Однофазный асинхронный двигатель с пусковой обмоткой. Двигатель асинхронный с пусковой обмоткойПусковые режимы асинхронных электродвигателейМомент начала питания электродвигателя напряжением сети сопровождается высоким пусковым током. Поэтому, если участок линии электропередачи относительно слаб, фиксируется снижение напряжения, что оказывает влияние на работу рецептора. Падение напряжения может достигать значительных величин, что также сказывается на функциональности систем освещения. Исключить подобные явления призваны отраслевые правила, которыми запрещается пуск электродвигателей в режиме непосредственного старта, если оборудование выходит за пределы заданной мощности. Следует применять такие пусковые режимы электродвигателей, при которых питающая сеть и периферийное оборудование не испытывают дестабилизации в работе. Содержимое публикации Режимы запуска электрических моторовСуществуют и применяются на практике несколько разных режимов пуска асинхронных электродвигателей. Каждый имеет свои плюсы и минусы в зависимости от технических характеристик моторов и нагрузки. Выбор конкретного режима пуска определяется электрическими, механическими, экономическими факторами. Вид управляемой нагрузки, также является важным фактором выбора режима запуска. Рассмотрим наиболее часто практикуемые варианты пусков. Прямой пуск свободно вращающегося мотораЭтот режим пуска асинхронного электродвигателя видится самым простым из всех существующих схем. Здесь статор мотора напрямую подключается к источнику питания. Электродвигатель стартует в соответствии с определённой для него характеристикой. Схема прямого запуска: 1 — колодка предохранителей; 2 — контактор; 3 — биметаллическое реле; 4 — мотор; 5, 6 — кривые состояния в момент стартаКогда имеет место момент включения, электрический мотор, в данном случае, работает подобно вторичной обмотке трансформатора, образованной короткозамкнутым ротором, имеющей крайне малое сопротивление. На роторе формируется высокий индуцированный ток, превышающий в 5-8 раз номинальный параметр, за счёт чего возрастает пиковый ток в сети питания. Среднее значение пускового момента при этом составляет 0,5-1,5 от номинала. Несмотря на явные преимущества (простая схема, высокий пусковой момент, быстрый старт, экономия), режим прямого пуска асинхронных моторов видится разумным лишь в следующих обстоятельствах:
Режим пуска с переключением «звезда-треугольник»Вариант с переключением схемы обмоток применим только на электродвигателях, где начальные и конечные проводники всех трёх обмоток статора выведены на клеммы БРНО. Кроме того, обмотка мотора должна иметь исполнение, когда соединение треугольником соответствует сетевому напряжению. Например, для 3-фазной линейной сети 380В подойдёт электродвигатель с параметрами обмотки 380В – «треугольник» и 660В — «звезда». Принцип режима пуска асинхронного электродвигателя, для этого варианта заключается в запуске мотора звездообразным подключением обмотки к сетевому трёхфазному напряжению. Здесь теоретически номинальное напряжение «звезды» электродвигателя делится на корень квадратный из 3 (380В = 660В / √3). Пик пускового тока также делится на 3 и составит: ПТ = 1,5 — 2,6 НТ (номинальный ток) Электродвигатель с обмоткой под напряжения 380В / 660В, под номинальное напряжение 660В, потребляет меньше тока в 3,3 раза, чем на соединении «треугольник» при напряжении 380В. В режиме соединения «звездой» при напряжении 380В, ток вновь делится на √3, учитывая наличие 3 фаз. Поскольку пусковой момент (ПМ) пропорционален квадратуре значения питающего напряжения, значение ПМ также делится на 3 и составит: ПМ = 0.2 — 0.5 НПМ (номинальный пусковой момент) Скорость электродвигателя стабилизируется при балансировке и резистивных крутящих моментах, как правило, на уровне 75-85% от номинальной скорости. Затем обмотки соединяются «треугольником», после чего электродвигатель восстанавливает рабочие характеристики. Переход от соединения «звезда» на соединение «треугольник», как правило, контролируется таймером. Контактор «треугольника» закрывается спустя 30-50 миллисекунд после открытия контактора «звезды». Этой последовательностью предотвращается короткое замыкание между фазами. Течение тока через обмотки нарушается, когда контактор «звезды» открывается и восстанавливается вновь, когда закрывается контактор «треугольника». В этот момент (сдвиг на «треугольник») формируется короткий, но сильный переходный пик тока по причине противоэлектродвижущей силы электродвигателя. Каким моторам нужен пуск «звезда – треугольник»?Режим пуска «звезда – треугольник» подходит для машин с низким резистивным крутящим моментом или когда запуск выполняется без нагрузки. Для ограничения переходных явлений выше определенного уровня мощности, могут потребоваться дополнительные меры. Например, 1-2-секундная задержка на сдвиг от «звезды» к «треугольнику». Применение такой задержки по времени способствует ослаблению противоэлектродвижущей силы. Следовательно, уменьшается пиковая составляющая переходного тока. Однако задержка рекомендуется только в том случае, когда машина имеет достаточную инерцию. Иначе время задержки значительного снижает скорость вращения. Также применим другой вариант – трёхступенчатый, где выполняется последовательность:
