Eng Ru
Отправить письмо

Электрический генератор. Электрогенератор это


Что такое Генератор и как он устроен

Как генератор создает электроэнергию? Генераторы являются полезными устройствами, которые снабжают электрической энергией во время прекращения подачи электроэнергии и предотвращают нарушение обычной деятельности человека, которая случается из-за отсутствия электроэнергии. Генераторы имеют различные электрические и физические конфигурации для использования, которое вам необходимо. Дальше мы рассмотрим, как именно функционирует генератор, его основные компоненты, и как электрогенератор действует в роли вторичного источника электричества, в случае его использование в жилых домах или на промышленных предприятиях.

Как работает генератор?

Электрический генератор – это устройство, которое конвертирует механическую энергию, полученную из внешнего источника, в электрическую энергию. Важно понимать, что в целом генератор не «создает» электрическую энергию. Вместо этого, он использует механическую энергию, которая снабжается им, для усиления движения электрических зарядов, находящихся в проводе его обмотки через внешнюю электрическую цепь (кольцо циркуляции). Этот поток электрических зарядов составляет электрический выходной ток, поступающий от генератора. Этот механизм можно понять, проведя аналогию электростанции с водяной помпой, которая вызывает своими действиями поток воды, но в действительности не «создает» его.Современный электрогенератор работает по принципу электромагнитной индукции, обнаруженной Майклом Фарадеем в 1831-1832 годах. Фарадей открыл, что поток электрических зарядов может быть вызван перемещением электрического проводника, таким как например провод, который содержит электрические заряды, в магнитном поле. Такое передвижение создает разность напряжений между двумя концами провода или электрического проводника, который в свою очередь вызывает электрические заряды в поток, таким образом генерируя электрический ток.

Основные компоненты электростанции

Можно провести такую классификацию основных компонентов электрогенератора:(1) Двигатель (2) Синхронный генератор (или генератор переменного тока)(3) Система подачи топлива(4) Регулятор напряжения(5) Система выпуска и охлаждения двигателя(6) Система смазки(7) Зарядное устройство(8) Панель управления(9) Основная сборка / Конструкция

(1) Двигатель электростанцииДвигатель является источником подачи механической энергии миниэлектростанции. Размер двигателя прямо пропорционален максимальной мощности, которую генератор может производить. Есть несколько факторов, которые нужно обязательно знать при оценке двигателя вашего генератора.

(а) вид используемого топлива – двигатели электростанции работают на различном топливе, таких как дизельное топливо, бензин, пропан или природный газ. Чаще всего маленькие генераторы для дома работают на бензине, тогда как большие промышленные Электростанции на дизельном топливе, жидком пропане, природном газе или пропановом газе. Определенные двигатели также могут работать на двух видах топлива таких как дизельное топливо и газ.

(b) двигатели с верхним расположением клапанов OHV – такие двигатели отличаются от других тем что, впускные и выпускные клапаны у них расположены в верхушке (головке) цилиндра двигателя, а не на блоке цилиндров. Двигатели с верхним расположением клапанов более дорогие, но имеют некоторые преимущества перед другими двигателями:- компактный дизайн - более простой механизм работы - долговечность- удобный для пользования в работе - низкий уровень шума во время работы - низкий уровень выбросов 

(с) чугунная гильза в цилиндре двигателя – это своего рода подкладка в цилиндре двигателя. Она сокращает изнашивание и обеспечивает долговечность двигателя. Большинство двигателей с верхним расположением клапанов оснащены такой гильзой в цилиндре, но все равно необходимо проверять это в двигателе. Чугунная гильза не дорога, но играет очень важную роль в долговечности двигателя, особенно если вам необходимо часто использовать генератор.

(2) Синхронный генератор 

Синхронный генератор (или генератор переменного тока) является частью электростанции, который вырабатывает электрическую мощность от механической, подаваемой двигателем. Он содержит в себе неподвижные и подвижные детали, монтированные в корпус. Компоненты работают вместе, вызывая тем самым относительное движение между магнитными и электрическими полями, что в свою очередь вырабатывает электроэнергию.

(а) Ротор – это подвижная деталь, которая создает вращающееся магнитное поле одним из таких трех способов: 

(i) индукцией – известен как синхронный бесщеточный генератор и обычно используется в больших генераторах.(ii) Постоянными магнитами – зачастую используется в маленьких генераторах (iii) С помощью задающего генератора (возбудителя) – задающий генератор является маленьким источником постоянного тока, который активизирует ротор через сборку токопроводящих контактных колец и щеток.

Ротор вырабатывает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмоткой статора. Это создает переменный ток на выходе генератора. 

Вот следующие факторы, которые нужно знать при оценке синхронного генератора: 

(а) металлический или пластиковый корпус – металлический дизайн обеспечит долговечность генератора. Пластиковый корпус деформируется со временем из-за чего его движущиеся части могут подпадать под негативное воздействие внешних факторов. Это может вызвать изнашивание и что еще важно опасность для пользователя. (b) шариковый или игольчатый подшипник – предпочтение отдается шариковым подшипникам, тем более что они будут дольше вам служить. (c) бесщеточный генератор – синхронный генератор, который не использует щетки, требует меньшего технического обслуживания и также производит более чистую энергию. 

(3) Система подачи топлива Топливный бак обычно имеет достаточную способность поддерживать электрогенератор в рабочем состоянии от 6 до 8 часов в среднем. В случае если минигенератор, топливный бак крепится на верхней части корпуса электростанции. Для промышленного применения необходимо устанавливать наружный топливный бак. 

Представляем вам следующие характеристики системы подачи топлива:

(а) соединение трубопроводов от топливного бака к двигателю – линия питания направляет топливо от бака к двигателю и обратный провод направляет топливо от двигателя к баку.(b) вентиляционная труба для топливного бака – топливный бак имеет вентиляционную трубу для предотвращения повышения давления во время повторного заполнения или слива топливного бака. Когда вы заполняете бак, обеспечьте контакт металлических поверхностей между соплом наполнителя и топливным баком для избежания искр. (с) сливное соединение от топливного бака к дренажной трубе – это необходимо для того, чтобы при любом сливе во время повторного заполнения бака не случилась утечка жидкости на генераторной установке. (d) топливный насос – он перемещает топливо от основного бака-хранилища до бака периодического действия (временного бака). Топливный насос как правило имеет электропривод.(е) топливный водный разделитель / топливный фильтр – он отделяет воду и неизвестные вещества с топливной жидкости для защиты других компонентов генератора от коррозии и загрязнения. (f) топливный инжектор – он автоматизирует топливную жидкость и распыляет необходимое количество топлива в камеру сгорания двигателя. 

(4) Регулятор напряжения AVRЭта составляющая регулирует выходное напряжение генератора. Далее будет описаны компоненты регулятора напряжения, которые занимают неотъемлемую часть в его работе.

(1) Регулятор напряжения: изменение переменного напряжения в постоянный ток – регулятор напряжения берет на себя малую часть выходного переменного напряжения и конвертирует его в постоянный ток. Регулятор напряжения затем подает постоянный ток на вторичную обмотку в статоре, известному как возбудитель обмотки (или обмотка задающего генератора). (2) Возбудитель обмотки: изменение постоянного тока в переменный – возбудитель обмотки функционирует так же, как и основная обмотка статора и генерирует небольшое количество переменного тока. Возбудитель обмотки связан с таким понятием как вращающийся выпрямитель тока. (3) Вращающийся выпрямитель тока: изменение переменного тока в постоянный – он выпрямляет переменный ток, который генерируется возбудителем обмотки, и конвертирует его в постоянный ток. Этот постоянный ток в свою очередь подается на ротор для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора. (4) Ротор: изменение постоянного тока в переменное напряжение – ротор индуцирует большое количество переменного напряжения через обмотку статора, которую генератор производит как большое количество выходного переменного напряжения.

Этот цикл происходит до тех пор, пока генератор начинает вырабатывать выходное напряжение, соответствующее его полной работоспособности. Когда производительность (или выходная мощность) генератора увеличивается, регулятор напряжения вырабатывает меньше постоянного тока. Если генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает достаточно постоянного тока для поддержания выходной мощности генератора на полном рабочем уровне.

При добавлении нагрузки на электростанцию, его выходное напряжение немного уменьшается. Это побуждает регулятор напряжения начать действовать. Цикл продолжается до тех пор, пока выходная мощность генератора не увеличиться до ее первоначальной работоспособности.

(5) Система выхлопа и охлаждения двигателя электростанции

(а) Система охлаждения электрогенератора Продолжительное использование миниэлектростанции приводит к тому, что различные его компоненты нагреваются. Поэтому в таком случае необходимо иметь охлаждающую и вентиляционную систему для прекращения нагрева. Вода иногда используется как охлаждающая жидкость для генераторов, но это ограничивается определенными ситуациями, например, когда у вас маленький генератор для дачи или городских условий или очень большой генератор около 2250 кВт и т.д. Водород иногда может использоваться как охладитель для обмотки статора в больших электростанциях, так как он более эффективно поглощает тепло. Водород убирает тепло от генератора и переносит его через теплообменник во вторичный контур охлаждения, который имеет деминирализованную воду как охлаждающая жидкость. Вот почему рядом с большими генераторами и маленькими электростанциями всегда находится большая охлаждающая башня (или стояк). Для всех других использований, как на предприятии, так и в жилых условиях, стандартный радиатор и вентилятор устанавливаются на генератор и работают в основном как охлаждающая система. Очень важно проверять уровень охлаждения генератора каждый день. Охлаждающая система и помпа с неочищенной водой должны промываться каждые 600 часов и теплообменник также должен очищаться каждые 2400 часов работы мини генератора. Генератор должен быть помещен в открытую и проветриваемую область. По национальным правилам установки оборудования устанавливается, что минимальное расстояние по сторонам генератора должно быть равно 3 футам для обеспечения свободного потока свежего воздуха.

(b) Система выхлопа  Отработаный газ, выпущенный генератором, содержит в себе высокотоксичные химикаты, с которые нужно надлежащим образом отвести. Поэтому необходимо установить соответствующую вытяжную систему для ликвидации отработаных газов. Иногда люди даже и не думают об этом, хотя отравление угарным газом остается одним из самых распространенных случаев смертей. Вытяжные трубы чаще всего изготавливаются из чугуна, кованого железа или стали. Они должны быть автономными и не должны поддерживаться двигателем генератора. Чаще всего выхлопные трубы прикрепляются к двигателю с использованием гибких соединителей для минимизации вибраций и предотвращения разрушения вытяжной системы генератора. Вытяжные трубы заканчиваются на открытом воздухе и ведут от дверей, окон и других открывающихся приспособлений, к дому или другому строению. Вы должны быть уверены, что вытяжная система вашего генератора не соединена с другим оборудованием.

(6) Система смазки

Так как генератор состоит из движущихся частей в его двигателе, необходимо смазывание для обеспечения длительности срока службы и плавной обработки на долгое время. Двигатель мини-электростанции смазывается маслом, которое находится в помпе. Необходимо проверять уровень смазывающего масла каждые 8 часов работы генератора. Кроме этого в проверке нуждается любая утечка масла и его изменения каждые 500 часов работы бензогенератора.

(7) Зарядное устройство

Запуск генератора изначально производится от аккумулятора. Зарядное устройство сохраняет батарею генератора заряженной, снабжая ее точным «плавающим» напряжением. Если такое напряжение очень низкое, батарея останется незаряженной. Если напряжение очень высокое, оно сократит срок работы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Также такие устройства полностью автоматизированы и не требуют каких-либо корректировок или изменений в параметрах. Постоянное выходное напряжение зарядного устройства устанавливается на 2.33 Вольт на ячейку, что является точным напряжением для свинцово-кислотной батареи. Зарядное устройство имеет отдельное постоянное напряжение, что препятствует нормальному функционированию электрогенератора.

(8) Панель управления электростанцией

Это пользовательский интерфейс портативной электростанции и он содержит положения об элементах управления. Разные производители предлагают разные панели управления для генераторов. Описание некоторых из них рассмотрим подробней. (а) электрическое включение и выключение – такие панели управления автоматически включают ваш генератор во время прекращения подачи электроэнергии, следят за электростанцией во время ее работы и автоматически выключают ее, когда она больше не нужена. (b) механическое устройство прибора (датчик) – различные приборы указывают на важные параметры, таки как давление масла, температура охлаждения, напряжение батареи, скорость вращения двигателя и длительность работы. Непрерывный контроль таких параметров позволяет автоматически выключить генератор, если один из них превысит свои показатели. (с) датчики мини генератора – панель управления также имеет датчики для измерения выходного тока и напряжения и рабочей частоты. (d) другие виды контроля – фазовый селекторный переключатель, переключатель частоты, и переключатель управления двигателем (ручной режим или авто режим) и др.

(9) Рама / Корпус

Все генераторы, переносные или стационарные, имеют установленную под заказ раму или корпус, который обеспечивает основную поддержку.

Использование генераторов для промышленного и бытового применения Хотя основной принцип работы генерирования электроэнергии остается практически одинаковым для всех генераторов, механизм включения питания устройства при использовании электрической мощности, отличается в разных системах.

Переносной генератор Такие генераторы обычно используются для бытовых целей, когда нужно подключить несколько домашних приборов во время отключения подачи электроэнергии или на строительных площадках, где отсутствует источник электрической энергии и необходимо подключить различные строительные приборы. В таких случаях обычно необходима мощность электрогенератор по крайней мере 4 кВт.

Использование удлинителя: Одним из наиболее экономичных путей является обеспечение электроснабжения во время отсутствия подачи электроэнергии через использование удлинителя для прямого соединения переносного генератора с теми устройствами, которые вы хотите подключить. Использование сетевого переключателя: Безопасным путем при использовании переносного генератора для дома является использование сетевого переключателя мощности, который установлен и соединен с основной электрической сетью вашего дома. Такой выключатель способен переключаться от основного источника питания, зачастую это городская электросеть, к вторичному или даже третичному источнику питания, такому как генератор, когда питание от основного источника прерывается. Ручные переключатели работают через непосредственное управление или через использование удаленного пульта управления. Во время отсутствия электроэнергии переключатель перекидывает питание от второстепенных источников питания и подключает ее к генератору. В таких случаях мини-генератор может быть присоединен к панели через удлинитель. Электрическая мощность от генератора может подаваться через основной автоматический выключатель и использоваться для необходимых областей. Критические и некритические электроприборы могут быть сгруппированы индивидуально таким образом, что переносный минигенератор будет обслуживать только необходимые приборы. Изолируя линию питания от питания генератора, вы также устраняете риск «обратной связи». Такой является поток электрической мощности от миниэлектростанции в линию питания, что может быть фатальным для электриков, работающих над линией питания во время отсутствия электроэнергии.

Резервный генератор Переносные генераторы не практичны, так как они могут обслуживать только несколько приборов. Аварийная резервная система может использоваться для поставки мощности на весь дом, а не только на отдельные приборы, и может даже сохранять рабочими кондиционеры во время отсутствия электроэнергии. Также вы можете выбрать меньшие резервные блоки для обеспечения работы только некоторых приборов, таких как холодильник, свет и вентиляторы. Обычно такие устройства колеблются в потреблении от 6 кВт до 40 кВт.

Использование автоматического ввода резерва: Резервные генераторы обычно устанавливаются вне дома и подсоединяются к основной электрической сети через автоматический переключатель. Система автоматически возобновляет питание в доме в пределах 20 секунд после отключения такого питания без какого-либо ручного вмешательства.

Коммерческий резервный генератор / Промышленные электростанции

Промышленные генераторы используются на коммерческих предприятиях, таких как офисы, производственные фабрики, добыча полезных ископаемых, больницы и др., которые просто не могут позволить себе риск нарушения непрерывности работы во время отсутствия электроэнергии. Зачастую промышленные электростанции – это стационарная установка, которая производит от 50 до 200 кВт мощности. Большинство маленьких и бытовых генераторов являются однофазными (120 Вольт), но коммерческие генераторы практически всегда трехфазные (120, 240 или 480 Вольт).

Использование автоматического ввода резерва: Также как и бытовые резервные мини генераторы, коммерческие резервные электростанции подключены к электрической сети здания через автоматический переключатель и активизируются автоматически во время отсутствия электроэнергии. Они специально сконструированы так, что переключение между первичным и вторичным источником питания занимает долю секунды и позволяет без замедлений обеспечивать необходимые устройства электроэнергией.

Google

50hz.com.ua

Электрический генератор - это... Что такое Электрический генератор?

Основная статья: Электрогенераторы и электродвигатели

Электрогенераторы в начале XX века

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Русский ученый Э.Х.Ленц еще в 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Pixii Ипполит Пикси в 1832.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
  • По виду выходного электрического тока
      • Трёхфазный генератор
        • С включением обмоток звездой
        • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

Ссылки

biograf.academic.ru

Электрический генератор — Википедия

Электрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания Ганц, 1909 год.[1] Фотография Прокудина-Горского, 1911 год. У этого термина существуют и другие значения, см. Генератор.

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Динамо-машина Йедлика[править]

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1853 и 1856) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея[править]

В 1831 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина[править]

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х. Ленц ещё 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866—1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение[править]

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор[править]

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Электромеханические индукционные генераторы[править]

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов[править]

  • По типу первичного двигателя:
  • По виду выходного электрического тока
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

wp.wiki-wiki.ru

Электронный генератор - это... Что такое Электронный генератор?

Электронный генератор

Электронные генераторы — большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром.

Виды электронных генераторов

  • По форме выходного сигнала:
  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
  • По назначению:

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы. Мощные преобразователи называются силовыми инверторами и относятся к силовой электронике.

Генераторы гармонических колебаний

Блок схема генератора

Генератор (производитель) электрических колебаний представляет собой усилитель с положительной обратной связью. Усилитель с отрицательной обратной связью является дискриминатором (подавителем, активным фильтром). Усилитель генератора может быть как однокаскадным, так и многокаскадным.

Типовой график зависимости амплитуды выходного сигнала генератора от частоты LC-генератор с перекрёстными связями на кольце из двух инверторов

Цепи положительной обратной связи выполняют две функции: сдвиг сигнала по фазе для получения петлевого сдвига близкого к n*2π и фильтра, пропускающего нужную частоту. Функции сдвига фазы и фильтра могут быть распределены на две составные части генератора - на усилитель и на цепи положительной обратной связи или целиком возложены на цепи положительной обратной связи. В цепи положительной обратной связи могут стоять усилители.

Необходимыми условиями для возникновения гармонических незатухающих колебаний являются:1. петлевой сдвиг фазы равный n*360°±90°,2. петлевое усиление >1,3. рабочая точка усилительного каскада в середине диапазона входных значений.Необходимость третьего условия.Петлевой сдвиг фазы и в триггере и в генераторе равен около 360°. Петлевое усиление в триггере почти вдвое больше, чем в генераторе, но триггер не генерирует, т.к. рабочие точки каскадов в триггере смещены на края диапазона входных значений и эти состояния в триггере устойчивы, а состояние со средней величиной входных значений - неустойчиво. Такой характеристикой обладает компаратор.В гармоническом генераторе среднее состояние устойчивое, а отклонения от среднего состояния неустойчивые.

История

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку.[4]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема ("индуктивная трёхточка"). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера.

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. Существует ряд формул для определения ёмкостей делителя, чтобы не сорвалась генерация, но запас устойчивости по фазе составляет менее 30°, что образно похоже на корабль плывущий с креном 60° и более градусов.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор будет излучать одну частоту, то есть будет подобен монохроматорам в оптике, и будет иметь наибольший запас устойчивости по фазе (± 90°), что образно похоже на корабль плывущий без крена.

Применение

См. также

Ссылки

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.
  1. ↑ http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm На рис.8.1.а) изображён генератор Мейснера, а не генератор Хартлея
  2. ↑ http://radiomaster.ru/stati/radio/gen.php Рис.1.7 RC-генератор на транзисторе. Рис.1.8 RC-генератор с мостом Вина.
  3. ↑ http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm Рис.8.9. RC-генератор с трёхзвенной фазосдвигающей цепочкой (а) и осциллограмма выходного сигнала (б)
  4. ↑ http://historic.ru/books/item/f00/s00/z0000027/st054.shtml Радиотехника и радиофизика

dic.academic.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта