Генератор электрического тока бензиновый – оптимальный выбор для частного дома. Электрогенератор электрическийГенератор электрического тока: основные критерии выбораОглавление: Генератор электрического тока: разновидности Три фактора, влияющие на качество эксплуатации электрогенераторов Обеспечить бесперебойное электрическое питание в загородном доме, даже при наличии проходящих рядом электрокоммуникаций, не так уж и просто. Бесконечные аварии и профилактические отключения препятствуют этому, делая проживание в доме, как минимум, некомфортным. Исправить такое положение дел можно только с помощью специального оборудования под названием генератор электрического тока. Именно о нем и пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы подробно изучим его разновидности и определимся с основными критериями выбора. Генератор электрического тока фото Генератор электрического тока: разновидностиВ зависимости от вида источника энергии, необходимого для получения электричества, все генераторы электроэнергии разделяются на дизельные, бензиновые, газовые и ветровые. В свою очередь, все они могут вырабатывать или постоянный электрический ток, или переменный. Именно на эти критерии в большей степени нужно опираться, отвечая на вопрос, как выбрать электрогенератор? Электрический бензиновый генератор благодаря своей невысокой стоимости и простой эксплуатации получил наиболее широкое распространение. Его конструкция включает в себя бензиновый двигатель и генератор электрического тока, соединенные между собой. У этих электрогенераторов расход бензина в среднем составляет от 1 до 2,5л за час работы. Их недостатком является небольшой суточный ресурс работы – до 12-ти часов. Бензиновый электрогенератор не подходит для постоянного электроснабжения, а вот в качестве временного источника питания лучше, чем он, не придумаешь. Генератор электрический бензиновый фото Дизельный электрический генератор, в сравнении с бензиновым, имеет немного больший ресурс работы, да и расход топлива у него намного ниже. Он мощнее и способен снабдить электроэнергией даже большой дом. Расход топлива составляет примерно 2-3л в час. Все дизель генераторы оснащаются предохранителями и всевозможными защитами. Изначально его конструкция предусматривает длительную и бесперебойную эксплуатацию. Генератор электрический дизельный фото Газовый бытовой электрогенератор – хорошая альтернатива дизельному. Он способен работать как от сжатого газа в баллонах, так и от газопровода. Работая на сжиженном газе, такой агрегат способен поглощать топлива в 2 раза меньше по сравнению с предыдущими своими «коллегами» по цеху, а на газе из магистрали – в 17 раз. Газовый электрогенератор имеет моторесурс, как минимум, на 30% превышающий ресурс дизельного и бензинового генераторов вместе взятых. Да и срок их эксплуатации намного дольше – это связано непосредственно с используемым топливом. Ветроэлектрогенератор – это вообще источник экологически чистой и практически бесплатной электроэнергии. Однако здесь есть одно «но» – современные ветрогенераторы имеют большие размеры и высокую стоимость. Альтернативой могут служить солнечные батареи. Тоже стоят не дешево, но крыша, сделанная из солнечных батарей, способна снабдить энергией весь дом и участок. Ветроэлектрогенератор для дома фото Три фактора, влияющие на качество эксплуатации электрогенераторовНа что нужно обратить внимание при выборе электрогенератора? Это три основные вещи – мощность, вид нагрузки и вид используемого топлива. 1. Мощность электрогенератора. Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома. Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток). Чтобы рассчитать полную мощность потребителей, нужно подсчитать суммарную мощность с учетом всех коэффициентов и небольшого запаса. Примерно это выглядит так. Рполная = Р1xК1+Р2xК2+ … +РnxКn.Где K – коэффициент, учитывающий пусковую мощность потребителя.Коэффициент активной нагрузки для бытовых электроприборов составляет 1-1,3. Для электрических потребителей с реактивной составляющей этот коэффициент условно принимается равным 3. Электрогенератор газовый бытовой фото Сумма всех вместе взятых нагрузок и будет определять мощность необходимой вам электростанции, плюс 15% нужно заложить «про запас», поскольку со временем количество электрооборудования имеет свойство увеличиваться. Многие потребители (приборы, в цепь которых включены асинхронные электродвигатели, например, холодильники, электроинструменты) при пуске могут потреблять намного больше электроэнергии, чем указанная в паспортных данных мощность. Если речь идет о дизельной электростанции с заведомо большим запасом мощности, помните, что минимально допустимая нагрузка не может быть меньше 30% мощности электрического генератора. Бытовой электрогенератор фото 2. Вид нагрузки на электрогенератор. Всем нам известно, что напряжение в сети может быть 220В (230В) и 380В (400В). Бытует мнение, что трехфазные (380В) бытовые электрогенераторы предпочтительнее в виду своей универсальности. Они могут выдавать в сеть как 380В, так и 230В. Но если в ваши планы не входит подключение трехфазных потребителей, то лучше остановиться на однофазной (230В) электростанции. Электростанция мощностью 6кВт/400В выдает на каждую фазу по 2 кВт, этого может оказаться мало для работы вашего оборудования. В таком случае придется учесть данный нюанс при монтаже электропроводки (часть потребителей посадить на одну фазу, еще часть на другую). Как выбрать электрогенератор для дома или дачи 3. Используемое топливо. Что выбрать? Дизельную электростанцию или бензогенератор? Бытует мнение, что при потребляемой мощности более 6-8кВт лучше остановиться на дизельном агрегате. Если провести сравнительный анализ бензиновых и дизельных установок одного класса, то можно прийти к выводу, что их надежность практически одинакова. Существенная разница заключается только в их стоимости и стоимости энергоносителя. С этой точки зрения наиболее выгодными будут газовые электрогенераторы. А если разобраться еще подробнее, то бестопливная энергетика окажется куда более привлекательной. Тут уж выбор за вами. В любом случае, генератор электрического тока, выбранный для использования в конкретных условиях, окажется полезным приобретением. Автор статьи Александр Куликов
Генератор электрического тока бензиновый для частного дома и дачиГенератор электрического тока бензиновый для частного дома — это личная электростанция, которая работает автономно, независимо от центрального электроснабжения. Используется для получения электричества в домах и дачах. Как выбрать электрогенератор? Почему и в каких случаях нужно выбирать тот, который работает на бензине, а не на каком-нибудь другом топливе? Чтобы ответить на этот вопрос, для начала необходимо разобраться, какие бывают генераторы электрического тока. Виды генераторов электрического токаОсновных немного. Всего 3:
Принцип работы всех устройств один и тот же и похож на работу двигателя внутреннего сгорания автомобиля: топливо загружается сначала в бак, откуда поступает в камеру внутреннего сгорания. Поджигается с помощью искры. Тепловая электроэнергия производится потому, что топливо сгорает в двигателе. Различие — в виде топлива. Кроме того, генераторы бывают синхронные и асинхронные. Синхронные генераторы лучше подойдут для электроснабжения приборов, чувствительных к перепадам напряжения, а это вся бытовая техника: холодильники, телевизоры, компьютеры. Но такие агрегаты менее надежны. Асинхронные конструктивно попроще, но зато долговечнее и дешевле. Правильнее всего их выбрать для дачи, где чаще всего используется техника, не столь требовательная к перепадам напряжения. Надежный помощник на даче Ручные, автоматические и полуавтоматические. Ручные генераторы запускаются с помощью шнура, подобно тому, как запускаются бензопилы и триммеры, работающие на бензине. Полуавтоматические — с помощью кнопки. И те, и другие лучше подойдут в случае периодического использования для получения электричества, т. е. в качестве генератора для дачи. Если же они используются в качестве резервного источника тока, например, если электричество в доме вдруг пропадает, то лучше подойдет автоматический пуск. Система включается самостоятельно, и не требуется участия человека для того, чтобы запустить генератор. Все перечисленное выше относится к генератору электрического тока бензиновому для частного дома, работающим на любом виде топлива. Нужно рассмотреть бензиновые устройства. Бензиновые генераторыЭтот вид генераторов электрического тока состоит из двигателя внутреннего сгорания, работающего на бензине АИ-92, и генератора переменного тока. Они более просты в управлении, чем работающие на солярке. Поэтому наилучшим использованием их будет применение на дачах. Бензиновый генератор У таких мини-электростанций много преимуществ и очень мало недостатков. Преимущества:
Но нужно сказать и о недостатках. Первый — оборотная сторона 1 из его достоинств: существует предел мощности для электрогенераторов бензиновых для дачи. Поэтому они не подойдут тем, кому нужна мини-электростанция для постоянного электроснабжения дома, включая работу всех электроприборов. 2 недостаток — необходимость периодического охлаждения, т. е. они не могут работать непрерывно и нуждаются во временных остановках. Кроме того, у них низкий КПД, и бензин стоит дороже солярки. Так что на вопрос, как выбрать генератор, ответ очевиден: нужно продумать все детали и исходить из личных потребностей и имеющихся возможностей. Виды бензиновых генераторовЕсли владелец решил остановиться на мини-электростанции, работающей на бензине, то и тут нужно разобраться, какие существуют разновидности. Это еще больше прояснит вопрос, какой генератор выбрать:
Как рассчитать мощность генератора?Это очень важный момент. Например, не всегда нужно приобретать самый мощный электрогенератор для дачи. Иначе он просто будет работать впустую. Чтобы этого не произошло, требуется совершить простейшие арифметические действия. Суммировать мощности всех электроприборов в доме плюс учесть потребление электричества на освещение, а потом увеличить полученную сумму на треть, чтобы избежать перегрузок. В среднем для небольшого дома на все нужна мощность около 2 кВт в сутки. А для дачи хватит и 1 кВт. Ориентировочное потребление И еще существенная деталь: генератор не должен работать меньше, чем на 80 % своей номинальной нагрузки. Такой режим лучший, так как он наиболее экономичен. В противном случае КПД работы будет очень низким. Мощный бензогенератор не стоит приобретать, если мини-электростанция нужна не постоянно. На рынке сегодня продаются модели мощностью от 0,6 до 7 кВт. Так что выбор есть. Какой лучше? Например, для дачи (сезонное проживание) или если необходимо организовать резервное (в случае отключения электроэнергии) и автономное питание дома, то лучше приобрести бензиновый генератор мощностью от 5 до 10 кВт, ручной или полуавтоматический, с любым видом охлаждения, 1-фазный. От него электроэнергии для дачи вполне хватит. Ну а если речь идет о большом доме или организации в доме постоянного электроснабжения, то лучше выбрать дизельный автоматический генератор большой мощности, с дополнительным кожухом и размещенный в отдельно стоящем помещении. sadovod.guru Электрический генератор. Основное оборудование электрических станций и подстанций.Основное оборудование электрических станций и подстанцийЭлектрический генератор - это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. История изобретения генератора электрического токаРусский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины. Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г. При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением. В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти. В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние. До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа. Принцип работы любого электрического генератораПринцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один - Э.Д.С., изменяющаяся по гармоническому закону. Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно. Синхронный электрогенераторСинхронный электрогенератор - это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется "реакцией якоря". Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком - возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%. Асинхронный электрогенераторАсинхронный электрогенератор - асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции. Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д. Устройство генератораОсновными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы - ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС. Составные части генератора:
Принцип действия генератораПринцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии. Виды генераторов
ПрименениеГенераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику. www.gigavat.com Генератор электрического тока бензиновый для частного дома: ценыЧтобы дом был настоящей крепостью надо предусмотреть все возможные осложнения и ни в коем случае их не допустить. Одним из наиболее распространенной и неприятной проблемой в условиях жизни в частном доме может стать отключение электричества. Однако от этого несложно предостеречься, если приобрести генератор электрического тока бензиновый для частного дома или аналогичное устройство. Типы генераторовОднако прежде стоит разобраться, какой мощности нужна система энергообеспечения для частного дома, а также, какой больше подойдет: дизельный или бензиновый генератор для частного дома. Сегодня на рынке представлено множество различных по характеристикам и свойствам моделей, различающихся как по мощности, так и по принципу действия. БензиновыйАвтономный генератор тока бензиновый для частного дома — оптимальный вариант для обеспечения бесперебойного энергоснабжения в периоды отключения. Принцип работы основывается на сгорании топлива, проходящего процедуру очистки от механических примесей, с участием кислорода, поступающего посредством втягивания в специальные фильтра. Сгорающая смесь образует приводящий поршневую систему в действие газ. Вращательный момент активизирует ротор, преобразующий его в электрическую энергию. Мощность генерации бензиновых устройств, использующихся для обеспечения электроэнергией стандартного загородного дома на одну семью, в большинстве своем ограничено 12 кВт, чего вполне хватает для обеспечения напряжения в 220 и 330 В. Для питания энергией больших торговых и офисных помещений могут использоваться устройства мощностью до 30 кВт. Часовое потребление горючего варьируется от 0,3 до 4 литров в зависимости от выходного напряжения. При приобретении необходимо внимательно ознакомиться с инструкцией, в частности относительно рекомендованного времени бесперебойной работы. В среднем это время составляет от 10 до 12 часов, после чего требуется охлаждение системы. В то же время хороший бензиновый генератор способен работать дольше, но круглосуточное его использование тем не менее не рекомендуется. По видам различают бензиновый генератор для частного дома, цена которого ниже, — двухтактные и более дорогие, способные вырабатывать большую мощность, — четырехтактные. ДизельныйДизельные аппараты также используются в качества аварийного источника энергоснабжения, а также как дополнительный источник питания в тех случаях, когда предоставляемой мощности электроэнергии не хватает для обеспечения всех потребностей в ней. Дизельные аппараты весьма широко представлены, многие из них способны вырабатывать значительное количество электроэнергии, в связи с чем чаще используются для нужд нескольких домов. Принцип их работы схож с бензиновыми, однако, как следует из названия, работают на другом виде топлива. Есть также модель для обеспечения нужд одного хозяйства. Мощность трехфазных дизельных устройств, представленных на рынке, составляет от 8 до 30 кВА. ГазовыйСуществуют также устройства, принцип работы которых основывается на природном газе, за счет энергии сгорания которого приводятся в движение лопатки турбины. Компрессор вращается за счет половины вырабатываемой энергии, другая питает сам генератор. В этом его преимущество, он полностью автономный, при этом экологически чистый. Опасность газовых генераторов связана с возможной протечкой и, как следствие, взрывом при повреждении системы. Однако необходимо отметить опасность, с которой сопряжена работа устройства. Еще опаснее устройство, принцип работы которого основан на сжиженном газе. Опасность связана с характерными для газовых устройств проблемами, подразумевающими протечку и, как следствие, возможность взрыва при повреждении системы. Виды источников токаСинхронныеСинхронный принцип действия системы заключается в том, что рабочие механизмы устройства, а именно: работа ротора и вращение магнитных полей статора происходит в упорядоченном, взаимосвязанном и синхронном режиме. Главное преимущества данного принципа заключается в стабильности и постоянстве получившегося на выходе напряжения. Главный же недостаток связан, прежде всего, с перегрузками, случающимися вследствие этой взаимозависимости и повышения регулятором силы тока в роторе. Устаревшие модели также содержат недостаток, связанный с наличием щеточного устройства, которое требовало периодического обслуживания и замены. Синхронные установки в большинстве своем нашли свое применение в обеспечении током промышленных предприятий и морских судов. АсинхронныеАсинхронные генераторы не приспособлены к пусковому тока, однако обладают устойчивостью к короткому замыканию и перегрузке. Также этот тип устройства вырабатывает напряжение, слабо подверженное нелинейному искажению, за счет чего устройство адаптировано к питанию бытовых электроприборов. Преимущества также заключаются в следующем:
Асинхронные модели представлены:
ИнверторныеПринцип работы этих устройств, как следует из названия, основан на применении инверторной системы. Посредством налаженного выходного напряжения, обладающего показателем стабильности частоты, осуществляется контроль за широтно-импульсной модуляцией, производящей высококачественную электрическую энергию. Первая ступень работы устройства — работа выпрямителя, преобразующего переменный ток в постоянный. После этого с помощью стабилизации посредством работы специальных фильтров осуществляется очистка пульсации. Это позволяет вырабатываться переменному току при помощи транзисторов или тиристоров в мостовой схеме. Управление параметрами цепей обратной связки осуществляется с помощью системы инверторного устройства. Таким образом, выходной ток контролируется в своих параметрах на каждом участке, за счет чего стабилизируется его частота. Работа устройства базируется на действие ротора, дополненного статором, и блока инвертора, состоящего из указанных выше составляющих:
Контроль за работой системы осуществляет микрокомпьютер. Ротор за счет вращения вырабатывает переменный ток (трехфазный), направляемый в инвертор, а затем — в цепь выпрямление, где происходит выравнивание напряжения и стабилизация выходных показателей. К преимуществам относятся:
Система управленияСистемы управления различны в зависимости от конкретных типов генераторов. В общем их следует разделить на ручные и автоматические. Чаще всего более дорогие устройства предполагают наличие дополнительного оборудования, осуществляющих в соответствии с заданными параметрами запуск, контроль и мониторинг работы системы электроснабжения. Для устройств некоторого типа обязательно предполагает наличие микрокомпьютера, осуществляющего эти функции. Главные преимущества инверторных генераторов — это экономия электроэнергии, компактность и легкость монтажа. В частности, это относится к инверторным типом устройств, от качества работы которых зависит обеспечение жизнедеятельности серьезных больших систем, сбой которых может привести к очень серьезным последствиям. Компактные, предназначенные для питания электроэнергией частного дома обычно управляются в ручном режиме, но в соответствии с установкой дополнительных опций могут быть оснащены системой автоматического управления и контроля. Способы охлажденияРабота устройства неизменно сопряжена с нагреванием системы энергоснабжения. Верхние допустимые пределы нагревания составных частей определяются примененных материалов изоляции, а также температурой воздуха снаружи. Верхнее допустимое значение температуры нагревания также классифицируется в соответствии с присвоенным устройству классом. Система изоляции, предохраняющая от перенагрева также подвержена износу ввиду загрязнения, повышенного содержания влаги, окисления, воздействия электрического поля и повышенных нагрузок. Максимальная допустимая длительность эксплуатации изоляционной системы зависит от максимально допустимого уровня нагревания. Например, при постоянных достижениях температуры в пределах 120 градусов срок службы — 15 лет, а при этом значении в 140 градусов -всего 2 года. Предохраняют систему от перенагревания с помощью использования искусственного охлаждения:
Косвенное предполагает охлаждение при помощи вентиляторов, расположенных в торцах ротора. Охлаждающее вещество попадает в генератор и проходит сквозь зазоры и специальные каналы. Непосредственное охлаждение отличает соприкосновением охлаждающего вещества с обмоткой устройства. Генераторы обычно работают при помощи следующих типов охлаждения:
Воздушное охлаждение происходит либо в проточном, либо в замкнутом режиме. Проточное подразумевает однократное прохождение охлаждающего воздуха через систему, замкнутое — его циркуляцию. Асинхронные генераторы обладают устойчивостью к короткому замыканию и перегрузке. При водородной системе охлаждения охлаждающее устройство всегда встраивается непосредственно в корпус механизма, а не действует снаружи, как воздушное. Жидкостное охлаждение происходит за счет действия дистиллированной воды, обладающей повышенной эффективностью по сравнению с водородом, за счет чего более высокая степень охлаждения происходит без увеличения размеров охлаждающих элементов. Какую мощность выбратьКакой мощности нужен генератор для частного дома ? Требуемая мощность генератора для частного дома напрямую зависит от потребности частного дома и количества используемого в хозяйстве электрооборудования. Генератор 220В, работающий на бензине, подходящий для нужд частного дома, в большинстве представленных моделей вырабатывает мощности от 3 до 8 кВт. Из данного диапазона выбрать подходящий следует с учетом частной потребности. Аппарат, вырабатывающий примерно 3 кВт подойдет, если необходимо обеспечение работы минимального набора бытовых устройств:
Если требуется обеспечить работу еще телевизора, компьютера, зарядки мобильного телефона, микроволновки, тостера, — словом всего для комфортной жизни, то понадобится аппарат, вырабатывающий 8, а то и 12 кВт. Дополнительные параметры, на что обратить вниманиеДля удобства стоит выбрать генератор для частного дома с автозапуском. После выбора мощности и типа следует разобраться во всех представленных подходящих под заданные параметры моделях, а также обратить внимание на мнение потребителей. Хотя все производители не склонны рассказывать покупателям о существенных недостатках выпускаемой продукции, нередко встречается генератор для частного дома, отзывы о котором способны эксплицитно продемонстрировать его очевидные недоработки и слабые стороны. На это также стоит обратить внимание, поскольку никто не хочет повторять чужих ошибок, тем более что в век информационных технологий существует возможность оградиться от них. Подключение генератора в частном доме также требует базовых навыков или помощи профессионалов. Дистрибьюторы, реализующие системы бесперебойного энергоснабжения, чаще всего обладают штатом специалистов в данной области, способных (обычно за доплату) помочь с подключением. В целом схема подключения генератора в частном доме зависит от типа устройства, разработанного для автономной работы или нет, дополненного вводным автоматом или без такового. Обо всех особенностях подключения следует справляться в соответствии с инструкцией или проконсультироваться со специалистами. Пренебрегать всеми значимыми деталями не стоит, поскольку неправильное подключение несет в себе целую группу рисков, различных по своим последствиям, среди которых (только часть из возможных):
Популярные модели бензиновых генераторов и ценыК производителям популярных и актуальных бензиновых генераторов, представленных сегодня на рынке, относятся:
Ниже представлена сравнительная таблица: минимально подходящий (примерно 2-3 кВт) и мощный (10-11 кВт) в линейке названого производителя системы энергообеспечения для частного дома, цена по скрину с сайта дистрибьютора.
Необходимо отметить, что представленный сравнительный анализ цен носит исключительно ознакомительный характер и для обоснованного решения о покупке должен быть дополнен более подробным ознакомлением покупателя с моделями различных производителей, поскольку, во-первых, представлены данные только по одному коммерческому предложению на разные модели, во-вторых, критерий выбора — мощность без учета типа устройства, что также оказывает значительное влияние на конечную цену автоматического бензинового генератора. Несмотря на это, ознакомившись с данной таблицей, пользователь может составить первичное мнение о представленных на рынке производителях и политике ценообразования каждого, вследствие чего сузить круг рассматриваемых вариантов. Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.klimatlab.com Электрогенератор ВикипедияЭлектрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания Ганц, 1909 год.[1] Фотография Прокудина-Горского, 1911 год. У этого термина существуют и другие значения, см. Генератор.Электри́ческий генера́тор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. ИсторияДинамо-машина ЙедликаВ 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время. Диск ФарадеяВ 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток. Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении. Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов. Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции. Динамо-машинаДинамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году. Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь. Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения. Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью. Обратимость электрических машин Русский учёный Э. Х. Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины. Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 году. При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя. В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением. В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти. В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние. До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух принципов: По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа. Другие электрические генераторы, использующие вращениеБез коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток. МГД генераторМагнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель. КлассификацияЭлектромеханические индукционные генераторыЭлектромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию. E=−dΦdt{\displaystyle E=-{\frac {d\Phi }{dt}}} — устанавливает связь между ЭДС и скоростью изменения магнитного потока Φ{\displaystyle \Phi } пронизывающего обмотку генератора.Классификация электромеханических генераторов
См. такжеПримечанияСсылкиwikiredia.ru Электрогенератор - это... Что такое Электрогенератор?Электрогенераторы в начале XX векаЭлектри́ческий генера́тор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. ИсторияДо того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа. Динамо-машина ЙедликаВ 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время. Диск ФарадеяДиск Фарадея В 1831—1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток. Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярный генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении. Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов. Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции. Динамо-машинаОсновная статья Динамо-машина Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первая динамо-машина была построена Hippolyte Pixii в 1832. Пройдя ряд менее значимых открытий динамо-машина стала прообразом из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь. Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора вращающихся обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения. Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью. Другие электрические генераторы, использующие вращениеБез коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах но вырабатывает постоянный ток. МГД генераторМагнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на выходе его высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом, повысить общий КПД. КлассификацияЭлектромеханические индукционные генераторыНа сегодняшний день наиболее распространённым типом является индукционный электромеханический генератор. Абсолютное большинство тепловых, гидравлических, ветряных, атомных, приливных, геотермальных электростанций, а так же некоторые солнечные используют этот тип генератора. Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию. — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.Классификация электромеханических генераторов
См. такжеСсылкиWikimedia Foundation. 2010. dic.academic.ru Электрический генератор - это... Что такое Электрический генератор?Основная статья: Электрогенераторы и электродвигатели Электрогенераторы в начале XX векаЭлектрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. ИсторияРусский ученый Э.Х.Ленц еще в 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины. Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г. При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением. В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти. В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние. До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа. Динамо-машина ЙедликаВ 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время. Диск ФарадеяДиск ФарадеяВ 1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток. Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении. Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов. Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции. Динамо-машинаОсновная статья Динамо-машина Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Pixii Ипполит Пикси в 1832. Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь. Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения. Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью. Другие электрические генераторы, использующие вращениеБез коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток. МГД генераторМагнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель. КлассификацияЭлектромеханические индукционные генераторыЭлектромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию. — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.Классификация электромеханических генераторов
См. такжеСсылкиdal.academic.ru |