Разрыв по-прежнему имеет место, но резистор, включенный последовательно с обмотками подключенными «треугольником» в течение примерно трех секунд понижает переходный ток. Так предотвращается нарушение течения тока и образование переходных негативных явлений. Режим запуска с питанием части обмоткиПодобный вариант режима пуска асинхронного электродвигателя — редкость для России и Европы. Эта схема распространена на североамериканском континенте (для моторов напряжением 230/460В). Такие двигатели имеют обмотку статора, разделенную на две параллельные обмотки, с выводом шести или двенадцати концевых проводников. Этот вариант, по сути, эквивалентен двум «половинным моторам» равной мощности. В режиме запуска один «половинный двигатель» подключается непосредственно к полному напряжению сети. Пусковой ток и крутящий момент делятся примерно на два. Крутящий момент, однако, существенно больше, чем для электродвигателя с короткозамкнутым ротором равной мощности в режиме пуска «звезда-треугольник». Конечным этапом режима пуска становится подключение к сети второй обмотки. В этот момент, текущий пиковый ток отмечается низким уровнем и протекает кратковременно, потому что электродвигатель не отключается от сети и уже частично раскручен. Резистивно-статорный режим пускаПрименение резистивно-статорного режима пуска электродвигателя отмечается пониженным напряжением. Причина понижения — резисторы, включенные последовательно с обмотками статора. Когда скорость вращения ротора стабилизируется, резисторы отключаются, а статор электродвигателя подключается непосредственно к сети. Как правило, схема выстроена с участием таймера. Этот режим пуска асинхронных электродвигателей не изменяет соединения статорных обмоток. Поэтому не требуется, чтобы на клеммы колодки БРНО выводились все концевые проводники обмотки. Резистивный вариант старта мотора: 1 — предохранители; 2 — контактор 1; 3 — контактор 2; 4 — тепловая защита; 5 — запускаемый моторЗначение сопротивления рассчитывается в соответствии с максимальным пиковым током при пуске или минимальным пусковым моментом, необходимым для крутящего момента привода машины. Значения пускового тока и крутящего момента следующие: ПТ = 4.5 НТ ПМ = 0,75 НПМ На этапе ускорения с резисторами, приложенное на клеммах электродвигателя напряжение не является полным, а равно разнице, полученной от величины напряжения сети, минус падение напряжения на сопротивлении. Падение напряжения пропорционально току потребления электродвигателя. Поскольку ток снижается по мере ускорения вращения ротора мотора, то же самое происходит и при падении напряжения на сопротивлении. Поэтому напряжение, приложенное на клеммы асинхронного электродвигателя, находится на самом низком уровне при запуске, а затем постепенно увеличивается. Поскольку крутящий момент пропорционален квадрату напряжения на клеммах мотора, этот момент увеличивается быстрее, чем при пуске в режиме «звезда-треугольник», где напряжение остается постоянным на всём протяжении времени, пока действует подключение «звездой». Таким образом, резистивно-статорный режим пуска подходит для машин с резистивным крутящим моментом, который увеличивается с набором скорости. Такой пуск оптимален для оборудования, подобного вентиляторам и центробежным насосам. Однако есть недостаток — довольно высокий пиковый ток на запуске. Снижение тока возможно увеличением сопротивления. Но увеличение значения сопротивления грозит падением напряжения на клеммах электродвигателя и, как следствие, приводит к резкому снижению пускового момента. Режим автотрансформаторного пускаРежим автотрансформаторного пуска асинхронного электродвигателя характерен способом питания. На мотор подводится пониженное напряжение, благодаря автотрансформатору. По завершению процесса старта автотрансформатор отключается. Пуск выполняется в три этапа:
Пусковой процесс проходит без фактора разрыва прохождения тока в обмотках электродвигателя. Поэтому переходные явления по причине разрывов отсутствуют. Между тем если не соблюдать определённые меры предосторожности, подобные явления переходного процесса могут появляться при подключении полного напряжения. Этот дефект обусловлен высоким значением индуктивности, включенной последовательно с двигателем, по сравнению с режимом работы мотора на всём протяжении времени подключения «звездой». Отмечается резкое падение напряжения, чем вызывается высокий рост переходного тока при подключении полного напряжения. Чтобы преодолеть этот недостаток, магнитная цепь автотрансформатора выполняется с воздушным зазором. Наличие такого зазора способствует снижению значения индуктивности. Это значение рассчитывается для предотвращения изменения напряжения на клеммах электродвигателя, когда осуществляется переход на второй шаг процесса пуска. Воздушный зазор вызывает увеличение тока намагничивания катушки автотрансформатора. Ток намагничивания увеличивает пусковой ток электросети при включении автотрансформатора. Автотрансформаторный режим пуска обычно используется при эксплуатации двигателей мощностью более 150 кВт. Подобные схемы считаются экономически невыгодными по причине высокой стоимости автотрансформатора. Режим пуска асинхронных двигателей с фазным роторомНельзя запускать асинхронный электродвигатель с фазным ротором сразу после короткого замыкания роторных обмоток. Этот метод приводит к появлению предельных пиковых токов. Старт для мотора с фазным ротором: 1 — предохранительный блок; 2 — защита; 3, 7, 8, 9 — контакторы; 4, 5, 6 — ограничительные резисторы: 10 — мотор с фазным роторомНеобходимо использовать резисторы в цепях питания ротора. Замыкать роторные обмотки следует постепенно, по мере набора статором полного сетевого напряжения. Сопротивление на каждой фазе необходимо рассчитывать с учётом точного определения кривой крутящего момента. В результате расчётное сопротивление полностью включается при запуске и замыкается накоротко только при достижении ротором полной скорости вращения. Режим пуска электродвигателя с фазным ротором является лучшим выбором для всех случаев, когда пиковые токи машин должны быть низкими, а запуск осуществляется при полной нагрузке. Такой пуск обладает чрезвычайно плавным ходом, так как достаточно легко регулировать количество и форму кривых, представляющих собой последовательные шаги по механическим и электрическим требованиям (резистивный крутящий момент, значение ускорения, максимальный пик тока и т. д.). Режим плавного пуска: «запуск с замедлением»Один из эффективных стартовых режимов, подходящих для плавного пуска и останова электродвигателя. Применяется с целью ограничение тока, регулировки крутящего момента. Контроль по ограничению тока устанавливается на максимум (кратность 3-4 от номинала) при пуске, чем снижается характеристика крутящего момента. Этот способ удачно подходит для центробежных насосов, вентиляторов и т.п. Регулирование с помощью настройки крутящего момента оптимизирует крутящие моменты в процессе пуска и снижает пусковой ток. Схемный вариант разводки для обеспечения старта при условии каскадного объединения электрических моторовТакой режим оптимально подходит для машин с постоянным крутящим моментом. Этим режимом поддерживается много разных вариаций:
Пусковые режимы с преобразователем частотыСовременная эффективная пусковая система, применимая для использования, когда необходимо контролировать и настраивать в широком диапазоне скорость вращения вала мотора. Поддерживаются условия:
Этот режим пуска асинхронных электродвигателей допустимо использовать на всех типах электрических машин. Однако подобные решения в основном используются для регулировки скорости вала электродвигателя, начиная с пусков второстепенного назначения. Техника плавного старта мотораПри помощи материалов: Schneider-electric zetsila.ru Глава 16• Однофазные и конденсаторные асинхронные двигатели §16.1. Принцип действия и пуск однофазного асинхронного двигателяПо своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из статора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особенность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС статора создает не вращающийся, а пульсирующий магнитный поток (см. § 9.4) с амплитудой Фmах, изменяющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в пространстве. Для объяснения принципа действия однофазного двигателя пульсирующий поток Фmах разложим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин) nпр = nобр = f160/ p = n1 Условимся считать поток Фпр вращающийся в направлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр. Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося потока Фпр будет sпр = (n1 – n2)/ n1 = s(16.1) Обратный поток Фобр вращается противоположно ротору, поэтому частота вращения ротора n2 относительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением sобр = (16.2) Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное поле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр. Известно, что частота тока в роторе пропорциональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим: snp = (1500 - 1450)/ 1500 = 0,033; f2пр= 0,033 - 50 = 1,8 Гц; sобр = (1500 +1450)/ 1500 = 1,96; f2о6р = 1,96 - 50 = 98 Гц.
Рис.16.1 Схема включения однофазного асинхронного двигателя Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >>f2пр). Ток I/2о6р является почти чисто индуктивным, оказывающим сильное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются значительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента М = Мпр - М06р, (16.3) где Мпр — электромагнитный момент, обусловленный прямым полем.
Рис. 16.2. Разложение пульсирующего магнитного потока на два вращающихся На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент М создается главным образом моментом Мпр. При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пусковой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s ≠ 1 на ротор двигателя действует вращающий момент М = Мпр - Мобр
Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового момента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки А применяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку В отключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным. Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5): а) МДС рабочей и пусковой обмоток идолжны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град; б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°. При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим обратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормозной момент и ухудшает пусковые свойства двигателя. Из векторных диаграмм, приведенных на рис. 16.6, видно, что активное сопротивление и индуктивность в качестве ФЭ не обеспечивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспечивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают таким, чтобы ток пусковой обмотки в момент пуска (s = 1) опережал по фазе напряжение , на угол φв, дополняющий угол φА до 90°:
Рис. 16.5. Получение вращающегося магнитного поля двухфазной системой токов Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем напряжении 300—500 В. Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непродолжительное время (обычно несколько секунд), то такая ее конструкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.
Рис. 16.6. Сравнение свойств фазосмещающих элементов: а — активное сопротивление, б — индуктивность, в — емкость, г — механические характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2 — емкость Применение емкости в качестве ФЭ позволяет получить пусковой момент Мп = (1,6÷2,0) Мном. На рис. 16.6, г приведены механические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах. studfiles.net Способы пуска асинхронного трехфазного двигателя от однофазной сети ~ ЭлектроприводКак запускать трехфазный асинхронный двигатель от однофазной сети? Самый простой способ запуска трехфазного двигателя в качестве однофазного, основывается на подключении его третьей обмотки через фазосдвигающее устройство. В качестве такого устройство может выступать активное сопротивление, индуктивность или конденсатор.
Прежде, чем подключать трехфазный двигатель в однофазную сеть, необходимо убедиться, что номинальное напряжение его обмоток соответствуют номинальному напряжению сети. Асинхронный трехфазный двигатель имеет три статорных обмотки. Соответственно в клемной коробке должно быть выведено 6 клемм для подключения питания. Если открыть клеммную коробку, то мы увидим борно двигателя. На борно, выведены 3 обмотки двигателя. Их концы подключены к клеммам. На эти клеммы и подключается питание двигателя. Каждая обмотка имеет начало и конец. Начала обмоток маркируют как С1, С2, С3. Концы обмоток промаркированы соответственно С4, С5, С6. На крышке клемной коробки мы увидим схему включения двигателя в сеть при разных напряжениях питания. Согласно этой схемы мы и должны подключить обмотки. Т..е. если двигатель допускает использование напряжений 380/220, то для его подключения к однофазной сети 220В, необходимо переключить обмотки в схему «треугольник». Если же его схема подключения допускает 220/127 В, то к однофазной сети 220 В, его необходимо подключать по схеме «звезда», как показано на рисунке. Схема с пусковым активным сопротивлением На рисунке показана схемы однофазного включения трехфазного двигателя с пусковым активным сопротивлением. Такая схема используется только в двигателях малой мощности, так как в резисторе теряетя большое количество энергии в виде тепла. Схемы конденсаторного пуска асинхронного двигателя Наибольшее распространение получили схемы с конденсаторами. Для изменения направления вращения двигателя необходимо применять переключатель. В идеале для нормальной работы такого двигателя необходимо, чтобы емкость конденсатора изменялась в зависимости от числа оборотов. Но такое условие выполнить довольно трудно, поэтому обычно применяют схему двухступенчатого управления асинхронным электродвигателем. Для работы механизма, приводимого в движение таким двигателем, используют два конденсатора. Один подключается только при запуске, а после окончания пуска его отключают и оставляют только один конденсатор. При этом происходит заметное снижение его полезной мощности на валу до 50…60% от номинальной мощности при включении в трехфазную сеть. Такой пуск двигателя получил название конденсаторного пуска. При применении пусковых конденсаторов имеется возможность увеличить пусковой момент до величины Мп/Мн=1,6-2. Однако, при этом значительно увеличивается емкость пускового конденсатора, из за чего вырастают его размеры и стоимость всего фазосдвигающего устройства. Для достижения максимального пускового момента, величину емкости необходимо выбирать из соотношения, Xc=Zk, т. е. емкостное сопротивление равно сопротивлению короткого замыкания одной фазы статора. По причине высокой стоимости и габаритов всего фазосдвигающего устройства конденсаторный пуск применяется лишь при необходимости большого пускового момента. В конце пускового периода пусковой обмотки необходимо отключить, в противном случае пусковая обмотка перегреется и сгорит. В качестве пускового устройства можно применять индуктивность— дроссель. Пуск трехфазного асинхронного двигателя от однофазной сети, через частотный преобразователь Для пуска и управления трехфазным асинхронным двигателем от однофазной сети, можно применять преобразователь частоты с питанием от однофазной сети. Структурная схема такого преобразователя представлена на рисунке. Пуск трехфазного асинхронного двигателя от однофазной сети с помощью преобразователя частоты является одним из самых перспективных. Поэтому именно он наиболее часто используется в новых разработках систем управления регулируемыми электроприводами. Принцип его лежит в том, что, меняя частоту и напряжение питания двигателя, можно в соответствии с формулой, изменять его частоту вращения. Сам преобразователь состоит состоят из двух модулей, которые обычно заключены в один корпус:— модуль управления, который управляет функционированием устройства;— силовой модуль, который питает двигатель электроэнергией. Применение преобразователя частоты для пуска трехфазного асинхронного двигателя. позволяет значительно снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. Причем значения пускового тока и момента можно регулировать в достаточно больших пределах. Кроме того с помощью частотного преобразователя можно регулировать обороты двигателя и самого механизма, уменьшая при этом значительную часть потерь в механизме. Недостатки применения частотного преобразователя для пуска трехфазного асинхронного двигателя от однофазной сети: достаточно высокая стоимость самого преобразователя и периферийных устройств к нему. Появление несинусоидальных помех в сети и снижение показателей качества сети. eprivod.com Однофазные двигатели ~ Электропривод - информационный ресурс по электроприводуОднофазные асинхронные двигатели чаще всего применяются в бытовой технике. Система электроснабжения построена так, что в наш дом подводится только однофазная электрическая сеть. Поэтому в бытовых сетях широко используются однофазные асинхронные двигатели. Однофазные асинхронные электродвигателям переменного тока отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания. Промышленность выпускает однофазные двигатели на небольшие мощности (до 0,5 кВт). Их сфера применения включает в себя вентиляторы, компрессоры холодильников, приводы барабанов стиральных машин, и другая бытовая техника, где не требуется высокая скорость вращения.
Устройство однофазного асинхронного двигателя Однофазный асинхронный двигатель, обычно имеет на статоре как минимум две обмотки. Друг от друга они сдвинуты на 90 электрических градусов по току, для получения пускового момента Одна из них выступает как рабочая, другая как пусковая. Двигатели получили название однофазных, так как они предназначены для питания от однофазной сети переменного тока. Кроме того, существует много схем питания трехфазных двигателей от однофазной сети. Для получения вращающегося магнитного поля пусковую обмотку питают через фазосдвигающее устройство, в качестве которого используется резистор или конденсатор. В качестве резистора иногда используют пусковую обмотку, намотанную тонким проводом и большим числом витков, для увеличения сопротивления. В двигателях с пусковым резистором магнитное поле эллиптическое; в двигателях с пусковым конденсатором поле ближе к круговому. Сразу после запуска, пусковая обмотка отключается и двигатель работает как однофазный однообмоточный. Его результирующее поле резко эллиптическое. По этой причине однофазные двигатели имеют низкие энергетические показатели и малую перегрузочную способность. В двигателях с постоянно включенным конденсатором емкость последнего выбирается, как правило, из условий обеспечения кругового поля в номинальном режиме. Для улучшения пусковых свойств параллельно рабочему конденсатору на время пуска подключается пусковой конденсатор. В электроприводах с легкими условиями пуска часто применяются однофазные АД с экранированными полюсами. В таких двигателях роль вспомогательной фазы играют размещаемые на явно выраженных полюсах статора короткозамкнутые витки. Поскольку пространственный угол между осями главной фазы (обмотки возбуждения) и витка много меньше 90°, поле в таком двигателе резко эллиптическое. Поэтому пусковые и рабочие свойства двигателей с экранированными полюсами невысоки. Используются однофазные асинхронные двигатели с короткозамкнутым ротором: с повышенным сопротивлением пусковой фазы, с пусковым конденсатором, с рабочим конденсатором, с тем и другим, а также двигатели с экранированными полюсами. Однофазный асинхронный электродвигатель имеют тот же принцип действия, что и трёхфазный электродвигатель. Основным его недостатком является более низкий пусковой момент. Принцип работы однофазных асинхронных электродвигателей Однофазный асинхронных электродвигатель, как и трехфазный, работает по принципу электромагнитной индукции. Однако между ними есть и различия:— однофазные электродвигатели, обычно работают при более низком напряжении 220 В;— поле статора однофазного двигателя не вращается; В каждом полупериоде синусоиды, напряжение меняет свой знак и соответственно от отрицательного к положительному меняются полюса. В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это объясняет, почему однофазный асинхронный электродвигатель не может быть пущен самостоятельно.Однако, его можно было бы запустить механически, провернув вал ротора с последующим немедленным подключением питания, как это делалось в старых проигрывателях грампластинок. Сейчас такой способ запуска не применяется, а пуск всех электродвигателей осуществляется автоматически. Ограничения применения однофазных асинхронных двигателей При использовании однофазных электродвигателей необходимо помнить, что существуют некоторые ограничения при их применении:
О напряжении Важно напомнить о том, что величина напряжения на пусковой обмотке электродвигателя может превышать значение сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. eprivod.com Устройство однофазного асинхронного двигателя ~ ЭлектроприводНаибольшее применение однофазные асинхронные электродвигатели нашли в быту и малом бизнесе. Их применение необходимо в тех областях, где нет трехфазной электрической сети. Многие компании выпускаются однофазные электродвигатели мощностью до 2 кВт и выше. Применение однофазных двигателей большей мощности ограничено мощностью бытовой сети и проблемами запуска однофазного двигателя. Приемлемое, на сегодняшний день, решение таких проблем возможно при использовании однофазного частотного преобразователя. Но применение преобразователя частоты будет оправдано в том случае, когда необходимо регулировать частоту вращения электродвигателя. Кроме того, однофазные частотные преобразователи обычно выпускаются до мощности 2,2кВт, что в свою очередь тоже является ограничением. В таком случае приходится использовать однофазный асинхронный двигатель. Внешний вид однофазных асинхронных двигателей различных фирм производителей показан на рисунках. Устройство однофазного асинхронного двигателя показано на рисунке Как видно из рисунка, основное отличие однофазного двигателя от трехфазного, является наличие в нем центробежного переключателя. Центробежный переключатель подключает пусковую обмотку двигателя перед пуском и отключает после окончания пуск, при достижении двигателя номинальных оборотов. Центробежный переключатель состоит из специальной стальной пружины и калиброванных грузиков, которыми настраивается момент отключения пусковой обмотки. Вся конструкция собрана в надежном корпусе. Быстрая работа переключателя уменьшает искрение и износ контактов и продлевает надежную работу устройства. Центробежный переключательДругой элемент, которого нет в трехфазном асинхронном двигателе, но который есть в однофазном это рабочий и пусковой конденсатор. Пусковой конденсаторКонденсатор может быть установлен и вне двигателя, например, вместе с пускозащитной аппаратурой. Корпус Корпус электродвигателей изготовлен из высококачественного из алюминиевого сплава или чугуна марки. В корпусе сделаны боковые отверстия для циркуляции воздуха. Возможна работа однофазного двигатель и в горизонтальном и в вертикальном положении. Статор двигателя Статор однофазного двигателя изготавливается из ламината качественной электротехнической стали с термохимической обработкой, что снижает магнитные потери и рабочую температуру двигателя. Сердечник статора, набирается из штампованных листов электротехнической стали. В пазы сердечника укладывается статорная обмотка. Изоляция пазов статора, изоляция обмоточного провода, пропиточный состав и другие изоляционные детали статора образуют систему изоляции. Обмотки Статорная обмотка наматывается круглым эмалированным проводом и пропитана в нагревостойком электроизоляционном лаке. Обмоточный провод как стандарт покрыт лаком класса Н. После укладки вся обмотка повторно пропитывается специальным полиэстерным составом. Такая технология обеспечивает высокую электрическую и механическую надежность обмоток и долгий срок службы. Обмотка статора мотается как две обмотки главная(рабочая) (U1 и U2) и вспомогательная (пусковая) (Z1 и Z2). Главная обмотка подключается непосредственно к сети, вспомогательная обмотка также подключается к сети, но через рабочий конденсатор. Ротор Сердечник ротора однофазного двигателя изготовлен из ламината качественной стали с термической и химической обработкой. Его напрессовывают на вал. Обмотка ротора имеет название «Беличья клетка» или «Беличье колесо»- короткозамкнутая отливается из чистого алюминия . что обеспечивает низкий момент инерции и повышение К П Д. Вал Вал однофазного двигателя изготавливают из углеродистой стали. Такая сталь имеет высокую механическую прочность, и предотвращает прогиб вала под нагрузкой, что уменьшает его износ. По отдельному заказу вал однофазного двигателя можно изготовить из нержавеющей стали. Подшипниковые щиты Подшипниковые щиты отливаются из алюминиевого сплава или чугуна с армирующей стальной втулкой под посадку подшипника. Их площадь поверхности увеличина для лучшего охлаждения подшипников. Обычно в переднем подшипниковом щите устанавливается невинтовая пружина, предназначенная для осевого поджатия подшипника. Подшипниковые узлы Обычно в однофазных двигателях применяются шариковые подшипники, но в двигателях большими высотами оси вращения по отдельному заказу можно применять роликовые подшипники, которые допускают в 2 раза большие радиальные нагрузки. В однофазных двигателях с высотой оси вращения до 180 мм в подшипники закладывается смазка на весь гарантийный срок службы (не менее 20 тыс. часов). В подшипниковые узлы однофазных двигателей с осями вращения более 200 мм необходимо регулярно производить полную или частичную смену отработанной смазки. График смены смазки можно найти в инструкции по эксплуатации двигателя. Типы и размеры применяемых в двигателях подшипников указаны в каталогах. В них же можно найти величины предельно допустимых радиальных и осевых нагрузок рабочего конца вала . Подшипники Импортные однофазные двигатели снабжаются подшипниками высокого качества, от лучших всемирных брендов. Это обеспечивает длительный срок службы в тяжёлых условиях работы. В качестве смазки используется высококачественная смазка Super-premium Polyrex ЕМ. Эта смазка обеспечивает надежную работу подшипников и низкий уровень шума. В двигателях отечественных производителей используются более дешевые подшипники 76-180205Ш2У (6205 2RS P63.QE6) с постоянно заложенной смазкой на весь срок службы. Вентилятор Вентилятор однофазного двигателя изготавливают из пластмассы. Его устанавливают на вал ротора а сверху защищая кожухом. Вентиляторы служат для обеспечения эффективного охлаждения двигателя. Новые компьютерные программы моделирования асинхронных двигателей позволяют разрабатывать вентилятор и его крышку для работы с минимальным уровнем шума. Обдув осуществляется внешним вентилятором, закрытым направляющим кожухом. Двигатели производятся с симметричной радиальной, либо с комбинированной системой вентиляции. В двигателях с симметричной радиальной вентиляцией в станине предусмотрены отверстия для выхода воздуха. Изнутри станины отлиты выступы с каналами для протока воздуха в аксиальном направлении. Вентилятор, отлитый вместе с короткозамыкающими кольцами ротора прогоняется воздух через двигатель. Для циркуляции воздуха внутри двигателя используются диффузоры, смонтированные в двух подшипниковых щитах. Обдув однофазного двигателя с комбинированной вентиляцией производится центробежным вентилятором, установленным на валу двигателя со стороны, противоположной приводу. Вентилятор обдувает ребристую поверхность станины и вентиляционными лопатками ротора всасывающими воздух через нижнюю часть отверстий в подшипниковых щитах. Воздух омывает лобовые части обмотки и выбрасывается через верхнюю часть отверстий в щитах. Клемная коробка Клемная коробка однофазного двигателя изготовливают из алюминиевого сплава или чугуна. В коробке предусмотрено одно или два резьбовых отверстия для сальников, через которые проходят присоединительные кабеля. Конструкция клемной коробки позволяет монтировать коробку с шагом 90°. При заказе двигателя необходимо уточнять верхнее или боковое расположение клемной коробки. Лапы В зависимости от способа крепления двигатели подразделяются на фланцевые и со способом крепления на лапах. Существуют универсальные двигатели с лапами и фланцем. Существуют конструкции со съемными лапами позволяющие изменять способ монтажа. Уплотнения Для защиты однофазного двигателя от агрессивных условий окружающей среды в электродвигателях применяются V-образные манжеты и манжеты с пружиной. Система уплотнения состоит из трех компонентов (лабиринтное уплотнение с V-образной манжетой и О-образная манжета). Такая конструкция гарантируют защиту подшипников против агрессивных жидких и твердых веществ. eprivod.com Способы пуска асинхронных двигателейВ момент пуска частота вращения ротора двигателя равна нулю, а вращающееся поле мгновенно приобретает синхронную частоту вращения по отношению к ротору, в результате в обмотке ротора наводится большая ЭДС. При этом токи ротора и статора в несколько раз превосходят минимальные их значения, так как они увеличиваются с увеличением скольжения ротора, т.е. с уменьшением его частоты вращения (рис. 10). Пусковой ток асинхронных двигателей с короткозамкнутым ротором в 5 –10 раз превышает номинальный (пусковой момент составляет 1,1 ‑ 1,8 от номинального значения момента). Так как этот ток протекает по обмотке электродвигателя кратковременно и только в процессе запуска, то, если пуски двигателя не очень часты, он не вызывает перегрева электродвигателя. Поэтому пуск асинхронных электродвигателей небольшой мощности, как правило, производится простым включением в сеть. Однако большой пусковой ток крупных электродвигателей для питающих их электрических сетей вызывает резкие и значительные (особенно в маломощных сетях) скачки напряжения, что неблагоприятно сказывается на других, включенных в эту же сеть потребителях электроэнергии.
Рис. 10 Как видно из рис. 10, пусковой момент асинхронного двигателя заметно меньше максимального, и при нагрузке на валу ротора, превышающейМп, двигатель не запустится. При этом, если статор не отключить от сети, большой пусковой ток приведет к перегреву обмоток и выходу из строя двигателя.Для предупреждения описанных неблагоприятных ситуаций, необходимо ограничение пускового тока асинхронных двигателей при подаче на них питающего напряжения или повышение пускового момента. Снижение напряжения на обмотках асинхронного электродвигателя при пуске достигается различными способами:
Однако при снижении пускового напряжения пусковой момент асинхронного двигателя также падает, ибо он пропорционален квадрату пускового напряжения. Поэтому означенные способы пуска могут быть применимы в основном для приводных двигателей механизмов, не требующих при запуске больших пусковых моментов (например, запуск двигателя вентилятора, ненагруженного двигателя, двигателя на холостом ходу и др.). Асинхронный электродвигатель с фазным ротором пускают в ход с помощью пускового реостата с максимальным сопротивлением Rдоб, включаемого последовательно с обмоткой ротора (см. рис. 3). При этом критическое скольжениеsк= (R'2+Rдоб)/(Х1+Х'2) увеличивается, а величина критического моментаМк = 3pU12/21(X1+X'2) не меняется. Искусственные характеристики момент-скольжение с добавочным сопротивлением приведены на рис. 11. ВеличинаRдобподбирается такой, чтобы критическое скольжение было равным единице, тогда пусковой момент вырастет до критического значения. УвеличениеМпроисходит за счет увеличения активной составляющей тока. Действующее значение пускового тока при этом уменьшается.
Рис. 11 В начальный момент пусковое активное сопротивление реостата вводится в цепь двигателя полностью(Rдоб).С увеличением оборотов частота вращения магнитного поля по отношению к ротору уменьшается. Соответственно уменьшаются ЭДС и ток ротора. Поэтому с увеличением частоты вращения двигателя можно постепенно уменьшать значение пускового сопротивления в цепи обмотки ротора (R'доб), не опасаясь того, что ток двигателя возрастет до значений, опасных для него. При полностью выведенном сопротивлении пускового реостата(R''доб = 0) пуск двигателя заканчивается. Такой способ позволяет обеспечить необходимый для пуска пусковой момент двигателя. studfiles.net Однофазный асинхронный двигатель с пусковой обмоткой — МегаобучалкаДля пуска вход однофазного АД применяют специальную пусковую обмотку (ПО), располагаемую на статоре под углом 90° к рабочей (РО).
Рис.29.5. однофазный асинхронный двигатель с пусковой обмоткой: а – электрическая схема; б – векторная диаграмма токов
Последовательно с пусковой обмоткой включают конденсатор С, благодаря которому ток Iп в этой обмотке опережает по фазе напряжение сети U1 на некоторый угол. Применение пусковой обмотки обеспечивает выполнение двух необходимых условий получения вращающегося магнитного потока (сдвиг обмоток статора в пространстве и сдвиг токов в обмотках по фазе на некоторый угол). Пусковая обмотка включается только при пуске. Благодаря ей в двигателе образуется вращающийся магнитный поток и появляется вращающий момент М', причем пусковой момент М'п > 0.
Рис.29.6. Зависимость вращающих Рис.29.7. Электрическая схема моментов от скольжения ОД с конденсаторного двигателя с пусковой обмоткой рабочей и пусковой обмотками
Двигатель трогается с места и разгоняется в соответствии с зависимостью М'(s) (рис.29.6). Разгон двигателя заканчивается в точек 1', когда вращающий момент становится равным тормозному (М' = Мт). После этого пусковую обмотку отключают. Теперь магнитный поток создается только рабочей обмоткой. В этом режиме имеется вращающий момент М. При отключении пусковой обмотки благодаря инерции массы частота вращения ротора не изменится, скольжение останется равным s'1, а рабочей точкой становится точка 2 на кривой М(s). Так как тормозной момент Мт останется неизменным, то точки 2 имеем М< Мт.. Двигатель начинает тормозиться, скольжение s увеличивается, вращающий момент увеличивается, и в точке 1 кривой М(s) наступает равенство моментов (М = Мт). Получаем установившийся режим работы двигателя при несколько большем скольжении s1. При постоянно включенной пусковой обмотке с конденсатором двигатель называется конденсаторным. В этом случае для получения наибольшего пускового момента и лучших характеристик в рабочем режиме параллельно с рабочей ёмкостью Ср включают пусковую обмотку Сп, которую отключают после окончания пуска (рис.29.7). Коэффициент мощности конденсаторного двигателя .выше, чем однофазного, и достигает значений 0,8…0,95, а КПД – 0,5- 0,7. Преимуществом однофазного двигателя является то, что для его питания не требуется источник трехфазного напряжения. Но он имеет существенные недостатки, среди которых – отсутствие пускового момента, низкий cos φ и КПД, меньшая перегрузочная способность, нерегулируемая частота вращения. Однофазные двигатели с пусковой обмоткой выпускаются на мощность до 600 Вт.
megaobuchalka.ru |