Eng Ru
Отправить письмо

Трехфазная система переменного тока. Мощность трехфазного переменного тока


Трёхфазный ток, преимущества трёхфазного тока при использовании

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Трехфазный переменный ток

Большинство людей, за исключением специалистов - электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, - часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Трёхфазный ток

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток? к содержанию

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом - по техническим причинам - мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх - и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе - А, В и С, у потребителя - L1, L2 и L3. Нулевой провод так и обозначается – 0. 

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Фазное напряжение

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» - между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

потери в проводах ЛЭП

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы к содержанию

В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

www.pergam.ru

Трехфазный переменный ток

Трехфазный переменный __fg_link_0__ 2 Наиболее часто в мире применяют систему подключения потребителей электроэнергии по схеме трёхфазного переменного тока. Трёхфазной такая система называется потому, что в неё входят 3 рабочие цепи, в каждой из которых действуют переменные ЭДС, при этом частота тока постоянная. Отдельно взятую цепь данной системы обычно называют просто «фазой», а частоты тока и напряжения между фазами отличаются по значению на одну треть периода (φ=2π/3).

Подавляющее большинство действующих генераторов на наших электростанциях являются трёхфазными. Конструктивно они устроены так, что имеют три независимые обмотки, к каждой из которых подключён провод, по которому подаётся электроэнергия в одну из цепей данной сети.

Для того чтобы сэкономить на проводке, применяются схемы подключения, использующие вместо 6 проводников четыре или даже три. При этом используется соединение проводов между собой по схеме «звезда» или «треугольник». Наибольшее распространение получила схема соединения звездой, в которой используется в дополнение к 3-м фазным проводникам один нулевой проводник, называемый также нейтралью. Таким образом, общее количество требующихся проводов в такой системе — четыре, однако по нейтрали величина проходящего тока, как правило, значительно меньше, чем по фазным проводам, поэтому толщина нулевого провода меньше.

Трехфазный переменный __fg_link_3__ 3

Нулевой провод подключается к нулевой точке генератора и предназначен для того, чтобы напряжение на всех фазах сохранялось одинаковым вне зависимости от электрической нагрузки на каждую из них. При равномерной загрузке всех фаз ток по нейтрали не проходит, поэтому в таких системах можно обойтись и вовсе без неё. В любом случае, при проектировании электросетей стремятся по возможности распределить нагрузку равномерно по всем фазам.

Трехфазный переменный __fg_link_8__ 1

Схема соединений «треугольник»

Другой способ организации электросети — соединение обмоток 3-хфазного генератора треугольником. При этом конец каждой обмотки подключается к началу следующей таким образом, что они формируют замкнутый треугольник, при этом линейные провода подключаются к вершинам треугольника. При такой форме соединения фазное напряжение генератора равняется линейному и меньше в √3 ≈ 1,73 раза по сравнению со схемой соединения звездой.

pue8.ru

Что такое трехфазный ток

Трехфазная система переменного тока широко распространена и применяется во всем мире. При помощи трехфазной системы обеспечиваются оптимальные условия для передачи по проводам электроэнергии на большие расстояния, возможность для создания простых по устройству и удобных в эксплуатации электродвигателей.

Трехфазная система переменного тока

Называется система, состоящая из трех цепей с действующими электродвижущими силами (ЭДС) одинаковой частоты. Эти ЭДС сдвинуты относительно друг друга по фазе на одну треть. Каждая отдельная цепь в системе называется фазой. Вся система трех переменных токов, сдвинутых по фазе, и называется трехфазным током.

Практически все генераторы, которые установлены на электростанциях – это генераторы трехфазного тока. В конструкции соединены в одном агрегате три генератора переменного тока. Электродвижущие силы, индуцированные в них, как сказано ранее, сдвинуты на одну треть периода относительно друг друга.

Как же осуществляется работа генератора

В генераторе трехфазного тока есть три отдельных якоря, располагающихся на статоре устройства. Они имеют смещение на 1200 между собой. В центре устройства вращается индуктор, общий для трех якорей. Переменная ЭДС одинаковой частоты индуцируется в каждой катушке. Однако, моменты прохождения этих электродвижущих сил через нуль в каждой из этих катушек оказываются сдвинуты на 1/3 периода, так как индуктор проходит возле каждой катушки на 1/3 времени позднее, чем предыдущей.

Все обмотки являются самостоятельными генераторами тока и источниками электроэнергии. Если присоединить провода к концам каждой обмотки, то получаются три независимые цепи. В данном случае, чтобы передать всю электроэнергию потребуется шесть проводов. Однако при других соединениях обмоток между собой вполне можно обойтись 3-4 проводами, что дает большую экономию провода.

Соединение – звездой

Концы всех обмоток соединяются в одной точке генератора, так называемой нулевой точке. Затем производится соединение с потребителями, используя четыре провода: три – линейные провода, которые идут от начала обмоток 1, 2, 3, один – нулевой (нейтральный) провод, идущий от нулевой точки генератора. Такую систему называют еще четырехпроводной.

Соединение треугольником

В этом случае конец предыдущей обмотки соединяется с началом последующей, образуя, тем самым треугольник. Линейные провода соединяются с вершинами треугольника – точками 1, 2, 3. При таком подключении фазное и линейное напряжения совпадают. В сравнении с подключением звездой, подключение треугольником снижает линейное напряжение примерно в 1,73 раза. Оно допускается лишь при условии одинаковой нагрузки фаз, иначе сила тока в обмотках может увеличиться, что представляет опасность для генератора.

Отдельные потребители (нагрузки), которые питаются от раздельных пар проводов, точно так же могут соединяться или звездой или треугольником. В итоге получается ситуация, аналогичная генератору: при соединении треугольником – нагрузки находятся под линейным напряжением, при соединении звездой – напряжение в 1,73 раза меньше.

electric-220.ru

Трехфазная система переменного тока

В электротехнике, широкое распространение и практическое применение получила трехфазная система переменного тока. Благодаря свойствам данной системы, передача электроэнергии по проводам на большие расстояния, осуществляется в наиболее оптимальных условиях. Кроме того, принцип действия переменного тока с тремя фазами, дал возможность создавать простые и удобные электрические двигатели.

Понятие трехфазной системы

Устройство трехфазной системы переменного тока включает в себя три цепи, в которых действуют электродвижущие силы, имеющие одинаковую частоту. Эти силы сдвигаются между собой по фазе на одну третью часть. Название фазы получила каждая отдельно взятая цепь, являющаяся составной частью системы. Вся система, включающая в себя три переменных тока, и есть не что иное, как трехфазный ток.

Все виды генераторов, установленных на электростанциях, являются устройствами трехфазного тока. Они представляют собой общую конструкцию, соединяющую сразу три генератора в одном агрегате. Это устройство состоит из трех отдельных якорей, расположенных на статоре. Между собой они смещены на 120 градусов. По центру генератора происходит вращение индуктора, воздействующего на все три якоря. В каждой из катушек происходит индуцирование переменной электродвижущей силы с одинаковой частотой. Через ноль прохождение этих ЭДС происходит со сдвигом на одну треть.

Каждая обмотка представляет собой самостоятельный источник энергии и генератор тока. Фактически, весь генератор состоит из трех независимых цепей. В классическом варианте, электроэнергия может передаваться с помощью шести проводов. Однако, существуют другие виды соединений, позволяющие сэкономить большое количество провода.

Виды соединений трехфазной системы

Когда на практике применяется трехфазная система переменного тока, она предполагает два основных вида соединений.

При соединении способом звезды, соединение концов всех обмоток осуществляется в одной точке генератора, получившей название нулевой точки. Соединение с потребителями осуществляется при помощи трех линейных проводов, выходящих из начала обмоток и одного нулевого провода, подключенного к нулевой точке генератора.

Способ треугольника предполагает соединение конца предыдущей обмотки с началом последующей. В результате, образуется правильный треугольник. По этой схеме, происходит соединение линейных проводов и вершин треугольника, из-за чего получается совпадение фазного и линейного напряжения. В сравнении с вариантом звезда, треугольник способствует снижению линейного напряжения приблизительно в 1.73 раза. Это допускается при одинаковой нагрузке фаз, в противном случае, увеличение силы тока в обмотках может быть опасным для генератора.

Трехфазные цепи

electric-220.ru

Трёхфазный переменный ток

Трёхфазный переменный ток

Подробности Категория: Электротехника

Трехфазная система переменного тока

Электростанции вырабатывают трехфазный переменный ток. Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).

Каждая часть обмотки генератора называется фазой. Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными.

Следует отметить, что термин «фаза» в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).

Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром. В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка — гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.

Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).

На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а второй — треугольника (рис. б).

При соединении звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами. Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой, или нейтралью. Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом. Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.

Нулевой провод, как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода (рис. справа) вместо шести при несвязанной трехфазной системе. 

При соединении в звезду различают два вида напряжения: фазное и линейное. Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным (Uф), а напряжение между двумя линейными проводами — линейным напряжением (Uл).

Между фазными и линейными напряжениями можно установить соотношение:

Uл = √3 . Uф ≈ 1,73 . Uф ,

если рассмотреть треугольник напряжения (рис. слева).

 

 

Действительно, 

Ил= ^ч-Т^-г-Т^-сойШ^ Сф-л/2 + 2-со5б0° = л/3 -Ц,

На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях UЛ = 380 В; UФ  = 220 В.

Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).

При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.При соединении обмоток генератора и потребителей «треугольником» фазные и линейные напряжения равны между собой, т.е. UЛ = UФ, а линейный ток в √3 раз больше фазного тока  IЛ = √3.IФСоединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.

technologys.info

Как измерить мощность в цепи трехфазного переменного тока

Как измерить мощность в цепи трехфазного переменного тока Мощность в цепи трехфазного тока может быть измерена при помощи 1-го, 2-ух и 3-х ваттметров.Способ 1-го прибора используют в трехфазной симметричной системе. Активная мощность всей системы равна тройной мощности употребления по одной из фаз.

При соединении нагрузки звездой с доступной нулевой точкой либо если при соединении нагрузки треугольником имеется возможность включить обмотку ваттметра поочередно с нагрузкой, можно использовать схемы включения, показанные на рис.1.

Схемы измерения мощности трехфазного переменного тока при соединении нагрузок а - по схеме звезды с доступной нулевой точкой; б - по схеме треугольника при помощи 1-го ваттметра

Рис. 1 Схемы измерения мощности трехфазного переменного тока при соединении нагрузока — по схеме звезды с доступной нулевой точкой;б — по схеме треугольника при помощи 1-го ваттметра

Если нагрузка соединена звездой с труднодоступной нулевой точкой либо треугольником, то можно применить схему с искусственной нулевой точкой (рис.2). В данном случае сопротивления должны быть равны Rвт+ Rа = Rb =Rc.

Схема измерения мощности трехфазного переменного тока одним ваттметром с искусственной нулевой точкой

Рис 2. Схема измерения мощности трехфазного переменного тока одним ваттметром с искусственной нулевой точкой

ваттметрДля измерения реактивной мощности токовые концы ваттметра включают в рассечку хоть какой фазы, а концы обмотки напряжения — на две другие фазы (рис.3). Полная реактивная мощность определяется умножением показания ваттметра накорень из 3-х. (Даже при малозначительной асимметрии фаз применение данного способа дает значительную погрешность).

Схема измерения реактивной мощности трехфазного переменного тока одним ваттметром

Рис. 3. Схема измерения реактивной мощности трехфазного переменного тока одним ваттметром

два ваттметра измерение мощностиСпособом 2-ух устройств можно воспользоваться при симметричной и несимметричной нагрузке фаз. Три равноценных варианта включения ваттметров для измерения активной мощности показаны на рис.4. Активная мощность определяется как сумма показаний ваттметров.

При измерении реактивной мощности можно использовать схему рис.5, а с искусственной нулевой точкой. Для сотворения нулевой точки нужно выполнить условие равенства сопротивлений обмоток напряжений ваттметров и резистора R. Реактивная мощность рассчитывается по формуле

где Р1 и Р2 — показания ваттметров.

По этой же формуле можно вычислить реактивную мощность при равномерной загрузке фаз и соединении ваттметров по схеме рис.4. Достоинство этого метода в том, что по одной и той же схеме можно найти активную и реактивную мощности. При равномерной загрузке фаз реактивная мощность может быть измерена по схеме рис.5, б.

Способ 3-х устройств используется при хоть какой нагрузке фаз. Активная мощность может быть замерена по схеме рис.6. Мощность всей цепи определяется суммированием показаний всех ваттметров.

Схемы измерения активной мощности трехфазного переменного тока 2-мя ваттметрами

Рис. 4. Схемы измерения активной мощности трехфазного переменного тока 2-мя ваттметрамиа — токовые обмотки включены в фазы А и С;б — в фазы А и В;в — в фазы В и С

Реактивная мощность для трех- и четырехпроводной сети измеряется по схеме рис.7 и рассчитывается по формуле

где РA, РB, РC — показания ваттметров, включенных в фазы А, В, С.

Схемы измерения реактивной мощности трехфазного переменного тока 2-мя ваттметрами

Рис. 5. Схемы измерения реактивной мощности трехфазного переменного тока 2-мя ваттметрами

Схемы измерения активной мощности трехфазного переменного тока 3-мя ваттметрами

Рис. 6. Схемы измерения активной мощности трехфазного переменного тока 3-мя ваттметрамиа — при наличии нулевого провода;б — с искусственной нулевой точкой

На практике обычно используют одно-, двух- и трехэлементные трехфазные ваттметры соответственно способу измерения.

Чтоб расширить предел измерения, можно применить все обозначенные схемы при подключении ваттметров через измерительные трансформаторы тока и напряжения. На рис.8 в качестве примера показана схема измерения мощности по способу 2-ух устройств при включении их через измерительные трансформаторы тока и напряжения.

Схемы измерения реактивной мощности 3-мя ваттметрами

Рис. 7. Схемы измерения реактивной мощности 3-мя ваттметрами

Схемы включения ваттметров через измерительные трансформаторы

Рис. 8. Схемы включения ваттметров через измерительные трансформаторы.

Как измерить мощность в цепи трехфазного переменного тока

elektrica.info

Трехфазный ток

Переменный трехфазный ток широко распространен благодаря важным преимуществам по сравнению с постоянным и переменным однофазными токами, а именно:

  • 1) получается значительная экономия металла на провода;
  • 2) легко получается вращающееся магнитное поле, используемое в трехфазных асинхронных электродвигателях.

Генератор трехфазного тока состоит из двух основных частей: неподвижной — статора Ст и вращающейся — ротора (Р) (рис. 17, а).

Для уменьшения потерь от вихревых токов статор набран из отдельных кольцеобразных изолированных друг от друга специальным лаком листов электротехнической стали толщиной 0,3—-0,5 мм. Три обмотки АХ, ВУ и CZ укладываются в специально выштампованные по внутренней поверхности статора пазы. Оси обмоток сдвинуты одна относительно другой на 120°.

Ротор трехфазного генератора представляет собой постоянный магнит с полюсами N и S, расположенный на валу. В мощных генераторах ротор набирается так же, как и статор, из отдельных изолированных листов электротехнической стали и имеет обмотку возбуждения, которая питается от источника постоянного тока.

Ротор генератора приводится во вращение первичным двигателем (водяной, паровой или газовой турбиной, двигателем внутреннего сгорания и т. п.). Так как силовые линии магнитного поля вращающегося ротора не одновременно пересекают фазные обмотки генератора, то э.д.с. обмоток сдвинуты относительно друг друга по фазе на одну треть периода.

В любой момент времени сумма мгновенных значений э.д.с. в обмотках трехфазного генератора равняется нулю, т. е. еА + ев + ес = 0.

Каждая из обмоток может явиться самостоятельным источником энергии и питать отдельный электроприемник. При этом получается так называемая несвязанная трехфазная система.

Обмотки статора называются также и фазами генератора. У каждой фазы генератора различают конец (X, Y, Z) и начало (А, В, С). Если все три конца или три начала обмоток соединить в одну точку, получится соединение, которое называется звездой (рис. 18).

Если же соединить конец первой фазы с началом второй, конец второй — с началом третьей и конец третьей — с началом первой фазы, то получится соединение, которое называется треугольником (рис. 19).

При соединении фаз генератора в звезду точка, в которой соединяются все фазы (точка N), называется нулевой, а провод, идущий от нее к потребителям (Nп) электрической энергии, — нулевым.

Провода Аа, ВЬ и Сс, соединяющие фазы генератора и фазы потребителей, называются линейными. Между линейными проводами действует линейное напряжение Uab, U ас, Ubc, а между нулевым проводом и каждым из линейных действует фазное напряжение— Ua, Uв, Uc-

Соотношение между величинами линейных и фазных напряжений в трехфазной системе при соединении обмоток генератора звездой легко устанавливается по векторной диаграмме (рис.20).

При этом линейные токи равны фазным, а линейные напряжения больше фазных в √3 раз.

Если генератор и потребитель соединены по схеме треугольник, то линейные напряжения UAb, Ubc, Uca одновременно являются и фазными. Фазные токи у потребителя определяются из соотношений: ,

где ZAB, ZBC, ZCA -опротивления фаз потребителя.

Линейные токи в этом случае равны геометрической (векторной) разности фазных токов. Линейные токи в √ 3 раз больше фазных.

Активная мощность трехфазной системы при соединении потребителей звездой и треугольником определяется как сумма мощностей отдельных фаз: Р=РА + Рв+Рс

При равномерной нагрузке фаз Р=ЗРф.

Мощность, потребляемая электроприемниками в соответствии с формулой ( )  P=√3UлIл cosφ.

 

В сельскохозяйственном производстве распространена трехфазная четырехпроводная система. К трехфазной четырехпроводной системе можно присоединять однофазные и трехфазные электроприемники. На практике применяют трехфазные системы с напряжениями 220/127, 380/220, 660/380.

Трехфазные электроприемники подразделяются на симметричные и несимметричные. Симметричными электроприемниками называются, такие, у которых все фазы имеют одинаковые активные и реактивные составляющие сопротивлений. Если это требование не выполняется, то электроприемники называются несимметричными.

Фазы трехфазных электроприемников могут соединяться в звезду или треугольник в зависимости от номинального напряжения, на которое рассчитан электроприемник. На рис.21 показана схема включения однофазных и трехфазных электроприемников в трехфазную четырехпроводную систему с напряжением 280/220 В.

Группа ламп накаливания Л включена звездой, однофазный электродвигатель M1 включен на линейное напряжение UBc — 380 В, нагревательный элемент НЭ также включен на линейное напряжение Uас, трехфазный электродвигатель М2 включен звездой, батарея конденсаторов БК включена треугольником,

incub.info


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта