Eng Ru
Отправить письмо

1) В чем особенность устройства асинхронных двигателей с фазным ротором? Двигатель с фазным ротором


1) В чем особенность устройства асинхронных двигателей с фазным ротором?

Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. 

Другая разновидность трехфазных асинхронных двигателей - двигатели с фазным ротором - конструктивно отличается от рассмотренного двигателя главным образом устройством ротора (рис.5). Статор этого двигателя также состоит из корпуса 3 и сердечника 4 с трехфазной обмоткой. У него имеются подшипниковые щиты 2 и 6 с подшипниками качения 1 и 7. К корпусу 3 прикреплены лапы 10 и коробка выводов 9. Однако ротор имеет более сложную конструкцию. На валу 8 закреплен шихтованный сердечник 5с трехфазной обмоткой, выполненной аналогично обмотке статора. Эту обмотку соединяют звездой, а ее концы присоединяют к трем контактным кольцам 11, расположенным на валу и изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на каждое контактное кольцо 1 (рис.6) накладывают обычно две щетки 2, располагаемые в щеткодержателях 3. Каждый щеткодержатель снабжен пружинами, обеспечивающими прижатие щеток к контактному кольцу с определенным усилием.

Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис.4, б. Обмотка ротора этого двигателя соединена с пусковым реостатомПР, создающим в цепи ротора добавочное сопротивление Rдоб. 

Рис.5. Устройство трехфазного асинхронного двигателя с фазным ротором:

1, 7 - подшипники; 2, 6 – подшипниковые щиты; 3 - корпус; 4 – сердечник статора с обмоткой; 5 – сердечник ротора; 8 - вал; 9 – коробка выводов; 10 - лапы; 11 – контактные кольца

Рис.6 Расположение щеткодержателей

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в "звезду", а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

2) Как осуществляется пуск двигателя с фазным ротором в условиях лаборатории?

3) Начертить графики механических характеристик при пуске АД при наличии в цепи ротора пускового реостата rд=var. Пояснить пуск АД в данном случае.

Наличие контактных колец у двигателей с фазным ро­тором позволяет подключить к обмотке ротора пусковой реостат (ПР). При этом активное сопро­тивление цепи ротора увеличива­ется до значения R2 = r2' + rд', где rд' — электрическое сопротивление пускового реостата,

Рис. 15.1. Зависимость пускового момента от

активного сопротив­ления цепи ротора приве­денное к обмотке статора.

Влияние возросшего значения активно­го сопротивления на пусковой момент двигателя Мп следует из . Это влияние графически показано на рис. 15.1, из которого видно, что если при отсутствии ПР, т. е. при активном сопротив­лении цепи ротора R2 = r2, пусковой момент Мп = Мпо, то при введении в цепь ротора добавочного активного сопротивления rдоб , когда R/2 = r2' + rдоб' , пусковой момент возрастает и при R//2 = r2' + rдоб' = х1 + х'2 достигает наибольшего значения Мп.наиб. При R/2 > х1 + х'2 пусковой момент уменьшается.

Введение добавочного активного сопротивления увеличивает полное сопротивление роторной цепи, в результате чего уменьшается пусковой ток и увеличивается роторной цепи, вследствие чего увеличивается активная составляющая тока ротора и, следовательно, пусковой момент двигателя.

На рис. 15.2, а показана схема включения ПР в цепь фазного ро­тора. В процессе пуска двигателя ступени ПР переключают таким образом, чтобы ток ротора оставался приблизительно неизменным, а среднее значение пускового момента было близко к наибольшему. На рис. 15.2, б представлен график изменения пускового мо­мента асинхронного двигателя при четырех ступенях пускового реостата. Так, в начальный момент пуска (первая ступень реоста­та) пусковой момент равен Мп.maх. По мере разгона двигателя его момент уменьшается по кривой 1. Как только значение момента уменьшится до значения Мп.min рычаг реостата переводят на вторую ступень и сопротивление реостата

Рис. 15.2. Схема включения пускового реостата (а) и построение графика пускового момента (б) асинхронного двигателя с фазным ротором

уменьшается. Теперь зави­симость М = f(s) выражается кривой 2 и пусковой момент двигате­ля вновь достигает Мп.mах. Затем ПР переключают на третью и на четвертую ступени (кривые 3 и 4).После того как электромагнит­ный момент двигателя уменьшится до значения, равного значению противодействующего момента на валу двигателя, частота враще­ния ротора достигнет установившегося значения и процесс пуска двигателя будет закончен. Таким образом, в течение всего процесса пуска значение пускового момента остается приблизительно постоянным, равным Мп.ср. Следует иметь в виду, что при слишком быстром переключении ступеней реостата пусковой ток может достигнуть недопустимо больших значений.

Рис. 262. Механические характеристики асинхронного двигателя: а — естественная; б — при включении пускового реостата

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R1п (кривая 2), R2п (кривая 3) и R3п (кривая 4), называют реостатными механическими характеристиками. При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R2 и возрастает sкp. При этом уменьшается пусковой ток. Пусковой момент Мп также зависит от R2. Можно так подобрать сопротивление реостата, чтобы пусковой момент Мп был равен наибольшему Мmax.

studfiles.net

Исследование асинхронного двигателя с фазным ротором

Цель работы: ознакомиться с конструкцией асинхронного двигателя с фазным ротором. Изучить пуск, регулирование частоты вращения изменением скольжения, реверсирование. Снять пусковую диаграмму, рабочие, механические и регулировочную характеристики двигателя.

Общие сведения

Асинхронный двигатель с фазным ротором (двигатель с контактными кольцами), принципиальная схема которого приведена на рис.1, состоит из двух частей: неподвижной части ― статора и вращающейся ― ротора.

Статор (рис.2) представляет собой станину (корпус) (1), выполненную из чугунного литья в виде цилиндрической отливки с лапами для крепления на фундаменте. Внутрь станины запрессован пакет (2), представляющий собой пустотелый цилиндр, набранный из отдельных, покрытых специальным изолирующим лаком, тонких листов электротехнической стали с выштампованными вдоль внутренней поверхности пазами (3).

В пазах уложена трехфазная обмотка статора, состоящая из трех одинаковых фазовых обмоток , повернутых друг относительно друга вдоль окружности пакета статора на 120 электрических градусов. Начала обмоток и концы выведены на щиток машины.

Наличие шести выводов дает возможность соединять обмотки статора или по схеме «звезда» или по схеме «треугольник». К клеммам подключается питающая двигатель трехфазная сеть. К торцам станины крепятся подшипниковые щиты, в центре которых расположены шариковые подшипники вала ротора.

Рис. 1

Ротор (рис. 3) представляет собой напрессованный на вал цилиндр (пакет ротора) (1), набранный из отдельных, покрытых специальным изолирующим лаком, тонких листов электротехнической стали с выштампованными вдоль наружной поверхности пазами (2). В пазах уложена трехфазная обмотка ротора выполненная по типу статорной обмотки и соединенная по схеме «звезда».

Начало фаз обмотки , , выведены внутри пустотелого вала и присоединены к контактным кольцам (3). На кольцах наложены медно-графитные щетки (4) ,соединенные с клеммами , , на щитке ротора.

Рис. 2

Рис. 4

Клеммы , , служат для присоединения к обмотке ротора трехфазного пускорегулировочного реостата (рис. 4), который состоит из трех, разделенных на секции, одинаковых активных сопротивлений , соединенных по схеме «звезда». Величину можно уменьшить ступенями (, , , , = 0), замыкая контакты , , , последовательным переводом рукоятки (маховичка) реостата из положения в положения 3, 2, 1, = 0.

Принцип действия асинхронного двигателя с фазным ротором

Ток, идущий по обмоткам статора под действием приложенного к зажимам трехфазного напряжения, создает внутри статора вращающийся магнитный поток «». Частота вращения этого потока относительно статора определяется формулой:

,

где − частота питающей трехфазной сети, Гц,

р − число пар полюсов обмотки статора,

− частота вращения магнитного потока, об/мин.

Направление вращения потока определяется порядком чередования фаз статора. Изменение порядка чередования фаз реверсирует магнитный поток. Чтобы изменить порядок чередования фаз, достаточно поменять местами любые два из трех проводов, соединяющих статор с сетью. Величина вращающегося магнитного потока, являющегося суммой трех синусоидальных магнитных потоков фазных обмоток статора, не изменяется во времени и определяется формулой:

= 3/2 ,

где ─ амплитуда синусоидального изменяющегося магнитного потока фазной обмотки статора.

Величина прямо пропорциональна приложенному к зажимам статора напряжению и при U = const также постоянна. При вращении магнитный поток своими силовыми линиями пересекает проводники обмотки ротора и наводит в них трехфазную ЭДС. Так как обмотка ротора замкнута (с одной стороны ─ общей точкой соединенных в звезду фазных обмоток ротора, с другой ─ общей точкой соединенных в звезду сопротивлений реостата), то по ней пойдет трехфазный ток ротора , который создает вращающийся поток ротора .

Потоки и вращаются синхронно и образуют общий вращающийся поток двигателя Ф. Общий магнитный поток, сцепленный и с обмоткой статора, и с обмоткой ротора, наводит в них электродвижущие силы. В этом аналогия асинхронного двигателя с трансформатором.

В результате взаимодействия токов ротора с потоком Ф возникают действующие на проводники обмотки ротора механические силы, создающие вращающий электромагнитный момент М. Если вращающий момент М больше статического тормозного момента на валу , то ротор двигателя придет во вращение в направлении вращения поля с частотой вращения <. Относительную разность частот вращения поля и ротора называют скольжением.

Частота вращения ротора, выраженная через скольжение будет

.

При пуске двигателя = 0, а s = 1. Если бы ротор вращался синхронно с полем статора (= ), то скольжение было бы равно нулю (s = 0). При магнитное поле статора неподвижно относительно ротора и токи в роторе индуктироваться не будут, поэтому М = 0. Следовательно, такой частоты вращения двигатель достичь не может, отсюда и название ─ асинхронный (неодновременный).

studfiles.net

Конструкция трёхфазного асинхронного двигателя. Короткозамкнутый и фазный ротор

Электротехника: Электрические машины

Конструкция трёхфазного асинхронного двигателя

Трёхфазный асинхронный двигатель является наиболее широко используемым электродвигателем. Почти 80% механической мощности, которая используется в промышленном производстве, преобразуется из электрической мощности, через асинхронные трёхфазные двигатели. Это происходит по той простой причине, что эти двигатели дёшевы, просты и надёжны в эксплуатации и обслуживании. Они имеют хорошие эксплуатационные характеристики, в них отсутствует коллектор, а также они эффективны при регулировании скорости.

В трёхфазном асинхронном двигателе мощность передаётся от статора на обмотку ротора посредством индукции. Наименование «асинхронный» говорит о том, что скорость вращения магнитного поля и скорость ротора не синхронны, при работе в режиме двигателя ротор имеет меньшую скорость, чем скорость вращающегося магнитного поля статора.

Как и любой другой электрический двигатель, асинхронный двигатель имеет две основные части, а именно: ротор и статор.

  • Статор. Как следует из названия – это неподвижная часть двигателя. На статоре расположены трёхфазные обмотки, а также клеммник, через который подаётся электрическая энергия.
  • Ротор. Представляет собой вращающуюся часть асинхронного двигателя. Ротор соединён с механической нагрузкой через вал.

Ротор асинхронного двигателя

Ротор асинхронного двигателя

Ротор асинхронного двигателя может конструктивно отличатся по своему исполнению, он может быть следующих типов:

  • Короткозамкнутый ротор (Squirrel cage rotor).
  • Фазный ротор (Slip ring rotor or wound rotor or phase wound rotor).

В зависимости от типа используемой конструкции ротора, асинхронный трёхфазный двигатель классифицируется как:

  • Асинхронный двигатель с короткозамкнутым ротором типа беличьей клетки (Squirrel cage induction motor).
  • Асинхронный двигатель с фазным ротором (Slip ring induction motor or wound induction motor or phase wound induction motor).

Конструкция статора для обоих типов двигателя остаётся одной и той же.

Кроме основных частей, таких как статор и ротор, асинхронный двигатель имеет и другие не основные части, а именно:

  • Вал для передачи крутящего момента от двигателя на механическую нагрузку. Этот вал изготавливается из стали.
  • Подшипники для поддержки вращающегося вала.
  • Вентилятор для создания охлаждения двигателя, так как при своей работе асинхронный двигатель выделяет тепло.
  • Клеммник для подключения электропитания двигателя.
  • Воздушный зазор между статором и ротором, который должен быть как можно меньше и, обычно, его величина колеблется от 0,4 мм до 4 мм.

Статор трёхфазного асинхронного двигателя

Статор асинхронного трёхфазного двигателя состоит из трёх основных частей:

  • Корпус статора.
  • Сердечник статора.
  • Обмотка статора или обмотка возбуждения.
Корпус статора

Это внешняя, наружная часть статора, функция которого заключается в поддержке сердечника статора и обмоток возбуждения. Он действует как защитное покрытие, обеспечивает механическую прочность всех внутренних частей двигателя. Корпус изготавливается с помощью литья под давлением или из сварной стали. Он должен быть очень прочным и жёстким, потому как требуется обеспечить наименьшую величину воздушного зазора трёхфазного асинхронного двигателя. Более того, воздушный зазор должен быть равномерный между статором и ротором, иначе магнитное притяжение будет несбалансированно, что приведёт к низкой эффективности двигателя и его быстрому износу.

Конструкция статора
Сердечник статора

Основное назначение сердечника статора заключается в том, чтобы обеспечить чередующийся переменный магнитный поток в статоре. Сердечник статора является магнитопроводом. Для того, чтобы уменьшить потери от вихревых токов, сердечник статора изготавливают из тонких листов ламинированной электротехнической стали. Толщина таких листов, изготовленных с помощью штамповки, составляет 0,4 – 0,5 мм. Как правило, выбирается сталь с высоким содержанием кремния, который помогает уменьшить потери на гистерезис, происходящие при работе двигателя.

Сердечник статора

Все тонкие ламинированные листы собираются в пакет так, чтобы образовался цельный сердечник с пазами (слотами) для размещения в них обмотки возбуждения. Внешний вид собранного пакета напоминает кусок полой толстой трубы, во внутренней части которого проделаны параллельные борозды в виде отрезков.

Обмотка статора (обмотка возбуждения)

В трёхфазном асинхронном двигателе в сердечнике статора, в пазах (слотах), располагаются три обмотки возбуждения. По одной обмотке на каждую фазу питания. Эти обмотки между собой соединяются в трёхфазную цепь по типу или «звезда» (Star), или «треугольник» (Delta). Тип соединения зависит от характеристики подаваемого питания на обмотки статора.

Асинхронные двигатели с короткозамкнутым ротором позволяют выполнять запуск с помощью переключения «звезда-треугольник» (star-delta), тогда в рабочем режиме двигатель будет работать с подключением обмоток типа «треугольник». Такое переключение и такой режим работы имеет свои преимущества и недостатки, но гораздо чаще можно встретить прямой пуск асинхронного трёхфазного двигателя по типу подключения «звезда» (star).

В том случае, если подключается асинхронный двигатель с фазным ротором, в котором обмотка ротора выведена на контактные кольца и есть к ним доступ через клеммник, запуск двигателя осуществляется через вставку сопротивлений в обмотку ротора. В этом случае не только статор может иметь способы соединения обмоток, но и ротор может быть соединён по типу или «звезда», или «треугольник».

Обмотку статора называют обмоткой возбуждения потому, как именно через неё создаётся вращающееся магнитное поле, которое является причиной работы асинхронного двигателя.

Типы трёхфазных асинхронных двигателей

Существует два типа двигателей с различными конструкциями роторов, как было сказано об этом выше.

Трёхфазный асинхронный двигатель с короткозамкнутым ротором

Ротор короткозамкнутого асинхронного двигателя имеет цилиндрическую форму. На периферии ротора имеются пазы (слоты). Пазы параллельны друг другу и имеют скос относительно оси вращения ротора. В пазах ротора расположены проводники, которые являются обмоткой ротора и выполнены в виде алюминиевых, медных или латунных стержней. Скос проводников обмотки необходим, чтобы предотвратить магнитное запирание ротора и статора, что делает работу двигателя более гладкой и равномерной, без рывков и перегрузок.

По бокам, с торцов ротора расположены кольца, с которыми соединены проводники обмотки ротора. По внешнему виду такая конструкция обмотки похожа на беличье колесо. Так как обмотка ротора замкнута накоротко, это исключает возможность изменять сопротивление обмотки, потому как отсутствуют контактные кольца и щёточный механизм. В свою очередь такая конструкция ротора проста и надёжна, что позволяет широко использовать трёхфазные асинхронные двигатели с этим типом ротора.

Преимущества использования асинхронного двигателя с короткозамкнутым ротором
  • Простота, надёжность и прочность конструкции.
  • Отсутствие контактных колец и щёточного механизма значительно упрощает обслуживание двигателя.
Применение асинхронного двигателя с короткозамкнутым ротором

Используется в станках в металлорежущем и деревообрабатывающем оборудовании, в сверлильных станках, а также в вентиляторах, в токарном и фрезерном оборудовании.

Трёхфазный асинхронный двигатель с фазным ротором

В этом типе трёхфазного асинхронного двигателя ротор не имеет короткозамкнутой обмотки. Отсутствуют торцевые кольца, на которых проводники ротора соединяются накоротко. Ротор обычно имеет такое же количество пар полюсов, что и статор, но в отличии от статора его проводники имеют гораздо большее сечение. Концы проводников выводятся на контактные кольца, которые расположены на валу фазного ротора. Если оба конца проводников выведены на контактные кольца, то это позволяет соединять обмотку ротора по типу «звезды» (star) или «треугольника» (delta). В основном, с одной стороны контакты проводников фазного ротора соединяются вместе в общую точку, а противоположные концы выводятся на контактные кольца. В этом случае фазный ротор включается по типу «звезда» (star) и имеется возможность управлять сопротивлением обмотки ротора через коммутационную аппаратуру.

Трёхфазный асинхронный двигатель с фазным ротором

Контактные кольца фазного ротора соприкасаются со щётками, посредством которых осуществляется непрерывный контакт с обмоткой ротора. Щётки располагаются в щёточном механизме, они требуют дополнительного обслуживания, периодической замены по мере износа. Наличие подвижного контакта вызывает нежелательное искрение, которое сводят к минимальному значению, обеспечивая плотное прилегание щёток к контактным кольцам.

Подключение внешнего сопротивления в обмотку ротора используется для облегчения пуска двигателя и для контроля скорости двигателя. Чтобы обеспечить плавный пуск двигателя с фазным ротором, по мере пуска добавочное сопротивление в обмотке ротора уменьшают. Это происходит или плавно, или ступенчато, в зависимости от используемой пусковой аппаратуры. Когда двигатель войдёт в рабочий режим, обмотка ротора практически замкнута накоротко.

В ниже приведённой схеме показана схема включения и запуска трёхфазного асинхронного двигателя с фазным ротором.

Управление двигателем с фазным ротором
Преимущества трёхфазного асинхронного двигателя с фазным ротором
  • Он имеет высокий пусковой момент и низкий пусковой ток.
  • Возможен контроль скорости вращения через дополнительные сопротивления в цепи фазного ротора.
Применение трёхфазного асинхронного двигателя с фазным ротором

Двигатель этого типа используется там, где требуется высокий пусковой момент. Например, это могут быть: подъёмные механизмы, краны, лифты, любое оборудование, в котором двигатель вынужден запускаться с высокой механической нагрузкой на валу. Кран, который держит подвешенный груз, или лифт, который нагружен, всё это повышенная нагрузка на вал ротора, что в свою очередь требует высокого пускового момента от двигателя. Включение обычного короткозамкнутого асинхронного двигателя при такой нагрузке приведёт к высоким пусковым токам, что неэкономично, потому как повышает требования к электросети и может вызвать поломку двигателя. Поэтому применение асинхронных двигателей с фазным ротором оправдано.

Дата: 25.01.2016

© Valentin Grigoryev (Валентин Григорьев)

Тег статьи: Асинхронные двигатели

Все теги раздела Электротехника:Электричество Закон Ома Электрический ток Электробезопасность Устройства Биоэлектричество Характеристики Физические величины Электролиз Электрические схемы Асинхронные двигатели

www.electricity-automation.com

Асинхронный двигатель с фазным ротором

Упрощенная принципиальная схема пуска асинхронного двигателя с фазным роторомОдной из разновидностей асинхронного двигателя является двигатель с фазным ротором. На практике данный двигатель довольно часто применяется, благодаря улучшенным пусковым свойствам и характеристикам.

Устройство асинхронного двигателя с фазным ротором

Как и у АД с короткозамкнутым ротором, сердечник его статора набирается из листов электротехнической стали, а затем спрессовывается. В пазы сердечника укладываются фазные обмотки, концы которых затем выводятся в коробку, расположенную на корпусе двигателя.

Отличие заключается в роторе двигателя. Он также как и статор набирается из листов стали, спрессовывается и в него набирается фазная обмотка. Причем число фаз ротора равно числу фаз статора, в то время как у короткозамкнутого, каждый стержень “беличьей клетки” образует отдельную фазу. Отсюда название – фазный ротор.

Концы фаз фазного ротора соединяются с контактными кольцами, которые расположены на валу ротора. В свою очередь, контактные кольца соприкасаются с графитовыми щетками, которые имеют выводы в коробку на корпусе, для возможности подключения дополнительного сопротивления. Это сопротивление в цепи ротора оказывает влияние на токи, протекающие в нем, а как следствие на его характеристики. При увеличении сопротивления цепи ротора, механическая характеристика становится более мягкой.

Влияние сопротивления сказывается и на пуске двигателя, а именно добавочное сопротивление позволяет осуществить более мягкий пуск, снизить пусковые токи и моменты и как следствие, снизить удары в механической части привода в момент пуска.

Как правило, используют переменное сопротивление, которое уменьшают с увеличением оборотов двигателя. Так как зачастую оно представляет из себя ступенчатый реостат, то и пуск двигателя осуществляется тоже ступенчато.

Для увеличения КПД двигателя и сохранения целостности щеток в конструкции двигателя предусматривается специальное щеткоснимательное устройство, которое убирает щетки после пуска. КПД повышается за счет того что, на щетках падает часть напряжения.

Таким образом, преимуществом асинхронного двигателя с фазным ротором является возможность пуска под нагрузкой, но недостатком является более сложная конструкция, а также его дороговизна по сравнению с двигателем с короткозамкнутым ротором. Короткозамкнытый кроме того, является более простым и надежным, не требует дополнительных устройств.

Устроиство и принцип действия асинхронного электродвигателя.< Предыдущая Следующая >Устроиство и принцип действия синхронного электродвигателя
 

xn----8sbnaarbiedfksmiphlmncm1d9b0i.xn--p1ai

Асинхронные электродвигатели с фазным ротором

В текущее время, на долю асинхронных движков приходится более 80% всех электродвигателей, выпускаемых индустрией. К ним относятся и трехфазные асинхронные движки.

Трехфазные асинхронные электродвигатели обширно употребляются в устройствах автоматики и телемеханики, бытовых и мед устройствах, устройствах звукозаписи и т.п.

Плюсы асинхронных электродвигателей

Обширное распространение трехфазных асинхронных движков разъясняется простотой их конструкции, надежностью в работе, неплохими эксплуатационными качествами, низкой ценой и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Основными частями хоть какого асинхронного мотора является недвижная часть – статор и крутящая часть, именуемая ротором.

Статор трехфазного асинхронного мотора состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягеньких катушек, образующих три фазы обмотки статора. Геометрические оси катушек смещены в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» либо «треугольник» зависимо от напряжения сети. К примеру, если в паспорте мотора указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение мотора равно 220 В.

Ротор трехфазного асинхронного мотора представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. Зависимо от типа обмотки роторы трехфазных асинхронных движков делятся на короткозамкнутые и фазные.

Асинхронные электродвигатели с фазным ротором

В асинхронных электродвигателях большей мощности и особых машинах малой мощности для улучшения пусковых и регулировочных параметров используются фазные роторы.В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек(1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга.При помощи щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Асинхронные электродвигатели с фазным ротором

Асинхронный движок с фазным ротором имеет наилучшие пусковые и регулировочные характеристики, но ему присущи огромные масса, размеры и цена, чем асинхронному движку с короткозамкнутым ротором.

Механизм работы асинхронных электродвигателей

Механизм работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается крутящееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электрической индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В итоге взаимодействия тока с результирующим малнитным полем создается электрический момент. Если этот момент превосходит момент сопротивления на валу мотора, вал начинает крутиться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, именуемой синхронной. Отсюда и заглавие мотора асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2:s=(ω1-ω2)/ω1

Асинхронные электродвигатели с фазным ротором

Значение и символ скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме безупречного холостого хода ротор и магнитное поле крутятся с схожей частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электрический момент машины равны нулю. При пуске ротор в 1-ый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме меняется от s=1 при пуске до s=0 в режиме безупречного холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина перебегает в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, обратном направлению вращения магнитного поли (s>1), асинхронная машина перебегает в режим противовключения и также развивает тормозной момент. Таким макаром, зависимо от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения употребляют для торможения асинхронных движков.

elektrica.info

Асинхронные электродвигатели с фазным ротором

Асинхронные электродвигатели с фазным ротором

 В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные электродвигатели.

Трехфазные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

 Достоинства асинхронных электродвигателей

 Электродвигатели асинхронные трёхфазные имеют широкое распространение, которое объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

 Асинхронные электродвигатели с фазным ротором - устройство

 Основными частями любого асинхронного электрического двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

 Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

 Фазы обмотки можно соединить по схеме ''звезда'' или "треугольник" в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют "звездой". Если же напряжение сети 220 В, то обмотки соединяют в "треугольник". В обоих случаях фазное напряжение двигателя равно 220 В.

 Ротор трехфазного асинхронного электродвигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные. 

 

 

В асинхронных машинах большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.  

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

 

 Асинхронный электродвигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

 Принцип работы асинхронных электродвигателей

 Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

 Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Именно поэтому электродвигатели называются асинхронными, т. е. несинхронными.

 Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

 При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

  

Электродвигатели прайс-лист

Электродвигатели продажа

Электродвигатели и насосы в Краснодаре

 

motor-23.livejournal.com

Асинхронный двигатель с фазным ротором: устройство, принцип работы (видео)

Асинхронный двигатель с фазным ротором имеет очень обширную область обслуживания. АД (асинхронный двигатель) чаще применяется в управлении двигателями большой мощности. Обслуживание и управление приводов мельниц, станков, насосов, кранов, дымососа, дробилок. Асинхронный двигатель с массивным ротором даёт возможность подключения множества технических механизмов.

ОГЛАВЛЕНИЕ

  • Характеристика асинхронного двигателя
  • Схема подключения
  • Устройство двигателя
  • Принцип работы
  • Расчёт числа повторений
  • Реостатный пуск
  • Ремонт и характеристики неисправностей

Характеристика асинхронного двигателя

Асинхронный двигатель с фазным роторомПреимущества использования:

  • Запуск двигателя с нагрузкой, подключение к валу благодаря созданию большого момента вращения. Это обеспечивает обслуживание асинхронных двигателей с фазовым элементом любой мощности.
  • Возможность постоянной скорости вращения большой или маленькой нагрузки
  • Регулирование автоматического пуска.
  • Работа даже при перегрузке тока напряжения.
  • Простота использования.
  • Невысокая стоимость.
  • Надёжность применения.

Недостатки применения

  • Использование резисторов увеличивается стоимость, а работа двигателя усложняется;
  • Большие размеры;
  • Значение КПД меньше, чем короткозамкнутых роторов;
  • Трудное управление скоростью вращения;
  • Регулярный капитальный ремонт .

Схема подключения

При подключении к току начинают работать реле времени. Контакты размыкаются. При нажатии тумблера происходит пуск.

Схема подключения асинхронного двигателя

Чтобы подключить АД нужно правильно обозначить концы и начала обмоток фазы.

Устройство двигателя

Главными постоянными являются статор и ротор. Статор представляет собой цилиндр, состав –листы электротехнической стали, в цилиндр уложена трёхфазная обмотка. Она состоит из обмоточной проволоки. Которые соединены между собой в виде звезды или треугольника в зависимости от напряжения.

Устройство асинхронного двигателя с фазным ротором

Ротор – основная вращающаяся часть двигателей. Он в зависимости от расположения может быть внешним, внутренним. Данный элемент состоит из стальных листов. Пазы сердечника наполнены алюминием, который имеет стержни, содержащие торцевые кольца. Они могут быть латунными или стальными, каждое из них изолировано слоем лака. Между трёхфазным статором и ротором образуется зазор. Регулирование размер зазора от 0,30 –0,34 мм в устройствах с небольшим напряжением, 1,0–1,6 мм в устройствах с большим постоянным электрическим напряжением. Конструкция имеет название «беличья клетка». Для мощных двигателей используется медь в сердечнике. Контактор начинает действие, двигатель заводится.

Существует добавочный резистор в цепи обмотки вращающей части машины, крепится с помощью металлографитных щеток. Щетки обычно используются две, расположены на щеткодержателе. В приводах кранах и центрифугах для регулирования роботы применяется конический подвижный ротор. Асинхронные двигатели с фазным ротором незаменимы при технических требованиях мощного пускового момента. Это могут быть такие механизмы, как кран, мельница, лифт.

Схема переключения электрической цепи со звезды на треугольник

Схема переключения электрической цепи со звезды на треугольник

Принцип работы

В основе АД лежит вращение поля магнитов. В область обмотки трёхфазного статора поступает ток, а в фазах возникает поток магнитов, изменяемый в зависимости от скорости и частоты постоянной электрической мощности. При статорном вращении возникает электродвижущая сила.

В роторную обмотку подходит напряжение, которое совместно с постоянным магнитным потоком статора образует пуск. Он стремится направить ротор по магнитному вращению статора и при достижении превышения момента торможения, приводит к скольжению. Оно выражает отношение между частотами статорного силового поля магнитов и скоростью роторного вращения.

Чертеж режима кз

Чертеж режима кз

При балансе между моментами электромагнита и торможения, перемена значений остановится. Особенность эксплуатации АД – сольватация кругового движения силового поля статора и им наводящих токов в роторе. Момент вращения возникает лишь при разнице частот круговых движений магнитных полей.

Машины различают синхронные, асинхронные. Разница механизмов в их обмотке. Она образует магнитное поле.

Неподвижность ротора и замыкание обмотки приводит к короткому замыканию (кз).

Расчёт числа повторений

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка...

Возьмём m1 – процесс повторения постоянного поля магнитов и ротора. Система фазы переменного тока образуют вращение поля магнитов.

Данные расчета считаются по формуле:

m1=60f1/p

f1– частота электричества$

p – количество полюсных пар каждой обмотки статора.

m2 – процесс повторения вращения ротора. Имея различное количество одновременных повторений, данная скорость частоты будет асинхронной. Определение расчёта частоты проводится по соотношению между данными:

(m2≠m1)

Асинхронный электродвигатель работает только при асинхронной частоте.

(m2<m1)

При одновременном вращении статора и ротора, расчет скольжения будет равняться нулю.

Двухроторный АД используется для привода разных механизмов. Различие двухроторного двигателя заключается присутствием в конструкции двух роторов. Второй ротор выполняет функцию вспомогательную, может вращаться с другой скоростью. Вспомогательный ротор представляет собой внутренний хомут для замыкания постоянного потока магнитов, охлаждения электродвигателя. Недостаток двухмоторного асинхронного двигателя в низком КПД от использования ферромагнитного вспомогательного ротора.

В ходе исследования двухроторных машин достигаются близкие данные скоростик желаемым, когда вспомогательный ротор имеет максимальные вентиляционные зазоры. Полый ротор установлен на ступице, его вал расположен внутри цилиндра. При вращении вспомогательного ротора вентиляция работает по принципу центробежного вентилятора. Для увеличения пускового момента и большей электрической нагрузки полый ротор должен регулироваться, перемещаясь вдоль вала, с установленным штифтом, конец чего входит в паз ступицы ротора.

Данные для расчета:

Данные для расчета числа повторений

Реостатный пуск

Часто для включения двигателя безмощных пусковых моментов оказывают нужное действие реостаты. Схема реостатного способа:

Схема реостатного пуска

Главной характеристикой метода является присоединение двигателя при пуске к реостатам. Реостаты разрываются (на чертеже К1), на них идет частично электрический ток. Что дает возможность уменьшить пусковые токи. Пусковой момент тоже снижается. Преимущество реостатного способа заключается в снижении нагрузки на механическую часть и нехватку напряжения.

Ремонт и характеристики неисправностей

Причиной ремонта могут служить внешние и внутренние причины.

Внешние причины ремонта:

  • обрыв провода или нарушение соединений с электрическим током;
  • сгорание предохранителей;
  • понижение или повышения напряжения;
  • перегруженность АД;
  • неравномерная вентиляция в зазоре.

Внутренняя поломка может возникнуть по механическим и электрическим причинам.

Механические причины ремонта:

  • неправильное регулирование зазора подшипников;
  • повреждение вала ротора;
  • расшатывание щеткодержателей;
  • возникновение глубоких выработок;
  • истощение креплений и трещины.

Электрические причины ремонта:

  • замыкания витков;
  • поломка провода в обмотках;
  • пробивание изоляции;
  • пробой пайки проводов.

Данные причины – это далеко не полный список поломок.

Асинхронный двигатель – незаменимый и важный механизм, применяемый для обслуживания быта и различных отраслей промышленности. Для практического действия АД с фазным ротором необходимо знать техническую характеристику управления, использовать его по назначению и регулярно проводить ремонт при технических осмотрах. Тогда асинхронный двигатель станет практически вечной эксплуатации.

electricvdele.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта