Eng Ru
Отправить письмо

Энергодиспетчер. Газотурбинная установка


Газотурбинная установка - это... Что такое Газотурбинная установка?

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

Газотурбинная установка (ГТУ) — энергетическая установка: конструктивно объединённая совокупность газовой турбины, электрического генератора, газовоздушного тракта, системы управления и вспомогательных устройств (пусковое устройство, компрессор, теплообменный аппарат или котёл-утилизатор для подогрева сетевой воды для промышленного снабжения).[источник не указан 404 дня]

Описание ГТУ

Газотурбинная установка состоит из двух основных частей: силовая турбина и генератор, которые размещаются в одном корпусе. Поток газа высокой температуры воздействует на лопатки силовой турбины (создает крутящий момент). Использование тепла посредством теплообменника или котла-утилизатора обеспечивает увеличение общего КПД установки.

ГТУ может работать как на жидком, так и на газообразном топливе[1]: в обычном рабочем режиме — на газе, а в резервном (аварийном) — автоматически переключается на дизельное топливо. Оптимальным режимом работы газотурбинной установки является комбинированная выработка тепловой и электрической энергии. ГТУ в энергетике работают как в базовом режиме, так и для покрытия пиковых нагрузок.

Применение ГТУ

В настоящее время газотурбинные установки начали широко применяться в малой энергетике [источник не указан 958 дней].

ГТУ предназначены для эксплуатации в любых климатических условиях как основной или резервный источник электроэнергии и тепла для объектов производственного или бытового назначения. Области применения газотурбинных установок практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, муниципальные образования.

Блочно-модульное исполнение ГТУ обеспечивает высокий уровень заводской готовности газотурбинных электростанций. Степень автоматизации газотурбинной электростанции позволяет отказаться от постоянного присутствия обслуживающего персонала в блоке управления. Контроль работы станции может осуществляться с главного щита управления, дистанционно [источник не указан 958 дней].

Примечания

См. также

Ссылки

dic.academic.ru

Устройство современной стационарной высокотемпературной газотурбинной установки ГТУ. Схема газотурбинной установки. Камеры сгорания ГТУ

Устройство ГТУ V94.3

На рис.4 показано устройство ГТУ V94.3 фирмы Siemens. Атмосферный воздух от комплексного воздухоочистительного устройства (КВОУ) поступает в шахту 4, а из нее — к проточной части 16 воздушного компрессора. В компрессоре происходит сжатие воздуха. Степень сжатия в типичных компрессорах составляет = 13—17, и таким образом давление в тракте ГТУ не превышает 1,3—1,7 МПа (13—17 ат). Это еще одно серьезное отличие ГТУ от паровой турбины, в которой давление пара больше, чем давление газов в ГТУ в 10—15 раз. Малое давление рабочей среды обусловливает малую толщину стенок корпусов и легкость их прогрева. Именно это делает ГТУ очень маневренной, т.е. способной к быстрым пускам и остановкам. Если для пуска паровой турбины в зависимости от ее начального температурного состояния требуется от 1 ч до нескольких часов, то ГТУ может быть введена в работу за 10—15 мин.

При сжатии в компрессоре воздух нагревается. Таким образом, за компрессором температура воздуха составляет 300—350 °С. Воздух между стенками пламенной трубы (см. рис.4) и корпуса камеры сгорания движется к горелочному устройству, к которому подается и топливный газ. Поскольку топливо должно поступать в камеру сгорания, где давление 1,3—1,7 МПа, то давление газа должно быть большим. Для возможности регулирования его расхода в камеру сгорания требуется давление газа примерно вдвое больше, чем давление в камере. Если в подводящем газопроводе имеется такое давление, то газ подается в камеру сгорания прямо с газораспределительного пункта (ГРП). Если давление газа недостаточное, то между ГРП и камерой устанавливают дожимной газовый компрессор.

Расход топливного газа составляет всего примерно 1—1,5 % от расхода воздуха, поступающего от компрессора, поэтому создание высокоэкономичного дожимного газового компрессора представляет определенные технические трудности. Внутри пламенной трубы 10 образуются продукты сгорания высокой температуры. После подмешивания вторичного воздуха на выходе из камеры сгорания она несколько снижается, но достигает тем не менее, в типичных современных ГТУ 1350—1400°С.

Из камеры сгорания горячие газы поступают в проточную часть 7 газовой турбины. В ней газы расширяются до практически атмосферного давления, так как пространство за газовой турбиной сообщается либо с дымовой трубой, либо с теплообменником, гидравлическое сопротивление которого невелико.

При расширении газов в газовой турбине на ее валу создается мощность. Эта мощность частично расходуется на привод воздушного компрессора, а ее избыток — на привод ротора 1 электрогенератора. Одна из характерных особенностей ГТУ состоит в том, что компрессор требует примерно половины мощности, развиваемой газовой турбиной. Например, в создаваемой в России ГТУ мощностью 180 МВт (это и есть полезная мощность) мощность компрессора составляет 196 МВт. Это одно из принципиальных отличий ГТУ от ПТУ: в последней мощность, идущая на сжатие питательной воды даже до давления в 23,5 МПа (240 ат) составляет всего несколько процентов от мощности паровой турбины. Связано это с тем, что вода — малосжимаемая жидкость, а воздух для сжатия требует много энергии.

Таким образом, температура газов за ГТУ достаточно высока, и значительное количество теплоты, полученной при сжигании топлива, в буквальном смысле уходит в дымовую трубу. Поэтому при автономной работе ГТУ ее КПД невелик:для типичных ГТУ он составляет 35-36 %, т.е. существенно меньше, чем КПД ПТУ. Дело, однако, кардинальным образом изменяется при установке на «хвосте» ГТУ теплообменника (сетевого подогревателя или котла-утилизатора для комбинированного цикла), о чем пойдет речь в следующей лекции.

За газовой турбиной устанавливают диффузор - плавно расширяющийся канал, при течении в котором скоростной напор газов частично преобразуется в давление. Это позволяет иметь за газовой турбиной давление меньшее, чем атмосферное, что увеличивает работоспособность 1 кг газов в турбине и, следовательно, повышает ее мощность.

Устройство воздушного компрессора

Как уже указывалось, воздушный компрессор - это турбомашина, к валу которой подводится мощность от газовой турбины; эта мощность передается воздуху, протекающему через проточную часть компрессора, вследствие чего давление воздуха повышается вплоть до давления в камере сгорания.

Ротор воздушного компрессора ГТУ, уложенный в опорные подшипники

На рис.5 показан ротор ГТУ, уложенный в опорные подшипники; на переднем плане хорошо виден ротор компрессора и статорные элементы.

Из шахты 4 (см. рис.4) воздух поступает в каналы, образованные поворотными лопатками 2 (рис.5) невращающегося входного направляющего аппарата (ВНА). Главная задача ВНА — сообщить потоку, движущемуся в осевом (или радиально-осевом) направлении вращательное движение. Каналы ВНА принципиально не отличаются от сопловых каналов паровой турбины: они являются конфузорными (суживающимися), и поток в них ускоряется, одновременно приобретая окружную составляющую скорости.

Входная часть воздушного компрессора ГТУ

В современных ГТУ входной направляющий аппарат делают поворотным (рис.6). Необходимость в поворотном ВНА вызвана стремлением не допустить снижения экономичности при снижении нагрузки ГТУ. Дело заключается в том, что валы компрессора и электрогенератора имеют одинаковую частоту вращения, равную частоте сети. Поэтому, если не использовать ВНА, то и количество воздуха, подаваемого компрессором в камеру сгорания, постоянно и не зависит от нагрузки турбины. А изменить мощность ГТУ можно только изменением расхода топлива в камеру сгорания. Поэтому при уменьшении расхода топлива и неизменности количества воздуха, подаваемого компрессором, снижается температура рабочих газов и перед газовой турбиной, и за ней. Это приводит к очень значительному снижению экономичности ГТУ.

Поворот лопаток при снижении нагрузки вокруг оси 1 на 25-30° (рис.6) позволяет сузить проходные сечения каналов ВНА и уменьшить расход воздуха в камеру сгорания, поддерживая постоянным соотношение между расходом воздуха и топлива. Установка входного направляющего аппарата позволяет поддерживать температуру газов перед газовой турбиной и за ней постоянной в диапазоне мощности примерно 100-80%.

Устройство входного поворотного направляющего аппарата ГТУ

На рис.7 показан привод лопаток ВНА. К осям каждой лопатки крепится поворотный рычаг 2 (см. поз. 4 на рис.6), который через рычаг 4 связан с поворотным кольцом 1 (см. поз. 5 на рис.6). При необходимости изменения расхода воздуха кольцо 1 поворачивается с помощью тяг и электродвигателя с редуктором; при этом поворачиваются одновременно все рычаги 2 и соответственно лопатки ВНА 5.

Закрученный с помощью ВНА воздух поступает в 1-ю ступень воздушного компрессора, которая состоит из двух решеток: вращающейся (см. поз. 13 на рис.6 и поз. 3 на рис. рис.5) и неподвижной (см. поз. 1 на рис.6; в этом отличие от ступени турбины, в которой первая решетка - невращающаяся). Обе решетки в отличие от решеток турбины имеют расширяющиеся (диффузорные) каналы (рис.8), т.е. площадь для прохода воздуха на входе F1 меньше, чем F2 на выходе.

Канал компрессорной решетки

При движении воздуха в таком канале, его скорость уменьшается (w2 р1). К сожалению, сделать диффузорную решетку экономичной, т.е. чтобы скорость потока w1 в максимальной степени преобразовалась бы в давление, а не в теплоту, можно только при небольшой степени сжатия р2/р1 (обычно 1,2 — 1,3), что приводит к большому числу ступеней компрессора (14 — 16 при степени сжатия компрессора = 13 — 16).

Течение воздуха в компрессорной ступени

На рис.9 показано течение воздуха в компрессорной ступени. Из входного (неподвижного) поворотного соплового аппарата воздух выходит со скоростью c1 (см. верхний треугольник скоростей), имеющий необходимую окружную закрутку ( c1. При движении в канале скорость воздуха уменьшается до значения w2, и он выходит под углом 2, определяемым наклоном профилей. Однако вследствие вращения и подвода к воздуху энергии от рабочих лопаток его скорость с2 в абсолютном движении будет больше, чем c1. Лопатки неподвижной решетки устанавливают так, чтобы вход воздуха в канал был безударным. Так как каналы этой решетки расширяющиеся, то скорость в ней уменьшается, а давление возрастает от р1 до р2. Во второй ступени и последующих ступенях процесс сжатия будет протекать аналогичным образом. При этом высота их решеток будет уменьшаться в соответствии с увеличившейся плотностью воздуха из-за сжатия.

Иногда направляющие лопатки нескольких первых ступеней компрессора выполняют поворотными (см. рис.6) точно так же, как и лопатки ВНА. Это позволяет расширить диапазон мощности ГТУ, при котором температура газов перед газовой турбиной и за ней остается неизменной. Соответственно повышается и экономичность. Применение нескольких поворотных направляющих аппаратов позволяет работать экономично в диапазоне 100 — 50 % мощности.

Входная часть компрессора, трубчато-кольцевая камера сгорания и входная часть газовой турбины

Последняя ступень компрессора устроена так же, как и предшествующие с той лишь разницей, что задачей последнего направляющего аппарата 1 (рис.10) является не только повышение давления, но и обеспечение осевого выхода потока воздуха. Воздух поступает в кольцевой выходной диффузор 23, где давление повышается до максимального значения. С этим давлением воздух поступает в зону горения 9.

Из корпуса воздушного компрессора выполняются отборы воздуха для охлаждения элементов газовой турбины. Для этого в его корпусе выполняют кольцевые камеры (см. поз. 8 на рис.5), сообщаемые с пространством за соответствующей ступенью. Воздух из камер отводится с помощью трубопроводов (см. поз. 14 на рис.4).

Кроме того, компрессор имеет так называемые антипомпажные клапаны и обводные трубопроводы (см. поз. 6 на рис.4), перепускающие воздух из промежуточных ступеней компрессора в выходной диффузор газовой турбины при ее пуске и остановке. Это исключает неустойчивую работу компрессора при малых расходах воздуха (это явление называется помпажом), выражающуюся в интенсивной вибрации всей машины.

Создание высокоэкономичных воздушных компрессоров представляет собой чрезвычайно сложную задачу, которую, в отличие от турбин, невозможно решить только расчетом и проектированием. Поскольку мощность компрессора равна примерно мощности ГТУ, то ухудшение экономичности компрессора на 1 % приводит к снижению экономичности всей ГТУ на 2—2,5 %. Поэтому создание хорошего компрессора является одной из ключевых проблем создания ГТУ. Обычно компрессоры создаются путем моделирования (масштабирования), используя модельный компрессор, созданный путем длительной экспериментальной доводки.

Камеры сгорания ГТУ

ГТУ с одной выносной камерой сгорания

Камеры сгорания ГТУ отличаются большим разнообразием. Выше (на рис.4) показана ГТУ с двумя выносными камерами. На рис.11 показана ГТУ типа 13Е мощностью 140 МВт фирмы ABB с одной выносной камерой сгорания, устройство которой аналогично устройству камеры, показанной на рис.4. Воздух из компрессора из кольцевого диффузора поступает в пространство между корпусом камеры и пламенной трубой и затем используется для горения газа и для охлаждения пламенной трубы.

Внешний вид ГТУ типа 13Е

Главный недостаток выносных камер сгорания — большие габариты, которые хорошо видны из рис.12. Справа от камеры размещается газовая турбина, слева — компрессор. Сверху в корпусе видны три отверстия для размещения антипомпажных клапанов и далее — привод ВНА. В современных ГТУ используют в основном встроенные камеры сгорания: кольцевые и трубчато-кольцевые.

Встроенная кольцевая камера сгорания ГТУ

На рис.13 показана встроенная кольцевая камера сгорания. Кольцевое пространство для горения образовано внутренней17 и наружной 11 пламенными трубами. Изнутри трубы облицованы специальными вставками 13 и 16, имеющими термобарьерное покрытие со стороны, обращенной к пламени; с противоположной стороны вставки имеют оребрение, улучшающее их охлаждение воздухом, поступающим через кольцевые зазоры между вставками внутрь пламенной трубы. Таким образом, достигается температура пламенной трубы 750—800°С в зоне горения. Фронтовое микрофакельное горелочное устройство камеры состоит из нескольких сотен горелок 10, к которым подается газ из четырех коллекторов 5—8. Отключая коллекторы поочередно можно изменять мощность ГТУ.

Горелка кольцевой сгорания ГТУ

Устройство горелки показано на рис.14. Из коллектора газ поступает по сверлению в штоке 3 к внутренней полости лопаток6 завихрителя. Последний представляет собой полые радиальные прямые лопатки, заставляющие воздух, поступающий из камеры сгорания, закручиваться и вращаться вокруг оси штока. В этот вращающийся воздушный вихрь поступает природный газ из внутренней полости лопаток завихрителя 6 через мелкие отверстия 7. При этом образуется однородная топливно-воздушная смесь, выходящая в виде закрученной струи из зоны 5. Кольцевой вращающийся вихрь обеспечивает устойчивое горение газа.

На рис.10 показана трубчато-кольцевая камера сгорания ГТЭ-180. В кольцевое пространство 24 между выходной частью воздушного компрессора и входной частью газовой турбины с помощью перфорированных конусов 3 помещают 12 пламенных труб 10. Пламенная труба содержит многочисленные отверстия диаметром 1 мм, расположенные по кольцевым рядам на расстоянии 6 мм между ними; расстояние между рядами отверстий 23 мм. Через эти отверстия снаружи поступает «холодный» воздух, обеспечивая конвективно-пленочное охлаждение и температуру пламенной трубы не выше 850°С. На внутреннюю поверхность пламенной трубы наносится термобарьерное покрытие толщиной 0,4 мм.

Горелочный модуль трубчато-кольцевой сгорания ГТУ

На фронтовой плите 8 пламенной трубы устанавливают горелочное устройство, состоящее из центральной пилотной горелки 6, поджигающей топливо при пуске с помощью свечи 5, и пяти основных модулей, один из которых показан на рис.15. Модуль позволяет сжигать газ и дизельное топливо. Газ через штуцер 1 после фильтра 6 поступает в кольцевой коллектор топливного газа5, а из нее — в полости, содержащие мелкие отверстия (диаметр 0,7 мм, шаг 8 мм). Через эти отверстия газ поступает внутрь кольцевого пространства. В стенках модуля выполнено шесть тангенциальных пазов 9, через которые поступает основное количество воздуха, подаваемого для горения от воздушного компрессора. В тангенциальных пазах воздух закручивается и, таким образом, внутри полости 8 образуется вращающийся вихрь, движущийся к выходу из горелочного устройства. На периферию вихря через отверстия 3 поступает газ, смешивается с воздухом, и образовавшаяся гомогенная смесь выходит из горелки, где воспламеняется и сгорает. Продукты сгорания поступают к сопловому аппарату 1-й ступени газовой турбины.

Газовая турбина

Газовая турбина является наиболее сложным элементом ГТУ, что обусловлено в первую очередь очень высокой температурой рабочих газов, протекающих через ее проточную часть: температура газов перед турбиной 1350°С в настоящее время считается «стандартной», и ведущие фирмы, в первую очередь General Electric, работают над освоением начальной температуры 1500°С. Напомним, что «стандартная» начальная температура для паровых турбин составляет 540°С, а в перспективе — температура 600—620°С.

Повышение КПД реальных ГТУ в связи с ростом температуры перед газовой турбиной

Стремление повысить начальную температуру связано, прежде всего, с выигрышем в экономичности, который она дает. Это хорошо видно из рис.16, обобщающего достигнутый уровень газотурбостроения: повышение начальной температуры с 1100 до 1450°С дает увеличение абсолютного КПД с 32 до 40%, т.е. приводит к экономии топлива в 25%. Конечно, часть этой экономии связана не только с повышением температуры, но и с совершенствованием других элементов ГТУ, а определяющим фактором все-таки является начальная температура.

Для обеспечения длительной работы газовой турбины используют сочетание двух средств. Первое средство — применение для наиболее нагруженных деталей жаропрочных материалов, способных сопротивляться действию высоких механических нагрузок и температур (в первую очередь для сопловых и рабочих лопаток). Если для лопаток паровых турбин и некоторых других элементов применяются стали (т.е. сплавы на основе железа) с содержанием хрома 12—13%, то для лопаток газовых турбин используют сплавы на никелевой основе (нимоники), которые способны при реально действующих механических нагрузках и необходимом сроке службы выдержать температуру 800—850°С. Поэтому вместе с первым используют второе средство — охлаждение наиболее горячих деталей.

Система охлаждения газовой турбины

Для охлаждения большинства современных ГТУ используется воздух, отбираемый из различных ступеней воздушного компрессора. Уже работают ГТУ, в которых для охлаждения используется водяной пар, который является лучшим охлаждающим агентом, чем воздух. Охлаждающий воздух после нагрева в охлаждаемой детали сбрасывается в проточную часть газовой турбины. Такая система охлаждения называется открытой. Существуют замкнутые системы охлаждения, в которых нагретый в детали охлаждающий агент направляется в холодильник и затем снова возвращается для охлаждения детали. Такая система не только весьма сложна, но и требует утилизации тепла, отбираемого в холодильнике.

Система охлаждения газовой турбины — самая сложная система в ГТУ, определяющая ее срок службы. Она обеспечивает не только поддержание допустимого уровня рабочих и сопловых лопаток, но и корпусных элементов, дисков, несущих рабочие лопатки, запирание уплотнений подшипников, где циркулирует масло и т.д. Эта система чрезвычайно сильно разветвлена и организуется так, чтобы каждый охлаждаемый элемент получал охлаждающий воздух тех параметров и в том количестве, который необходим для поддержания его оптимальной температуры. Излишнее охлаждение деталей так же вредно, как и недостаточное, так как оно приводит к повышенным затратам охлаждающего воздуха, на сжатие которого в компрессоре затрачивается мощность турбины. Кроме того, повышенные расходы воздуха на охлаждение приводят к снижению температуры газов за турбиной, что очень существенно влияет на работу оборудования, установленного за ГТУ (например, паротурбинной установки, работающей в составе ПТУ). Наконец, система охлаждения должна обеспечивать не только необходимый уровень температур деталей, но и равномерность их прогрева, исключающую появление опасных температурных напряжений, циклическое действие которых приводит к появлению трещин.

Схема охлаждения современной газовой турбины

На рис.17 показан пример схемы охлаждения типичной газовой турбины. В прямоугольных рамках приведены значения температур газов. Перед сопловым аппаратом 1-й ступени 1 она достигает 1350°С. За ним, т.е. перед рабочей решеткой 1-й ступени она составляет 1130°С. Даже пе¬ред рабочей лопаткой последней ступени она находится на уровне 600°С. Газы этой температуры омывают сопловые и рабочие лопатки, и если бы они не охлаждались, то их температура равнялась бы температуре газов и срок их службы ограничивался бы несколькими часами.

Для охлаждения элементов газовой турбины используется воздух, отбираемый от компрессора в той его ступени, где его давление несколько больше, чем давление рабочих газов в той зоне газовой турбины, в которую подается воздух. Например (рис.17), на охлаждение сопловых лопаток 1-й ступени охлаждающий воздух в количестве 4,5% от расхода воздуха на входе в компрессор отбирается из выходного диффузора компрессора, а для охлаждения сопловых лопаток последней ступени и примыкающего участка корпуса — из 5-й ступени компрессора. Иногда для охлаждения самых горячих элементов газовой турбины воздух, отбираемый из выходного диффузора компрессора, направляют сначала в воздухоохладитель, где его охлаждают (обычно водой) до 180—200°С и затем направляют на охлаждение. В этом случае воздуха для охлаждения требуется меньше, но при этом появляются затраты на воздухоохладитель, усложняется ГТУ, теряется часть теплоты, отводимой охлаждающей водой.

Сопловые и рабочие лопатки газовой турбины

Газовая турбина обычно имеет 3—4 ступени, т.е. 6—8 венцов решеток, и чаще всего охлаждаются лопатки всех венцов, кроме рабочих лопаток последней ступени. Воздух для охлаждения сопловых лопаток подводится внутрь через их торцы и сбрасываются через многочисленные (600—700 отверстий диаметром 0,5—0,6 мм) отверстия, расположенные в соответствующих зонах профиля (рис.18). К рабочим лопаткам охлаждающий воздух подводится через отверстия, выполненные в торцах хвостовиков.

Литейные стержни для отливки сопловой и рабочей лопаток

Для того чтобы понять, как устроены охлаждаемые лопатки, необходимо хотя бы в общих чертах рассмотреть технологию их изготовления. Ввиду исключительной трудности механической обработки никелевых сплавов для получения лопаток в основном используется точное литье по выплавляемым моделям. Для его реализации сначала по специальной технологии формовки и термообработки из материалов на основе керамики изготавливают литейные стержни (рис.19 и 20).

Литейный стержень — это точная копия полости внутри будущей лопатки, в которую будет поступать и протекать в необходимом направлении охлаждающий воздух. Литейный стержень помещают в пресс-форму, внутренняя полость в которой полностью соответствует лопатке (см. рис.18), которую необходимо получить. Получающееся свободное пространство между стержнем и стенкой пресс-формы запол¬няют нагретой легкоплавкой массой (например, пластмассой), которая застывает. Стержень вместе с обволакивающей ее застывающей массой, повторяющей внешнюю форму лопатки, представляет собой выплавляемую модель. Ее помещают в литейную форму, к которой подают расплав нимоника. Последний выплавляет пластмассу, занимает ее место и в результате появляется литая лопатка с внутренней полостью, заполненной стержнем. Стрежень удаляют вытравливанием специальными химическими растворами. Полученные сопловые лопатки практически не требуют дополнительной механической обработки (кроме изготовления многочисленных отверстий для выхода охлаждающего воздуха). Рабочие литые лопатки требуют обработки хвостовика с помощью специального абразивного инструмента.

Описанная вкратце технология заимствована из авиационной техники, где достигнутые температуры гораздо выше, чем в стационарных паровых турбинах. Трудность освоения этих технологий связана с гораздо большими размерами лопаток для стационарных ГТУ, которые растут пропорционально расходу газов, т.е. мощности ГТУ.

Весьма перспективным представляется использование так называемых монокристаллических лопаток, которые изготавливаются из одного кристалла. Связано это с тем, что наличие границ зерен при длительном пребывании при высокой температуре приводит к ухудшению свойств металла.

Ротор газовой турбины

Ротор газовой турбины

Ротор газовой турбины представляет собой уникальную сборную конструкцию (рис.21,а). Перед сборкой отдельные диски5 компрессора и диска 7 газовой турбины облопачиваются и балансируются, изготавливаются концевые части 1 и 8, проставочная часть 11 и центральный стяжной болт 6. Каждый из дисков имеет два кольцевых воротника, на котором выполнены хирты (по имени изобретателя — Hirth), — строго радиальные зубья треугольного профиля. Смежные детали имеют точно такие же воротники с точно такими же хиртами. При хорошем качестве изготовления хиртового соединения обеспечивается абсолютная центровка смежных дисков (это обеспечивает радиальность хиртов) и повторяемость сборки после разборки ротора.

Ротор газовой турбины

Ротор собирается на специальном стенде, представляющем собой лифт с кольцевой площадкой для монтажного персонала, внутри которой осуществляется сборка. Сначала собирается на резьбе концевая часть ротора 1 и стяжной стержень 6. Стержень ставится вертикально внутри кольцевой площадки и сверху на него с помощью крана (рис.22) опускается диск 1-й ступени компрессора. Центровка диска и концевой части осуществляется хиртами. Перемещаясь на специальном лифте вверх, монтажный персонал диск за диском [сначала компрессора, затем проставочная часть, а затем турбины и правой концевой части 8 (см. рис.21,а)] собирает весь ротор. На правый конец навинчивается гайка 9, а на оставшуюся часть резьбовой части стяжного стержня устанавливается гидравлическое устройство, сдавливающее диски и вытягивающее стяжной стержень. После вытяжки стержня гайка 9 навинчивается до упора, и гидравлическое устройство снимается. Растянутый стержень надежно стягивает диски между собой и превращает ротор в единую жесткую конструкцию. Собранный ротор извлекают из сборочного стенда, и он готов к установке в ГТУ.



www.gigavat.com

Устройство газотурбинных установок (ГТУ). Основные элементы газотурбинных установок

 Устройство ГТУ.Основные элементы газотурбинных установок

Устройство газотурбинной установки

Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.

На рис. 1-а показана газотурбинная установка, компрессор 1, камеры сгорания 2 и газовая турбина 3 которой расположены в едином сборном корпусе. Роторы 6 и 5 компрессора и турбины жестко соединены друг с другом и опираются на три подшипника. Четырнадцать камер сгорания располагаются вокруг компрессора каждая в своем корпусе. Воздух поступает в компрессор через входной патрубок и уходит из газовой турбины через выхлопной патрубок. Корпус газотурбинной установки опирается на четыре опоры 4 и 8, которые расположены на единой раме 7.

Тепловая схема такой газотурбинной установки показана на рис. 1-б. В камеры сгорания топливным насосом подаются топливо и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, чтобы температура газа, получившегося после смешения, не превышала заданного значения. Из камер сгорания газ поступает в газовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.

Из атмосферы в компрессор поступает чистый воздух. В компрессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.

Газотурбинные установки, работающие по такой схеме, называют установками открытого цикла. Большинство современных ГТУ работает по этой схеме.

Кроме того, применяются замкнутые ГТУ (рис. 2). В замкнутых ГТУ также имеются компрессор 1 и турбина 2. Вместо камеры сгорания используется источник теплоты 4, в котором теплота передается рабочему телу без перемешивания с топливом. В качестве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.

Устройство ГТУ. ГТУ замкнутого типа

Рис. 2. Схема замкнутой ГТУ:1 - компрессор, 2 - турбина, 3 - электрический генератор,4 - источник теплоты, 5 - регенератор, 6 - охладитель

Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 4 нагревается и поступает в турбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5 (регенератор), в котором он подогревает воздух, а затем охлаждается в охладителе 6, поступает в компрессор 1, и цикл повторяется. В качестве источника теплоты могут использоваться специальные котлы для нагрева рабочего тела энергией сжигаемого топлива или атомные реакторы.



www.gigavat.com

Газотурбинные установки парогазовых установок и атомных электростанций



Газотурбинные установки (ГТУ) парогазовых установок (ПГУ) и атомных электростанций (АЭС)

Использование газотурбинной установки совместно с паротурбинной (ПТУ) уменьшает удельный расход теплоты на выработку энергии по сравнению с отдельно работающими ГТУ и ПТУ. Такие установки называются комбинированными парогазовыми (ПГУ). Наиболее перспективны следующие схемы парогазовых установок: с низконапорным и высоконапорным котлами (НПГУ и ВПГУ), а также с подогревом питательной воды выхлопными газами.

Схема парогазовой установки с низконапорным котлом

Рис.1. Схема парогазовой установки с низконапорным котлом:1 - генератор ГТУ, 2 - компрессор, 3 - камера сгорания,4,7 - газовая и паровая турбины, 5 - топливоподача,6 - котел, 8 - генератор паровой турбины, 9 - конденсатор,10,11 - конденсатный и питательный насосы

Схема парогазовой установки с низконапорным котлом показана на рис.1. Паротурбинная установка почти не отличается от обычной. Газы из турбины ГТУ поступают в топку котла ПТУ, куда одновременно подается, топливо для их подогрева. Так как в этом случае в топку котла подаются газы повышенной температуры, расход топлива для их подогрева уменьшается, что увеличивает кпд всей установки.

Обычно мощность ГТУ парогазовой установки составляет 12-15% от мощности паровой турбины. Удельный расход теплоты НПГУ по сравнению с ПТУ меньше на 3-5%.

Схема парогазовой установки с высоконапорным котлом

Рис.2. Схема парогазовой установки с высоконапорным котлом:1,4 — газовая и паровая турбины, 2 — топливоподача, 3 — котел,5,8 — генераторы паровой турбины и ГТУ, 6 — конденсатор,7 — экономайзер, 9 — компрессор

Схема парогазовой установки с высоконапорным котлом показана на рис.2. Компрессор 9 подает в топку воздух под давлением 0,4—0,6 МПа. Температура газов, поступающих из топки в газовую турбину, равна 750°С. Из турбины газы поступают в экономайзер. За экономайзером их температура на 150—250°С ниже, чем после отдельной ГТУ. Средняя температура газов в котле повышается из-за наличия ГТУ в схеме паротурбинной установки (по сравнению с отдельной ПТУ). В результате кпд парогазовой установки по сравнению с отдельными ПТУ и ГТУ увеличивается; при этом на 5—8% снижается удельный расход топлива. Вследствие увеличения давления в котле его размеры уменьшаются и снижаются затраты на сооружение станции.

Одним из недостатков ПГУ является некоторое снижение надежности станции из-за усложнения тепловой схемы. Кроме того, в ПГУ с высоконапорным котлом можно применять только жидкое или газообразное топливо, так как при работе на твердых топливах негорючие частицы, содержащиеся в продуктах сгорания, вызывают эрозию лопаток газовой турбины.

Схема паротурбинной установки с подогревом питательной воды выхлопными газами ГТУ

Рис.3. Схема паротурбинной установки с подогревомпитательной воды выхлопными газами ГТУ:1 — компрессор, 2 — камера сгорания, 3 — газовая турбина,4,5 — подогреватели питательной воды, 6 — котел,7 — паровая турбина, 8,11 — генераторы,9 — конденсатор, 10 — питательный насос

Кроме того, ГТУ используют для подогрева питательной воды в паротурбинных установках (рис.3), отключая в часы пик регенеративные отборы паровой турбины и подогревая воду выхлопными газами газовой турбины. Выхлопные газы ГТУ поступают в подогреватель 4, через который пропускают питательную воду. В результате отключения регенерации мощность, вырабатываемая паровой турбиной, увеличивается. Дополнительную мощность вырабатывает также ГТУ. Эту схему применяют для увеличения мощности уже действующей станции без замены котла.

Схема замкнутой ГТУ

Рис.4. Схема замкнутой ГТУ:1 — аккумулятор, 2 — регулятор, 3 — регенератор,4 — атомный реактор, 5 — турбина,6,8,12 — компрессоры низкого и высокого давления и подкачивающий,7 — промежуточный охладитель, 9,11 — генераторы, 10 — охладитель

На атомных электростанциях (АЭС) применяют замкнутые ГТУ (рис.4). Рабочее тело сжимается в компрессоре низкого давления 6, охлаждается в промежуточном охладителе 7, сжимается в компрессоре высокого давления 8, а затем поступает в регенератор 3 и атомный реактор 4. Нагретое в атомном реакторе рабочее тело поступает в турбину 5, оттуда — в регенератор 3, а затем — в водяной охладитель 10.

Утечки восполняются подкачивающим компрессором 12, нагнетающим рабочее тело в аккумулятор 1. Через управляемый регулятор 2 рабочее тело при необходимости может подаваться в тракт ГТУ. Турбина и компрессор замкнутой ГТУ имеют небольшие размеры, так как давление в тракте ГТУ может быть значительно выше атмосферного. Однако в результате появления дополнительных агрегатов (промежуточного охладителя) замкнутые ГТУ больше по массе и размерам, чем ГТУ открытого цикла.

Достоинством замкнутых ГТУ является небольшое изменение экономичности при изменении мощности, а также отсутствие эрозии или отложений пыли в проточной части. Замкнутые ГТУ потребляют много воды для охлаждения рабочего тела в охладителе 10. Предполагается использовать замкнутые ГТУ на АЭС с реакторами на быстрых нейтронах, в которых гелий служит в качестве рабочего тела.



www.gigavat.com

Газотурбинные установки электростанций

Газотурбинные установки (ГТУ) – тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина. Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, – газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины. При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива – газообразного и жидкого.

В обычном режиме ГТУ работает на газе. В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. По количеству вырабатываемой тепловой энергии ГТУ значительно превосходят газопоршневые устройства. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

История создания

Идея использовать энергию горячего газового потока была известна еще с древних времен. Первый патент на устройство, в котором были представлены те же основные составляющие, что и в современных ГТУ, был выдан англичанину Джону Барберу в 1791 году. Газотурбинная установка включала в себя компрессоры (воздушный и газовый), камеру сгорания и активное турбинное колесо, но так и не получила практического применения.

Газотурбинные установки электростанций

В 19-м и начале 20-го века многие ученые и изобретатели всего мира разрабатывали установку, пригодную для практического применения, но все попытки были безуспешными ввиду низкого развития науки и техники тех времен. Полезная мощность, выдаваемая опытными образцами, не превышала 14% при низкой эксплуатационной надежности и конструктивной сложности.

Впервые газотурбинные установки электростанций были использованы в 1939 году в Швейцарии. В эксплуатацию была введена электростанция с турбогенератором, выполненным по простейшей схеме мощностью 5000 кВт. В 50-х годах эта схема была доработана и усложнена, что позволило увеличить КПД и мощность до 25 МВт. Производство газотурбинных установок в промышленно развитых странах сформировалось в единый уровень и направление развития по мощностям и параметрам турбоагрегатов. Суммарная мощность выпущенных в Советском Союзе и России газотурбинных установок исчисляется миллионами кВт.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания. Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке. Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться. Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор. Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Газотурбинные установки электростанций

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу. Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды. Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей. Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ – метан. В аварийном режиме, в случае прекращения подачи газа, ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). Возможные варианты работы газотурбинной установки: отпуск электроэнергии или совмещенный отпуск электричества и тепловой энергии.

Когенерация

Производство электричества с одновременной выработкой сопутствующей тепловой энергии называется когенерацией. Эта технология позволяет значительно повысить экономическую эффективность использования топлива. В зависимости от нужд газотурбинная установка дополнительно может оснащаться водогрейными или паровыми котлами. Это дает возможность получать горячую воду или пар различного давления.

Газотурбинные установки электростанций

При оптимальном использовании двух видов энергии достигается максимальный экономический эффект когенерации, а коэффициент использования топлива (КИТ) достигает 90%. В этом случае тепло выхлопных газов и тепловая энергия из системы охлаждения агрегатов, вращающих электрогенераторы (по сути, бросовая энергия), используется по назначению. При необходимости утилизируемое тепло может использоваться для производства холода в абсорбционных машинах (тригенерация). Система когенерации состоит из четырех ключевых частей: первичный двигатель (газовая турбина), электрогенератор, система теплоутилизации, система управления и контроля.

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

    Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке. До недавнего времени стационарный режим был основным для ГТУ. Остановка турбины проводилась несколько раз в год для плановых ремонтов или в случае неполадок.Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха. К нестационарным режимам, причем наиболее сложным, относится остановка и пуск газотурбинной установки. При последнем машинист газотурбинных установок должен выполнить многочисленные операции перед первым толчком ротора. Перед полноценным пуском установки осуществляется предварительная раскрутка ротора.
Газотурбинные установки электростанций

Изменение режима работы установки осуществляется регулировкой подачи горючего в камеру сгорания. Главной задачей управления ГТУ является обеспечение нужной мощности. Исключением является газотурбинная энергетическая установка, для которой основная задача управления – постоянство частоты ращения, связанного с турбиной электрического генератора.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения. В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа. Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии. Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

КПД

В целом электрический КПД газовых турбин ниже, чем у других силовых агрегатов. Но при полной реализации теплового потенциала газотурбинного агрегата значимость этого показателя становится менее актуальной. Для мощных газотурбинных установок существует инженерный подход, предполагающий комбинированное использование двух видов турбин за счет высокой температуры выхлопных газов.

Газотурбинные установки электростанций

Вырабатываемая тепловая энергия идет на производство пара для паровой турбины, которая используется параллельно с газовой. Это повышает электрический КПД до 59% и существенно увеличивает эффективность использования топлива. Недостатком такого подхода является конструктивное усложнение и удорожание проекта. Соотношение производимой ГТУ электрической и тепловой энергии примерно 1:2, то есть на 10 МВт электроэнергии выдается 20 МВт энергии тепловой.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

    Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.
Газотурбинные установки электростанций

Недостатки:

    В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой – более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.Около половины развиваемой турбиной мощности расходуется на привод компрессора.ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.Мощность одной газотурбинной установки ограничена 150 МВт.

Экология

Позитивным фактором использования ГТУ является минимальное содержание вредных веществ в выбросах. По этому критерию газовые турбины опережают ближайшего конкурента – поршневые электростанции. Благодаря своей экологичности газотурбинные агрегаты без проблем можно размещать в непосредственной близости от мест проживания людей. Низкое содержание вредных выбросов при эксплуатации ГТУ позволяет экономить средства при строительстве дымовых труб и приобретении катализаторов.

Газотурбинные установки электростанций

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.

Источник

www.obovsyom.ru

Принцип работы ГТУ — Энергодиспетчер

В последнее время благодаря СМИ  у  читателя на слуху такие понятия как  газотурбинная установка ГТУ или  парогазовая установка ПГУ (недавно мы публиковали познавтельную статью «Принцип работы ПГУ«.

То и дело в новостях говорят, что, к примеру, на такой то ГРЭС полным  ходом идет строительство  ПГУ -400 МВт, а на другой ТЭЦ-2 включена в  работу установка ГТУ-столько то МВт.  О таких событиях пишут, их освещают, поскольку включение таких мощных и эффективных агрегатов — это не только «галочка» в выполнении государственной программы, но и реальное повышение эффективности работы электростанций, областной энергосистемы и даже объединенной энергосистемы.

Но довести до сведения хочется не о выполнении госпрограмм или прогнозных показателей, а именно о ПГУ и ГТУ.  В этих двух терминах может запутаться не только обыватель, но и начинающий энергетик.

Начнем с того, что проще.

ГТУ — газотурбинная установка — это газовая турбина и электрический генератор, объединенные в одном  корпусе. Ее выгодно устанавливать на ТЭЦ. Это эффективно, и многие реконструкции ТЭЦ направлены на установку  именно таких турбин.

Вот  упрощенный цикл работы тепловой станции:

gtu

Газ (топливо) поступает в котел, где сгорает и передает тепло воде, которая выходит из котла в виде пара и крутит паровую турбину. А паровая турбина крутит генератор. Из генератора мы получаем электроэнергию, а пар для промышленных нужд (отопление, подогрев) забираем из турбины при необходимости.

А в газотурбиной  установке газ сгорает и крутит газовую турбину, которая вырабатывают электроэнергию, а выходящие газы превращают воду в пар в котле-утилизаторе, т.е. газ работает с двойной пользой: сначала сгорает и крутит турбину, затем  нагревает воду в котле.

gtu2

А если саму газотурбинную установку показать еще более развернуто, то будет выглядеть так:

gtu

На этом видео наглядно показано какие процессы происходят в газотурбинной установке.

Но еще больше пользы будет в том случае, если и полученный пар заставить работать — пустить его в паровую турбину, чтобы работал еще один генератор!  Вот тогда наша ГТУ станет ПАРО-ГАЗОВОЙ УСАНОВКОЙ (ПГУ).

gtu4

В итоге ПГУ — это более широкое понятие. Эта установка – самостоятельный энергоблок, где топливо используется один раз, а электроэнергия вырабатывается дважды: в газотурбинной установке и в паровой турбине. Этот цикл очень эффективный, и имеет КПД порядка 57 %! Это очень хороший результат, который позволяет значительно снизить расход топлива на получение киловатт-часа электроэнергии!

В Беларуси для повышения эффективности работы электростанций применяют ГТУ как «надстройку» к существующей схеме ТЭЦ, а ПГУ возводят на ГРЭСах, как самостоятельные энергоблоки. Работая на электростанциях, эти газовые турбины не только повышают «прогнозные технико-экономические показатели», но и улучшают управление генерацией, так как имеют высокую маневренность: быстроту пуска и набора мощности.

Вот какие полезные эти газовые турбины!

operby.com

ГТУ. Определения и термины. Схема газотурбинной электростанции комбинированного цикла



Определения и термины, используемые при описании газотурбинных установок. Схема газотурбинной электростанции комбинированного цикла

Газовая турбина (газотурбинный двигатель ) - Машина, предназначенная для преобразования тепловой энергии в механическую. Машина может состоять из одного или нескольких компрессоров, теплового устройства, в котором повышается температура рабочего тела, одной или нескольких газовых турбин, вала отбора мощности, системы управления и необходимого вспомогательного оборудования. Теплообменники в основном контуре рабочего тела, в которых реализуются процессы, влияющие на термодинамический цикл, являются частью газотурбинного двигателя.

Газотурбинная установка (ГТУ) - Газотурбинный двигатель и все основное оборудование, необходимое для генерирования энергии в полезной форме. Полезной формой энергии может быть - электрическая, механическая и другие.

Газовая турбина открытого цикла - Газотурбинный двигатель, в котором воздух поступает из атмосферы, а выхлопные газы отводятся в атмосферу.

Газовая турбина замкнутого цикла - Газотурбинный двигатель, в котором рабочее тело циркулирует по замкнутому контуру без связи с атмосферой

Газовая турбина полузамкнутого цикла - Газотурбинный двигатель, в котором используется горение в рабочем теле, частично рециркулирующем и частично заменяемым атмосферным воздухом

Газовая турбина простого цикла - Газотурбинный двигатель, термодинамический цикл которого состоит только из следующих друг за другом процессов сжатия, нагрева и расширения рабочего тела.

Газовая турбина регенеративного цикла - Газотурбинный двигатель, термодинамический цикл которого отличается наличием регенеративного охлаждения рабочего тела на выходе из газовой турбины и соответственно регенеративного подогрева воздуха за компрессором. Теплоту расширившегося в турбине газа используют для подогрева сжатого в компрессоре воздуха

Газовая турбина с циклом промежуточного охлаждения - Газотурбинный двигатель, термодинамический цикл которого включает охлаждение рабочего тела в процессе его сжатия.

Газовая турбина с циклом промежуточного подогрева - Газотурбинный двигатель, термодинамический цикл которого включает подогрев рабочего тела в процессе его расширения

Газотурбинная установка комбинированного цикла - Установка, термодинамический цикл которой включает комбинацию двух циклов, при которой теплота отработавших в газотурбинном двигателе газов в первом цикле используется для нагрева другого рабочего тела во втором цикле

Схема газотурбинной электростанции комбинированного цикла

Рис. Схема газотурбинной электростанции комбинированного цикла

Одновальный газотурбинный двигатель - Газотурбинный двигатель, в котором роторы компрессора и газовой турбины соединены и мощность отбирается непосредственно с выходного вала или через редуктор.

Многовальный газотурбинный двигатель - Газотурбинный двигатель, имеющий, по крайней мере, две газовые турбины, вращающиеся на независимых валах

Газовая турбина с отбором воздуха (газа) - Газотурбинный двигатель, в котором для внешнего использования предусмотрен отбор сжатого воздуха между ступенями компрессора и/или на выходе из компрессора (горячего газа на входе в турбину и/или между ступенями турбины)

Газогенератор - Комплекс компонентов газотурбинного двигателя, которые производят горячий газ под давлением для совершения какого-либо процесса или для привода силовой турбины. Генератор газа состоит из одного или более компрессоров, устройств(а) для повышения температуры рабочего тела, одной или более турбин, приводящих компрессор(ы), системы управления и необходимого вспомогательного оборудования

Компрессор - Компонент газотурбинного двигателя, повышающий давление рабочего тела

Турбина - Компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу

Силовая турбина - Турбина на отдельном валу, с которого отбирается выходная мощность

Камера сгорания основного (промежуточного) подогрева - Устройство газотурбинного двигателя для основного (промежуточного) подогрева рабочего тела

Подогреватель рабочего тела - Устройство для подогрева поступающего в него рабочего тела без смешивания его с продуктами сгорания топлива

Регенератор/рекуператор - Теплообменный аппарат, предназначенный для передачи теплоты отработавших в турбине газов рабочему телу. Передача теплоты рабочему телу или воздуху перед его поступлением в камеру сгорания ГТД

Предварительный охладитель - Теплообменный аппарат, предназначенный для охлаждения рабочего тела ГТД перед его первоначальным сжатием

Промежуточный охладитель - Теплообменный аппарат, предназначенный для охлаждения рабочего тела ГТД в процессе его сжатия

Устройство защиты от превышения частоты вращения ротора - Регулирующий или отключающий элемент, который при повышении частоты вращения ротора ГТД сверхустановленного предельно допустимого значения, приводит в действие систему защиты

Система управления газовой турбиной - Система, используемая для управления, защиты, контроля и отображения информации о состоянии промышленной газотурбинной установки (газотурбинного двигателя) на всех режимах работы. Она включает систему управления пуском, системы управления и регулирования подачи топлива и частоты вращения ротора, датчики, устройства контроля подачи электропитания и другие средства управления, необходимые для правильного пуска, устойчивой работы, останова, ограничения режима работы и/или выключения установки при условиях, отличных от заданных

Система регулирования - Элементы и устройства для автоматического регулирования параметров газотурбинной установки. К параметрам относятся частота вращения ротора, температура газов, давление, выходная мощность и другие параметры

Топливный регулирующий клапан - Регулирующий орган для изменения подачи топлива в газотурбинный двигатель. Возможны также устройства другого типа для регулирования подачи топлива в газотурбинный двигатель

Топливный стопорный клапан - Регулирующий орган для изменения подачи топлива в газотурбинный двигатель. Вместо топливного стопорного клапана может использоваться топливный отсечной клапан, перекрывающий магистраль подачи топлива в ГТД при срабатывании

Зона нечувствительности системы управления - Диапазон изменения входного сигнала, не связанный с корректирующим воздействием регулятора расхода топлива. Зона нечувствительности (применительно к частоте вращения) - это отношение частоты вращения к номинальной частоте вращения в процентах

Статизм регулирования системы управления - Изменение частоты вращения ротора силового вала на установившемся режиме работы газотурбинной установки, вызванное внешним воздействием, от нуля до номинальной, выраженное в процентах от номинальной частоты вращения

Датчик предельной температуры рабочего тела - Первичный чувствительный элемент системы управления ГТД, который непосредственно реагирует на изменение температуры и выходной сигнал которого воздействует через соответствующие усилители или преобразователи на систему защиты от предельного превышения температуры

Теплота сгорания топлива - Общее количество тепла, выделившегося при сгорании единицы массы топлива, кДж/кг

Удельный расход теплоты - Отношение теплоты сожженного в ГТД топлива за единицу времени к произведенной им мощности, кДж/кВт ч. Удельный расход теплоты рассчитывают по низшей теплоте сгорания топлива при нормальных условиях

Удельный расход топлива - Отношение массового расхода топлива к выходной мощности ГТУ (ГТД), кг/кВт ч

КПД Газовой турбины - Отношение выходной мощности к расходу теплоты топлива, подсчитанное по его низшей теплоте сгорания при нормальных условиях

Условная температура на входе в турбину - Условная средняя температура рабочего тела непосредственно перед сопловыми лопатками первой ступени.

Режим (частота вращения) "самоходности" - Режим (минимальная частота вращения выходного вала), при котором газотурбинный двигатель работает без использования мощности пускового устройства при наиболее неблагоприятных внешних условиях

Режим (частота вращения) холостого хода - Установленный изготовителем режим (частота вращения выходного вала), при котором газотурбинный двигатель может работать устойчиво и можно осуществлять нагружение или останов

Максимальная продолжительная частота вращения - Максимально допустимое при длительной эксплуатации значение частоты вращения выходного вала газотурбинного двигателя, с которого отбирается мощность

Номинальная частота вращения вала - Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели

Предельно допустимая частота вращения ротора - Частота вращения ротора ГТД, при которой срабатывает аварийное устройство защиты для отсечки подачи топлива в газотурбинный двигатель и останова двигателя

Система впрыска пара (воды) - Система, обеспечивающая впрыск пара (воды) в рабочее тело для увеличения мощности ГТД и/или уменьшения содержания оксидов азота (NOx) в отработавших газах

Удельная масса - Отношение полной сухой массы газотурбинного двигателя к его мощности, кг/кВт

Помпаж компрессора - Неустойчивый режим работы компрессора ГТД, характеризующийся сильными низкочастотными колебаниями массового расхода рабочего тела в компрессоре и соединительных каналах



www.gigavat.com


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта