться, поскольку не имеют прочных связей. Следовательно, носителями зарядов служат ионы и эл-ны.

Кристаллическая решетка металла, газ и жидкость

Направление движения электронов и ионов

Поэтому при определении силы тока I в газах и жидкостях, необходимо учитывать сумму положительных и отрицательных зарядов, прошедших через площадь поперечного сечения за единицу времени. Например, в металлическом проводнике I = 1 А, если через проводник за одну секунду проходят 6,2818 эл-нов (1 Кл).

Один ампер в газе или жидкости могут образовать 3,1418 эл-нов (0,5 Кл) и столько же положительных ионов (еще 0,5 Кл). Если заряд иона вдвое превышает заряд эл-на, то  потребуется в два раза меньше ионов для создания одного ампера.

Направление электрического тока в проводниках

Исторически сложилось так, что направление протекание электрического тока принято от «плюса» к «минусу», то есть от положительного к отрицательному электроду источника питания. На самом деле, если рассматривать металлический проводник, то электроны, являющиеся единственными носителями заряда, движутся от отрицательного электрода к положительном. Следовательно действительное направления тока противоположно принятому.

Направление электрического тока

Такое направление предложил Бенджамин Франклин ввиду отсутствия знаний того времени о природе носителей электрического заряда в проводниках. Портрет Бенджамина Франклина изображен на сто долларовой купюре.

Направление электрического тока в газах и жидкостях

В газах и жидкостях электрический ток может протекать от плюса к минусу, согласно традиционному представлению, поскольку в них может преобладать количество положительных ионов. Направление не стали изменять на «правильное», поскольку оно слишком плотно вошло в обиход.

diodov.net

Направление электрического тока

На предыдущих уроках, мы подчёркивали, что электрический ток — это упорядоченное движение заряженных частиц. Значит, у тока должно быть направление. Несмотря на то, что в растворах ток обусловлен движением как положительных, так и отрицательных ионов, в большинстве случаев, ток обусловлен движением электронов. Однако, за направление тока принято считать направление от положительного полюса к отрицательному.

Надо сказать, что это не совсем логично, поскольку как раз-таки отрицательные частицы двигаются к положительным в большинстве случаев.

Находясь в электрическом поле, в металлах начинают двигаться к положительному полюсу. Однако, само явление электрического тока было открыто раньше, чем делимость атома, поэтому об ионах и электронах, люди в то время не знали. Считалось, что как положительные заряды могут двигаться к отрицательному полюсу, так и отрицательные заряды могут двигаться к положительному полюсу.

В выдвижении гипотез о природе электрического поля принимал участие небезызвестный президент США Бенджамин Франклин, который выдвинул унитарную теорию электричества.

Он предположил, что электричество — это некая невесомая жидкость, способная перетекать из одного тела в другое. Электризацию тел Франклин объяснял тем, что в этой жидкости иногда был избыток электрического флюида, а иногда — недостаток. Так появилось понятие отрицательных и положительных зарядов. Как мы понимаем сейчас, под этими флюидами следует понимать электроны, о которых Франклин не знал.

Позднее, ученые Дюфе и Симмер проводя свои опыты, предположили, что существует два вида электричества, которые при соприкосновении нейтрализуют друг друга.

Опять же, сейчас мы понимаем, что тело просто становилось электрически нейтральным, получив одинаковое количество положительных и отрицательных частиц.

В итоге, французский ученый Андре Ампер, представляя свой труд в Парижской академии наук, решил принять одно из направлений токов за основное: «Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов «направление электрического тока», я буду всякий раз подразумевать направление положительного электричества».

Конечно, в наше время не существует понятия положительного электричества, есть только положительные заряды или полюса источника. Однако, Ампер внёс большой вклад в изучение электрических явлений, и в его честь была названа единица силы электрического тока. Об этом мы поговорим на следующем уроке.

Направление тока было принято и учтено во всех правилах и законах, связанных с электрическим током. Поэтому,  условное направление тока менять не стали, даже после открытия элементарных частиц.

Поэтому, на любых схемах следует помнить, что условно ток исходит от положительного полюса и распространяется по всем ответвлениям цепи в соответствии с рядом закономерностей и правил, о которых мы поговорим немного позже.

videouroki.net

Direction of electric current - grease monkey

Watching the current actions in a solution of copper sulfate, we set, что Copper is deposited only on one of the electrodes, at that, which is connected to the negative pole of the source of electric current.

If such experience reversing the connection, connected to the poles of a current source, copper would then be allocated to the other electrode, be It is now connected to the negative pole of the source тока. Arrow galvanometer, if you include it in this chain, dividing deviates from zero in the opposite direction.

Этот опыт показывает, that the electric current has a definite direction in the wires, on which depend some of his actions.

Мы знаем, that the electric current is the orderly movement of charged particles in a conductor. In metallic conductors, electric current is an orderly movement of electrons - particles, having negative charge. The electrolyte solutions electric current due to the motion of the ions of both signs. Motion, which is charged particles in an electric field should be taken as the direction of the current?

Since in most cases we are dealing, with electric currents in metals, the direction of the current in the circuit is reasonable to take direction Movement of electrons in an electric field, t. it is. считать, that the current is directed from the negative source to the positive pole.

However, the question arose about the direction of the current in science then, when about electrons and ions still did not know anything. While suggested, что all conductors can move both positive, and negative electric charges. And for the current direction of the direction taken arbitrarily, by which move (or could move) positive charges in the conductor, t. it is. direction from the positive pole of the current source to the negative. It is considered to be today.

questions. 1. Based, What effects can conclude, the electric, current in the circuit has a definite direction? 2. Motion, any charged particle is taken as the direction of the current in a conductor? 3. From pole of the current source and to which the electrons move in the chain?

Поделиться ссылкой:

Liked this:

Like Loading...

Похожее

tehnar.net.ua

Открытый урок "Действия электрического тока и его направление"

Разделы: Физика

Цели урока:

  • Дидактические: создать условия для усвоения нового учебного материала, используя методику проблемного обучения, научить учащихся, работая в группах, достигать общую цель.
  • Общеобразовательные: В процессе экспериментальной работы выяснить, какие действия способен совершать электрический ток. Познакомить учащихся с техникой безопасности при работе с электрическими приборами. Показать практическую направленность изучаемого материала.
  • Развивающие: Формировать научно-материалистическое мировоззрение, развивать логическое мышление, формировать представление о процессе научного познания. Вырабатывать умение слушать и быть услышанным, прививать культуру умственного труда.

Оборудование: Выпрямители, провода с розетками, ключи, магниты, штативы, подставки, электроды угольные и серебряные, раствор медного купороса, кипячёная вода, резистор, лампочка на подставке, шкала, термометр, гвозди, проволока, проволочный моток, таблица на доске, схемы электрических цепей, карточки, интерактивная доска.

Ход урока

1. Организационный момент.

Сообщение темы и цели урока.

2. Экспресс-опрос по пройденному материалу:

  1. Что такое электрический ток?
  2. Перечислите условия существования электрического тока.
  3. Какие заряженные частицы могут участвовать в возникновении электрического тока?
  4. Что создает и поддерживает длительное время электрическое поле в цепи?
  5. Что такое источник тока?
  6. Каково его назначение?
  7. Какие виды источников тока вам знакомы?
  8. Соотнесите источник тока с энергией, в котором происходит превращение энергии в электрическую энергию.

Класс разбивается на три группы для дальнейшей работы ребят в группах. Каждой группе выдается карточка с заданиями экспериментальной работы (Приложение 1) и рабочий лист для ученика (Приложении 2).

3. Объяснение нового материала (обратить внимание ребят на рабочие листы):

При объяснении вопроса электрический ток в металлах и направление электрического тока учащиеся заполняют пробелы в предложениях рабочего листа.

1. Электрический ток в металлах.

Металлы в твердом состоянии имеют кристаллическое строение.

В узлах кристаллической решётки металлов расположены положительные ионы, а в пространстве между ними движутся электроны. Электроны не связаны с ядрами своих атомов и движутся беспорядочно, поэтому их называют свободными.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.

Если в металлах создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникает электрический ток. Все электроны начинают двигаться в одном направлении по всей длине проводника, но между ними сохраняется беспорядочное движение (стайка мошкары, движущаяся в сторону ветра).

Электрический ток в металлах – это упорядоченное движение свободных электронов.

Скорость движения самих электронов в проводнике под действием электрического поля мала (несколько мм в секунду).

Но почему при замыкании электрической цепи лампочка загорается практически мгновенно?

Оказывается электрическое поле распространяется с огромной скоростью (близкой к С= 300 000 км/с) по всей длине проводника. Под действием электрического поля в упорядоченное движение приходят свободные е, находящиеся не только в подводящих проводниках, но и в спирали сомой лампы.

Поэтому, когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля (выполнение задания в рабочих листах).

2. Направление электрического тока.

В металлах электрический ток – это упорядоченное движение электронов (отрицательно заряженных частиц). Т.к. в основном мы будем сталкиваться с электрическим током в металлах, разумно было бы предположить, что за направление электрического тока принимают направление движения электронов в электрическом проводнике (т.е. от « – » полюса источника к « + »).

Ток возникает и в электролитах – растворах кислот, солей, щёлочей.

Электрический ток в электролитах – упорядоченное движение ионов обоих знаков.

Но вопрос о направлении электрического тока возник задолго до открытия электронов и ионов. В то время считали, что во всех проводниках могут перемещаться как « + », так и « – » заряды.

За направление электрического тока приняли направление, по которому могли бы двигаться в проводнике «+» заряды, т.е. от «+» к «–», а т.к. это условие было учтено во всех законах и правилах электрического тока, то после открытия электронов и ионов ничего изменять не стали. (Проставить направление тока в схемах рабочего листа).

3. Действия электрического тока.

Рассмотрим 2 проводника. Можно ли по их внешнему виду определить протекает по ним электрический ток или нет? (опыт на демонстрационном столе) Решить эту проблему поможет нам изучение действий электрического тока.

Действиями электрического тока называют те явления, которые наблюдаются при наличии электрического тока в цепи. По этим действиям судят о протекании электрического тока в данной цепи, т.к. нельзя непосредственно наблюдать за движением заряженных частиц в проводнике.

Выясним, какие действия может совершать электрический ток. Для этого разделимся на 4 групп, каждая из которых получит свою карточку с экспериментальным заданием. При работе в группах надо не только провести предлагаемый эксперимент, но и сделать определённые выводы из наблюдений и понять, какое действие тока вы наблюдали во время опытов работы. После выполнения экспериментального задания один человек от группы расскажет о своих наблюдениях, а второй человек, во время рассказа, аккуратно заполнит предоставленную таблицу на доске.

Действия электрического тока.

Названия действия электрического тока                                            
Приборы        
Схема        
Применение        

4. Перед началом работы, вспомним о технике безопасности:

Человеческое тело – проводник. Если случайно человек окажется под напряжением 24В, то в большинстве случаев он не избежит травмы или даже смерти. Поэтому любому человеку, имеющему дело с электричеством, надо помнить следующие правила:

  1. Очень опасно одновременное прикосновение двумя руками к двум оголённым проводам.
  2. Очень опасно прикосновение к оголённому проводу, стоя на земле, на сыром или цементном полу.
  3. Опасно пользоваться неисправными электроприборами.
  4. Нельзя собирать, разбирать, исправлять что-либо в электрическом приборе, не отключив его от источника питания.
  5. Нельзя проводить какие либо операции с электрической арматурой, не выключив её из сети.

Мы пользуемся на уроке напряжением безопасным для жизни 4В. Но правила, оговоренные выше, надо соблюдать.

5. Групповая работа по карточкам, отчёты групп, систематизация выводов в таблице на доске и в рабочих листах.

6. Закрепление изученного материала с помощью тестовых заданий

(где количество правильных ответов будет соответствовать вашей оценке). (Приложение 3)

7. Подведение итогов урока.

8. Выставление оценок учащимся.

9. Домашнее задание:

§ 34-36. Заполнить строку «Применение» в таблице.

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Направление - электрический ток - Большая Энциклопедия Нефти и Газа, статья, страница 1

Направление - электрический ток

Cтраница 1

Направление электрического тока в штыре совпадает с - осью к прямоугольной системы координат.  [2]

Направление электрического тока принято определять как направление, в котором перемещалось бы под действием электрического поля положительное электричество. В соответствии с этим следует считать, что через диод протекает ток от а. Если подвести к электродам диода переменное напряжение, то ток через прибор будет проходить только1 в ту часть периода, когда анод положителен. При отрицательном аноде электрическое поле IB приборе будет Направлять вырвавшиеся из катода электроны обратно к катоду. Прибор действует как электрический вентиль.  [3]

Направление электрического тока условно принято от положительного полюса к отрицательному.  [4]

Направление электрического тока принимается противоположным направленному перемещению электронов. Это показано на рисунке.  [6]

Направлением электрического тока считается то направление, в котором упорядоченно движутся положительные заряды. В металлах свободные электроны движутся в направлении, противоположном этому принятому.  [7]

За направление электрического тока следовало бы считать направление движения свободных электронов по металлическому проводнику, однако за направление электрического тока условно принято считать направление движения положительных зарядов в проводнике. Эта условность сложилась исторически к в настоящее время сохранила свою силу в электротехнике.  [9]

За направление электрического тока следовало бы считать направление движения свободных электронов по металлическому проводнику, однако за направление электрического тока условно принято считать направление движения положительных зарядов в проводнике. Эта условность сложилась исторически и в настоящее время сохранила свою силу в электротехнике.  [10]

За направление электрического тока принимается направление движения положительных зарядов. Поэтому направление силы, действующей на движущиеся положительные заряды, может быть определено с помощью правила левой руки: если указательный, большой и средний пальцы левой руки расположить под прямым углом друг к другу, а указательный направить по полю, средний - по направлению движения заряда, то большой палец левой руки будет указывать направление силы, действующей на заряд.  [11]

За направление электрического тока условно принимают направление движения положительных электрических зарядов. Положительные электрические заряды перемещаются в проводнике, соединяющем полюса источника тока, от положительного полюса к отрицательному.  [12]

За направление электрического тока условно принято считать направление движения положительных зарядов в проводнике.  [13]

За направление электрического тока принимается направление движения положительных зарядов. В действительности в металлических проводниках электрический ток создается движением электронов в направлении, обратном току.  [14]

За направление электрического тока условно принимают направление движения положительных зарядов, В тех проводниках, где проводимость осуществляется электронами или отрицательными ионами, направление тока противоположно направлению движения этих зарядов.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Электрический ток, напряжение. Положительное направление тока, напряжения. Численное определение электрического тока

  1. Электрический ток, напряжение. Положительное направление тока, напряжения. Численное определение электрического тока
Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение. Напряжение - это физическая величина, характеризующая электрическое поле, которое создает ток. Электрический ток и напряжение являются основными величинами, характеризующими состояние электрических цепей. Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов под действием электрического поля. Под словами ток понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошедшего через поперечное сечение проводника в единицу времени:

где ∆q - электрический заряд, прошедший за время ∆t через поперечное сечение проводника.

Следовательно, ток характеризует скорость изменения заряда во времени.

Численное значение электрического тока I определяется как отношение скорости изменения заряда Δq ко времени t.

I=Δq/t

Единица измерения тока - Ампер (A).

Электрический ток может быть постоянным или переменным.

2.Сопротивление, индуктивность, емкость. Закон Ома для этих элементов.

Электрическое сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления. Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов (напряжение) на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Индуктивность физическая величина, характеризующая магнитные свойства электрической цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пространстве магнитное поле, причём Магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо пропорционален силе тока I : Ф=LI

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. Q-заряд φ- потенциал проводника.

3.Источники напряжения. Идеальные источники, их ВАХ
  1. Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э.д.с.) источника и обозначается e(t).

ВАХ реальных источников пересекает обе оси координат и эти точки пересечения соответствуют нулевому току через источник и нулевому падению напряжения. Режим с нулевыи током и ненулевым падением напряжения называется холостым ходом, а режим с нулевым падением напряжения и ненулевым током на выходе - коротким замыканием.

Уравнение ВАХ ИЭ представляет собой уравнение прямой линии в координатах U-I. Его можно получить из уравнения прямой линии, проходящей через начало координат I = - Ug = -U/r либо из обратной функции U = -Ir , где r - коэффициент соответствующий котангенсу угла наклона к оси U и имеющий размерность сопротивления, а g = 1/r - тангенс угла наклона с размерностью проводиомсти. Для получения ВАХ ИЭ можно сместить линию I = - Ug на величину тока короткого замыкания

I = -Ug + Iкз = Iкз - Ug = J - Ug

или обратную функцию U = -Ir сместить на величину напряжения холостого хода

U = -Ir + Uхх = Uхх - Ir = E - Ir

4.Электрическая схема, её ветви, узлы, контуры. Последовательное, параллельное, смешанное соединение элементов. Устранимый узел.

Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов рассматриваемой электрической цепи

Ветвь образуется одним или несколькими последовательно соединенными элементами цепи.

Узел - место соединения трех или большего числа ветвей.

Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром

5.Закон Ома для пассивного и активного участка электрической цепи. Применение закона Ома

Закон Ома для пассивного участка электрической цепи.

При протекании электрического тока через сопротивление R, напряжение U и ток I на этом участке связаны между собою согласно закону Ома: Сопротивление R - это коэффициент пропорциональности между током и напряжением.

Закон Ома можно записать через разность потенциалов:

Закон Ома для активного участка электрической цепи.

Закон Ома для активного участка цепи между точками а и в имеет вид:

Напряжение на участке электрической цепи Uab и ЭДС берутся со знаком «плюс», если их направление совпадает с направление протекания тока. Напряжение (разность потенциалов) и источник электродвижущей силы берутся со знаком «минус», если их направление не совпадает с направлением протекания тока.

Пример составления уравнения по закону Ома

Рассмотрим пример решения задачи на составления уравнения по закону Ома для участка линейной электрической цепи с двумя источниками ЭДС.

Пусть в данной электрической цепи направление тока будет из точки "a" в точку "b". Напряжение Uab Направляется всегда из первой буквы ("a") к последней ("b").

Согласно правилу составления уравнения по закону Ома источник ЭДС E1 берем со знаком "плюс", т.к. его направление (направление стрелочки) совпадает с направлением протекающего тока.

Источник ЭДС E2 берем со знаком "минус", т.к. его направление (направление стрелочки) не совпадает с направлением протекающего тока.

Напряжение Uab или разность потенциалов φa - φb берем со знаком "плюс", т.к. его направление совпадает с направление протекающего тока.

Сопротивление R1 и R1 соединены последовательно. При последовательном соединении сопротивлений их эквивалентное значение равно сумме.

В результате составленное уравнение по закону Ома будет иметь вид:

Пусть потенциал в данной задаче потенциал точки "а" равен 10 вольт, потенциал точки "b" = 7 вольт, E1=25 В, E2=17 В, R1=5 Ом, R2=10 Ом. Рассчитаем величину тока:

Полученный ток равен 1 Ампер.

6.Первый и второй законы Кирхгофа. Правило записи второго закона Кирхгофа. Количество независимых уравнений. Применение законов для расчета цепей постоянного тока. Пример.

Первый закон Кирхгофа

алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю.

Устанавливать знаки для входящих и исходящих токов можно произвольно, но обычно придерживаются правила знаков.

Правило знаков: токи, входящие в узел, берутся со знаком "+", а выходящие из узла - со знаком "-".

Второй закон Кирхгофа.

Формулировка: в любом замкнутом контуре алгебраическая сумма падений напряжений на резистивных элементах равна алгебраической сумме эдс.

Перед записью уравнения по второму закону Кирхгофа выбирают направление обхода по замкнутому контуру (по часовой стрелке или против). Здесь так же принято правило знаков.

Количество уравнений Кирхгофа

На практике составляют минимальное количество уравнений. Количество уравнений должно быть равно количеству неизвестных, которые необходимо найти. Неизвестными в данной задаче являются токи. Количество возможных токов равняется количеству ветвей, так как в каждой ветви протекает определенный ток.

Поэтому достаточно сосчитать количество ветвей в схеме, для того чтобы знать, сколько необходимо будет составить уравнений.

Законы Кирхгофа применяют для анализа и расчета разветвленных сложных электрических цепей постоянного и переменного тока. Они позволяют рассчитать электрические токи во всех ветвях. По найденным токам можно рассчитать падение напряжения, мощность и т.д.

7.Баланс мощностей в цепях постоянного тока. Пример расчета.

Баланс мощностей.

Для любой электрической цепи суммарная мощность Ри, развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности Рп, расходуемой потребителями (резисторами).

РR = U×I = R∙I 2 = U 2/R – мощность, рассеиваемая резистором.

РЕ = ±Е∙I – мощность источника ЭДС.

РJ = ± UJ ×J – мощность источника тока.

Мощности, рассеваемые резисторами, всегда положительны, в то время как мощности источников электрической энергии, в зависимости от соотношения направлений падения напряжения и тока в них, могут иметь любой знак. Если направление протекания тока через источник противоположно направлению падения напряжения на нём, то мощность источника положительна, т.е. он отдаёт энергию в электрическую цепь. В противном случае мощность источника отрицательна, и он является потребителем электрической энергии. Следует заметить, что направление падения напряжения всегда противоположно направлению ЭДС, поэтому для источника ЭДС условием положительной мощности является совпадение направлений ЭДС и тока.

8. Метод узловых напряжений. Его применение в схемах с идеальными источниками э.д.с. Пример.

Заключается в опред на основании 1 закона К потенц в узлах эл цепи относ некоторого баз узла. Баз узел в общем случае выбир произвольно, потенциал этого узла =0. Разности потенц- узловым напряжением. Nур=Ny-1-Nэ.д.с.

Узло напр U10=1-0. Полож напряж узл напр указывается стрелкой от рассматро узла к базисному.

Напряжение на ветвях цепи равно, очевидно, разности узловых напряжений концов данной ветви. Например, напряжение ветви 4 равно: U4=I4R4=U10-U20

Уравнения по первому закону Кирхгофа для 1 и 2 узлов соответственно записываются:

Узловое напряжение Отсюда

Из приведенных выражений видно:

Собственная проводим узла равна сумме проводим ветвей, сход в данном узле.

Взаимная проводь равна сумме провод ветвей, соед данные узлы.

собственная провод входит в выражения со знаком «+», а взаимная проводимость – со знаком «-».

Для произв схемы, сод n+1 узлов, сист ур по методу узловых напр имеет вид:

Порядок расчета электрических цепей по методу узловых напряжений:

  1. Выбираем баз узел, где сходится большее кол ветвей. Если имеется ветвь, сод идеальную э.д.с., то базисный узел должен быть концом или началом этой ветви.
  2. Составляется система уравнений для неизвестных узловых напряжений в соответствии с общей структурой этих уравнений (36).
  3. Решая данную систему, находят напряжения узлов относительно базиса.
  4. Токи ветвей определяют по обобщенному закону Ома:
9.Зависимости между сопротивлениями и проводимостями участка цепи.

Пользуясь комплексной формой записи, при заданном комплексном сопротивлении Z = R + jХ некоторого участка цепи находим для того же участка цепи комплексную проводимость . (3.15)

В свою очередь, если задана комплексная проводимость некоторого участка цепи Y = g – jb, то комплексное сопротивление того же участка цепи (3.16)

Выражения (3.15) и (3.16) показывают, что реактивное сопротивление Х и реактивная проводимость b одного и того же участка цепи имеют одинаковый знак.

Кроме того, каждое слагающее проводимости (g и b) зависит как от активного, так и от реактивного сопротивлений, т.е. от R и Х.

Соответственно, каждое слагающее сопротивлений R и Х является функцией активной и реактивной проводимостей g и b.

Соотношения g = l/R и b = 1/х справедливы только в частном случае, когда элемент R, L или С рассматривается в отдельности, например:

10.Метод наложения. Понятия входных и взаимных проводимостей.

ПРИНЦИП НАЛОЖЕНИЯ (для линейных цепей): если в цепи действует несколько источников, то ток в каждой ветви будет равен алгебраической сумме частичных токов, создаваемых каждым источником в отдельности.

АЛГОРИТМ МЕТОДА НАЛОЖЕНИЯ: 1) устраняются все исотчники кроме одного, при этом источники ЭДС закарачиваются, источники тока размыкаются, 2) определяются чатичные токи во всех ветвях, создаваемые данным источником, 3) исключается рассмотренный источник, подключается следующий, определяются частичные токи, создаваемые данным источником, 4) определяются истинные токи в ветвях как алгебраическая сумма частичных токов Ik=Ik’+Ik’’+Ik’’’+…+Ik(c.n), n – число источников. Метод неудобен для расчета цепей с большим количеством источников и неприемлен

для расчета нелинейных цепей, но

незаменим при расчете цепей

несинусоидального тока.

ПОНЯТИЕ О ВХОДНЫХ И ВЗАИМНЫХ ПРОВОДИМОСТЯХ.

Рассмотрим сполошную пассивную цепь, выделим в ней

к-ю ветвь, в которую подключим источник Ek. Если

через к-ю и m-ю ветвь цепь замыкается только

один контурный ток, то выражения для токов будут:

Ik=Ek ∆kk / ∆ = Ek Gkk; Im=Ek ∆km / ∆ = Ek Gkm.

Взаимная проводимость к-й и m-й цепи:

Gkm=Im/Ek=∆km/∆ (величина определяется экспериментально).

Она зависит от параметров цепи, но может быть и определена экспериментально. Только путем измерения тока в пассивной цепи, создаваемого единственной ЭДС включенной в к-ю ветвь. Gkm=Gmk т.к. ∆km=∆mk.

11. Теорема компенсации, доказательство.

В электрической цепи любой пассивный элемент можно заменить эквивалентным источником напряжения, э.д.с. которого равна падению напряжения на данном элементе E=U=IR и направлена навстречу ему.

Справедливость этого утверждения вытекает из того, что любое из слагающих падения напряжений, входящих в уравнения по второму закону Кирхгофа может быть перенесено в другую сторону уравнения с противоположным знаком, т.е. может рассматриваться как дополнительная э.д.с., направленная навстречу току.

Рис. 31. Иллюстрация к теореме компенсации.

Если в ветвь ''ab'' рис.31,а последовательно включить две равные, но противоположно направленные э.д.с. E/=E//=IR, то точки ''a'' и ''d'', ''c'' и ''b'' оказываются соответственно точками одинакового потенциала:

Таким образом, закоротив точки ''a'' и ''d'' и исключив, получим этот участок из ветви «ab», получим схему рис. 31,в. Ток ветви при этом не изменится.

12. Теорема взаимности, доказательство.

Теорема взаимности формулируется следующим образом: для любой линейной цепи ток в k-ветви, вызванный источником ЭДС Еm находящимся в m-ветви, Ik = Emgkm равен току lm в m-ветви, вызванному источником ЭДС Ek (численно равной ЭДС Em), находящимся в k-ветви, Im = Ekgmk.

Для доказательства теоремы взаимности обратимся к рис. 2.15,а. Как и при выводах в § 2.15, выделим две ветви схемы: ветвь k и ветвь m. Включим в ветвь m источник ЭДС Еm, в ветвь k - амперметр А1 для измерения тока Ik. Пусть каждая из ветвей k и m входит соответственно только в k- и m-контуры. Поэтому по методу контурных токов Ik = EmΔkm/Δ. Поменяем местами источник ЭДС и амперметр, т. е. источник ЭДС переместим из ветви m в ветвь k и назовем теперь Ek, а амперметр - из ветви k в ветвь m. В этом случае ток Im = Ek Δmk/Δ.

Так как Ek = Еm, a Δmk = Δkm в силу симметрии определителя системы Δ относительно главной диагонали (см. § 2.13), то ток Ik в схеме рис. 2.15, б равняется току Im в схеме рис. 2.15, в.

При практическом использовании теоремы взаимности важно иметь в виду взаимное соответствие направлений токов и ЭДС в схемах рис. 2.15, б, в.

Так, если ЭДС Ek источника ЭДС, находящегося в k-ветви схемы рис. 2.15, в, направлена согласно с контурным током Ik в схеме рис. 2.15, б, то положительное направление отсчета для тока Im в схеме рис. 2.15, в будет совпадать с положительным направлением контурного тока по ветви m (ЭДС Еm в схеме рис. 2.15, в направлена по Im). 13. Теорема об эквивалентном генераторе напряжения, доказательство.

Теорема об эквивалентном преобразовании источников утверждает, что всякую схему, состоящую из резисторов и источников напряжения и имеющую два вывода, можно представить в виде эквивалентной схемы, состоящей из одного резистора R, последовательно подключённого к одному источнику напряжения U. Представьте, как это удобно. Вместо того чтобы разбираться с мешаниной батарей и резисторов, можно взять одну батарею и один резистор (рис. 1.9). (Кстати, известна ещё одна теорема об эквивалентном преобразовании, которая содержит такое же утверждение относительно источника тока и параллельно подключённого резистора).

Рис. 1.9.

Как определить эквивалентные параметры Rэкв и Uэкв для заданной схемы? Оказывается просто. Uэкв - это напряжение между выводами эквивалентной схемы в её разомкнутом (не нагруженном) состоянии; так как обе схемы работают одинаково, это напряжение совпадает с напряжением между выводами данной схемы в разомкнутом состоянии (его можно определить путём вычислений, если схема вам известна, или измерить, если схема неизвестна). После этого можно определить Rэкв, если учесть, что ток в эквивалентной схеме, при условии, что она замкнута (нагружена), равен Uэкв/Rэкв. Иными словами,

Uэкв = U (разомкнутая схема).

Rэкв = U (разомкнутая схема)/I (замкнутая схема).

14. Цепь с идеальным резистором.

Резистор (англ. resistor, от лат. resisto — сопротивляюсь), — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него. На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

а) Цепь с идеальным резистором R.

Пусть к цепи с резистором R (рис. 41а) приложено переменное напряжение:

Ток и напряжение на зажимах резистора связаны между собой физическим законом Ома, т. Е gvdg

Где уравнения закона Ома для амплитудных и действующих значений функций.15. Преобразование звезды в треугольник

16. Метод контурных токов. Пример.

Он заключается в определении по второму закону Кирхгофа контурных токов. Для каждого контура цепи задают ток, который остается неизменным. В цепи протекает столько контурных токов, сколько независимых контуров в ней содержится. Направление контурного тока выбирают произвольно.

Контурные токи, проходя через узел, остаются непрерывными. Следовательно, первый закон Кирхгофа выполняется автоматически. Уравнения с контурными токами записываются только для второго закона Кирхгофа. Число уравнений, составленных по методу контурных токов, меньше чем по методу законов Кирхгофа. Nур=Nb-Ny+1-Nи.т.

Уравнения, составленные по методу контурных токов, всегда записывают в виде системы. Для схемы рис.28:

Поделитесь с Вашими друзьями:

zodorov.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта