Eng Ru
Отправить письмо

Мировая электроэнергетика. Доля тэс в выработке электроэнергии


Производство электроэнергии на ТЭС. Теплоэлектроцентрали. Атомные электрические станции

 

Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем назва­нии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:

ТЭС – тепловая электрическая станция преобразует тепловую энергию в электрическую;

ГЭС – гидроэлектростанция преобразует механическую энер­гию движения воды в электрическую;

ГАЭС – гидроаккумулирующая станция преобразует механи­ческую энергию движения предварительно накопленной в искус­ственном водоеме воды в электрическую;

АЭС – атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;

ПЭС – приливная электростанция преобразует энергию при­ливов в электрическую, и т. д.

В Республике Беларусь более 95% энергии вырабатывается на ТЭС. По назначению тепловые электро­станции (ТЭС) делятся на два типа:

КЭС – конденсационные тепловые электростанции, предназ­наченные для выработки только электрической энергии;

ТЭЦ – теплоэлектроцентрали, на которых осуществляется со­вместное производство электрической и тепловой энергии [12].

На рис. 1. представлена тепловая схема ТЭС. Ее основное обору­дование состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется теп­ловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превраща­ется в механическую энергию вращения. Гене­ратор Г превращает энер­гию вращения в электри­ческую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины либо котла. На рис. 1. кроме основного оборудования ТЭС показаны конден­сатор пара К, в котором отработанный пар, отдавая скрытую теплоту парообразования охлаждающей его воде, с помощью циркуляционного насоса Н в виде конденсата вновь подается в котел-парогенератор. Схе­ма ТЭЦ отличается тем, что взамен конденсатора устанавливается теп­лообменник, где пар при значительном давлении нагревает воду, пода­ваемую в главные тепловые магистрали. Технология преобразований энергии на ТЭС может быть представ­лена в виде цепи следующих превращений:

 

Рис. 1. Тепловая схема ТЭС

 

Топливо и окислитель, которым обычно служит воздух, непрерывно поступает в топку котла. В качестве топлива чаще всего используются уголь, сланцы, природный газ и мазут (продукт переработки нефти – остаток пос­ле отгонки из нефти бензина, керосина и других легких фракций). Однако использование природного газа и особенно мазута в перспективе должно сокращаться, так как это слишком ценные вещества, чтобы их использо­вать в качестве котельного топлива. За счет тепла, образующегося в резуль­тате сжигания топлива, в паровом котле вода превращается в пар с температурой около 550°С. КПД ТЭС – это отношение полученной электрической энергии к тепловой энергии, образовавшейся при сжигании топлива; он растет при повышении начальной температуры пара. Но при этом для наиболее ответственных деталей установки, испытывающих боль­шие механические нагрузки в сочетании с высокой температурой, прихо­дится применять высококачественные, дорогие стали. Выигрыш в КПД не компенсирует повышенных затрат на металл. В турбине способ преобразования тепловой энергии пара в меха­ническую энергию состоит в следующем. Пар высокого давления и тем­пературы, имеющий большую тепловую энергию, из котла поступает в сопла турбины. Сопла – это неподвижно укрепленные, не вращающие­ся вместе с валом турбины, сделанные из металла каналы, в которых температура и давление пара уменьшаются, а значит, уменьшается и его тепловая энергия, но зато увеличивается скорость движения потока пара. Таким образом, за счет уменьшения тепловой энергии пара возра­стает его механическая (кинетическая) энергия. При этом механическая энергия потока пара превращается в механическую энергию ротора турбины, а точнее – в механическую энергию турбогенератора, так как валы турбины и элек­трического генератора соединены между собой. Современные паровые турбины для ТЭС – весьма совершенные, быстроходные, высокоэкономичные машины. Количество охлаждающей воды должно быть в несколько десятков раз больше, чем количество конденсируемого пара. Поэтому ТЭС стро­ят поблизости от крупных водных источников. Процесс производства электроэнергии на ТЭС условно можно раз­делить на три цикла: химический – горение, в результате которого внутренняя хи­мическая энергия топлива превращается в тепловую и переда­ется пару; механический – тепловая энергия пара превращается в энергию вращения турбины и ротора турбогенератора; электрический – механическая энергия превращается в элект­рическую [15].

Предприятиями, на которых производится тепловая и электрическая энергии, являются: ТЭС на углеводородном топливе, ТЭЦ производит электрическую и тепловую энергию, АЭС использует энергию ядерного распада. ТЭС включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Поступающее со склада в парогенератор топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора воду, преобразует ее в энергию водяного пара с температурой 550˚С. В турбине энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор, который превращает ее в электрическую. В конденсаторе пара отработанный пар с температурой 123-125˚С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса в виде конденсата вновь подается в котел-парогенератор. На ТЭС могут использоваться газотур­бинные установки (ГТУ). Широкое распространение газовые турбины получили на транспорте в качестве основных элементов авиационных двигателей, на железнодорожном транспорте – газотурболокомотивы.

В ГТУ в качестве рабочего тела служит смесь продуктов сго­рания топлива с воздухом или нагретый воздух при большом дав­лении и высокой температуре. По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутрен­него сгорания, а при очень высоких температурах рабочего тела их экономичность выше. Газовые турбины более компактны, чем паро­вые турбины и двигатели внутреннего сгорания аналогичной мощно­сти. Важнейшим преимуществом газовой турбины является ее высокая маневренность: время запуска составляет 1–1,5 мин. ТЭС с газотурбинными установками более маневренна, чем паротурбинная, легко пускается, останавливается, регулируется. Недостаток ГТУ заключается в том, что газовые турбины работают, в основном, на жидком высокосортном топливе или на газообразном (природный газ; искусственный газ, по­лучаемый при особом сжигании твердых топлив). Тем не менее, ана­литические исследования перспективных направлений развития ми­ровой энергетики называют ГТУ в числе наиболее прогрессивных преобразователей энергии XXI века. На рис. 2. представлена принципиальная схема ТЭС с газотурбин­ной установкой.

 

Рис. 2. Схема ТЭС с газотурбинной установкой (ГТУ)

В камеру сгорания 1 подается жидкое или газообраз­ное топливо и воздух. Образующиеся в ней газы 2 высокого давления при температуре 750-770°С направляются на рабочие лопатки турби­ны 3. Турбина 3 вращает электрический генератор 4, вырабатывающий электрическую энергию, и компрессор 5, служащий для подачи под дав­лением воздуха 6 в камеру сгорания. Сжатый в компрессоре 5 воздух 6 перед подачей в камеру сгорания 1 подогревается в регенераторе 7 от­работанными в турбине горючими газами 8. Подогрев воздуха позволя­ет повысить эффективность сжигания топлива в камере сгорания. Для повышения экономической эффективности использования ГТУ на ТЭС применяют парогазовые установки – совмещение газотур­бинных и паротурбинных агрегатов. Они являются высокоманеврен­ными и служат для покрытия пиковых нагрузок в энергосистеме. Принципиальная схема ТЭС с парога­зовой установкой приведена на рис. 3. На ней обозначены: 1– паро­генератор, 2 – компрессор, 3 – газовая турбина, 4 – генератор, 5 – паровая турбина, 6 – конденсатор, 7 – насос, 8 – экономайзер. Экономайзер по­зволяет отработанные в турбине газы использовать для подогрева пита­тельной воды, что дает возможность уменьшить расход топлива и по­высить КПД до 44%.

 

 

Рис. 3. Схема ТЭС с парогазовой установкой

На рис. 4. представлена еще одна возможная схема ТЭС с парогазовой установкой – с выбросом отработанных газов в паровой котел. Здесь 8 – камера сгорания.

 

 

Рис. 4. Схема ТЭС с парогазовой установкой с выбросом отработанных газов в паровой котел

 

Теплоэлектроцентрали (ТЭЦ), где осуществляется комплексная вы­работка электрической и тепловой энергии, обладают КПД в 1,5-1,7 раз выше, достигающим 60-65%. Комплексная выработка электро­энергии и тепла очень выгодна. Многим отраслям промышленности: химической, металлургичес­кой, текстильной, пищевой и др. тепло необходимо для технологичес­ких целей. Примерно 50% добываемого топлива расходуется на тепло­вые нужды предприятий. Отработанный в турбинах КЭС пар имеет температуру 25-30°С и давление около 0,04 бара (0,04-10~7МПа) и не­пригоден для использования в технологических целях на предприяти­ях. Тре­буется горячая вода и для отопления жилых зданий. Тепловая энергия в виде пара указанных параметров и горячей воды может производиться централизованно на ТЭЦ и в крупных ко­тельных или децентрализованно на заводских мини-ТЭЦ и в индиви­дуальных котельных. На ТЭЦ для получения пара с необходимыми потребителю парамет­рами используют специальные турбины с промежуточными отборами пара. В них, после того как часть энергии пара израсходуется на приведе­ние в движение турбины и параметры его понизятся, производится отбор некоторой доли пара для потребителей. Оставшаяся доля пара обычным способом используется в турбине для приведения ее во вращение и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывается меньшим, то несколько возрастает расход топлива на выра­ботку электроэнергии. Однако это увеличение в конечном счете меньше по сравнению с расходом топлива в случае раздельной выработки элект­рической энергии и тепла на небольших котельных. При сжигании топ­лива только для получения тепла, например для отопления, весь «темпе­ратурный напор» примерно от 1500°С до 100°С, т.е. от температуры, получаемой при сжигании топлива, до температуры, нужной для отопле­ния, никак не используется. Выгоднее использовать этот температурный интервал больше 1000°С для получения из тепловой энергии механичес­кой, а тепло (около 100°С) направить на отопление. Конечно, в этом слу­чае механической энергии при том же количестве сжигаемого топлива получится меньше за счет повышения конечной температуры примерно на 70°С (с 30 до 100°С). Такое повышение необходимо для обеспечения температуры воды на нужды отопления. Горячая вода и пар под давлени­ем до 3 МПа доставляются потребителям по трубопроводам. Совокуп­ность трубопроводов для передачи тепла называется тепловой сетью. Передача тепла в виде пара неэкономична на расстояние более 5–7 км [15].

Централизованное теплоснабжение на базе комплексной выработ­ки тепловой и электрической энергии обеспечивает в настоящее время основную долю потребности в тепле промышленного и жилищно-ком­мунального хозяйства, уменьшает расход топливно-энергетических ре­сурсов, а также материальных и трудовых затрат в системах теплоснаб­жения, имеет экологические преимущества. Однако при максимальной централизации теплоснабжения на ТЭЦ можно выработать только 25-30% требуемой электрической энер­гии. Работа же конденсационных станций определяется условиями вы­работки электроэнергии, которую технологически и экономически возможно передавать на значительные расстояния. Это делает благо­приятным концентрацию больших электрических мощностей и позво­ляет быстро наращивать электроэнергетический потенциал страны. Поэтому в национальной энергетической системе необходимо и целе­сообразно сочетание КЭС и ТЭЦ.

В качестве весьма энергоэффективного решения снабжения крупных производств элект­роэнергией и теплом рассматриваются мини-ТЭЦ. Атомная электростанция (АЭС) по своей сути также является теп­ловой электростанцией. Однако вместо котла, где сжигается органическое топливо, использует­ся ядерный реактор. Внутриядерная энергия превращается в тепловую энергию пара, которая затем – в механическую энергию вращения тур­богенератора и в электрическую энергию. Наличие термодинамическо­го цикла на АЭС ограничивает КПД этой станции, как и обычных теп­ловых станций. Недостаток АЭС заключается также в отсутствии маневренности: пуск и останов блоков и агрегатов этих станций требу­ет значительных затрат времени и труда.

 

 

cyberpedia.su

Мировая электроэнергетика — Мегаобучалка

Электроэнергетика входит в состав топливно-энергетического комплекса, образуя в нем, как иногда говорят, «верхний этаж». Можно сказать, что она является одной из базовых отраслей мирового хозяйства. Эта ее роль объясняется необходимостью электрификации самых разных сфер человеческой деятельности. Поэтому и уровень электрификации топливно-энергетического баланса мира, который измеряется количеством первичных энергоресурсов, расходуемых на производство электроэнергии, все время возрастает и в развитых странах уже превысил 2/5.

Динамика мирового производства электроэнергии показана на рисунке 72, из которого вытекает, что во второй половине XX в. – начале XXI в. выработка электроэнергии увеличилась в 20 раз. На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы. В первой половине 1990-х гг. они составляли соответственно 2,5 % и 1,5 % в год.

Согласно прогнозам, к 2010 г. мировое потребление электроэнергии может возрасти до 18–19 трлн кВт ч, а к 2020 г. – до 26–27 трлн кВт • ч. Соответственно будут возрастать и установленные мощности электростанций мира, которые уже в середине 1990-х гг. превысили уровень в 3 млрд кВт.

Между тремя основными группами стран выработка электроэнергии распределяется следующим образом: на долю экономически развитых стран приходится 55 %, развивающихся – 35 и стран с переходной экономикой – 10 %. Предполагают, что доля развивающихся стран в перспективе будет возрастать, и к 2020 г. они обеспечат уже около 1/2 мировой выработки электроэнергии.

Рис. 72. Динамика мирового производства электроэнергии, млрд кВтч

Таблица 94

ГЛАВНЫЕ СТРАНЫ – ПРОИЗВОДИТЕЛИ ЭЛЕКТРОЭНЕРГИИ[57] В 2006 г.

Распределение мирового производства электроэнергии между крупными географическими регионами также постепенно изменяется. Так, в 1950 г. на долю Северной Америки приходилось 46 %, Западной Европы – 25, Восточной Европы (с СССР) – 14, Азии – 10, Латинской Америки, Австралии и Океании – по 2 и Африки – 1 %. К 2005 г. доля Северной Америки уменьшилась до 26 %, Западной Европы – до 20, Восточной Европы (с СНГ) – до 11, тогда как доля Азии возросла до 34, Латинской Америки – до 5, Африки– почти до 3 %, доля Австралии и Океании осталась неизменной. Судя по прогнозам, в 2010 г. потребление электроэнергии в Северной Америке и Азиатско-Тихоокеанском регионе сравняется на уровне около 6 трлн кВт ч. В Западной Европе оно составит 2800 млрд кВт • ч, в Латинской Америке – 1350 млрд, в Африке – 550 млрд, на Ближнем и Среднем Востоке – 350 млрд кВт • ч.

Такой порядок регионов в известной мере предопределяет и состав главных стран – производителей электроэнергии (табл. 94).

Анализируя таблицу 94, нетрудно заметить, что из 18 вошедших в нее стран 14 относятся к экономически развитым и 4 – к развивающимся. В целом состав этой группы уже на протяжении длительного времени остается более или менее устойчивым, но число стран в ней постепенно возрастает. Еще в 1985 г. их было всего 11, причем в первую пятерку входили тогда США, СССР, Япония, Канада и Китай. Согласно одному из прогнозов, в 2020 г. производство электроэнергии в США достигнет 4350 млрд кВт ч, в Китае – 3450 млрд, В России – 180 млрд, в Индии – 1150 млрд, а в странах ЕС в целом – 2115 млрд кВт-ч. Но некоторые из этих показателей уже устарели.

Показатель производства электроэнергии из расчета на душу населения относится к числу наиболее важных показателей, характеризующих ту или иную страну, так как он в наибольшей мере отражает степень электрификации ее экономики. Поскольку темпы прироста производства электроэнергии выше средних темпов прироста населения, этот показатель для всего мира постепенно возрастает и ныне составляет около 2500 кВт-ч. Душевую выработку, превышающую этот средний количественный рубеж, имеют уже 55 стран мира, которые представляют все его континенты. Как и можно было ожидать, среди них преобладают экономически развитые страны Северной Америки (Канада– более 16 тыс. кВт-ч, США – около 14 тыс.), зарубежной Европы (Франция – около 9 тыс., Германия – около 7 тыс.), Япония (более 9 тыс. кВт-ч). Но «чемпионом мира» среди них была и остается Норвегия, где показатель душевого производства электроэнергии превышает 30 тыс. кВт-ч! В развивающемся мире душевую выработку выше среднемирового уровня имеют лишь очень немногие страны, преимущественно нефтедобывающие – с небольшим населением и довольно развитой теплоэнергетикой (Кувейт – около 14 тыс. кВт-ч, Катар– 10 тыс., Саудовская Аравия, ОАЭ, Бахрейн – 6–7,5 тыс. кВт-ч). Но подавляющее большинство развивающихся стран имеет показатели душевой выработки ниже 1000 кВт-ч, а, скажем, Бангладеш в Азии, Судан, Танзания, Эфиопия в Африке не дотягивают и до 100 кВт-ч.

Структура производства электроэнергии также не остается неизменной. До середины XX в., на угольном этапе развития мирового энергопотребления, в ней резко преобладала доля тепловых, преимущественно работающих на угле, электростанций с некоторой добавкой ГЭС. Затем, по мере развития гидроэнергетики и атомной энергетики, доля ТЭС стала уменьшаться, и в начале XXI в. мировое производство электроэнергии приобрело структуру, показанную на рисунке 73. Из него вытекает, что ныне более 2/3 мирового производства электроэнергии приходится на ТЭС и по 1/5—1/6 – на ГЭС и АЭС. Согласно прогнозам, структура использования топлива на ТЭС в перспективе несколько изменится: в 2010 г. доля газа может возрасти, а доля мазута уменьшиться.

Рис. 73. Структура мирового производства электроэнергии

В силу ряда природных и экономических причин показатели структуры производства электроэнергии крупных регионов мира могут существенно отличаться от среднемировых, о чем свидетельствуют данные таблицы 95.

Анализ таблицы 95 позволяет сделать несколько интересных выводов. Во-первых, о том, что наиболее ориентирована на уголь электроэнергетика Африки (благодаря ЮАР) и зарубежной Азии (во многом благодаря Китаю), но роль угля довольно значительна также в Восточной Европе и группе стран ОЭСР. Во-вторых, о том, что в основном на нефти и газе базируется электроэнергетика стран Ближнего Востока, где находятся крупнейшие производители этих видов топлива; доля газа очень велика также в странах СНГ. В-третьих, о том, что по доле гидроэнергетики на мировом фоне резко выделяется регион Латинской Америки, где ГЭС вырабатывают 3/4 всей электроэнергии. И в-четвертых, о том, что по доле АЭС в общей выработке лидируют страны ОЭСР (иными словами, страны Запада), за которыми следуют страны СНГ и Восточной Европы.

Подобные структурные контрасты еще отчетливее проявляются на примерах отдельных стран. В этом отношении их можно подразделить на три большие группы.

Для стран первой группы характерно преобладание выработки электроэнергии на ТЭС, работающих на угле, мазуте и природном газе. К этой группе относятся США, большинство стран зарубежной Европы и СНГ, Япония, Китай, Индия, Австралия и ряд других. Особую подгруппу среди них образуют страны, где ТЭС дают 95– 100 % всей электроэнергии. Это либо типично угольные (Польша, ЮАР), либо типично нефтегазовые (Саудовская Аравия, ОАЭ, Кувейт, Бахрейн, Оман, Ирак, Ливия, Алжир, Тринидад и Тобаго, Туркменистан) страны, либо страны, ориентирующиеся на привозное топливо (Дания, Ирландия, Белоруссия, Молдавия, Израиль, Иордания, Кипр, Сингапур, Сомали, Куба).

Таблица 95

СТРУКТУРА ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ ПО КРУПНЫМ РЕГИОНАМ МИРА В НАЧАЛЕ XXI В.

* Без стран СНГ. ** Без стран СНГ и Китая.

Кроме того, в эту подгруппу входят еще примерно 40 небольших, преимущественно островных, стран, где доля ТЭС в выработке электроэнергии достигает 100 %. Все они ориентируются на привозное, главным образом нефтяное, топливо для своих электростанций. Это страны Карибского бассейна, многие острова и архипелаги Океании, а также островные и некоторые неостровные страны Африки.

Анализируя данные о теплоэнергетике, нужно иметь в виду, что первая десятка стран-лидеров по доле ТЭС в выработке электроэнергии несколько отличается от первой десятки стран-лидеров по абсолютным размерам выработки. В нее входят (в порядке убывания) США, Япония, Россия, Китай, Германия, Индия, Великобритания, Италия, ЮАР и Австралия.

Крупнейшие современные ТЭС имеют мощность 4–5 млн кВт. ТЭС, работающие на угле, обычно размещаются в районах добычи энергетического угля или в местах, куда его можно доставлять дешевым водным транспортом. ТЭС, работающие на нефтетопливе, чаще всего соседствуют с крупными НПЗ, а работающие на природном газе ориентируются на трассы магистральных газопроводов.

Во вторую группу входят страны с преобладанием гидроэнергетики. Их более 50. В зарубежной Европе (Норвегия – 99,5 %, Албания, Хорватия, Босния и Герцеговина, Швейцария, Латвия) и в зарубежной Азии (Республика Корея, Вьетнам, Шри-Ланка, Афганистан) их сравнительно не так много. Зато в Африке таких стран больше 20, причем в некоторых из них (ДР Конго, Замбия, Мозамбик, Камерун, Конго, Намибия, Танзания) фактически всю электроэнергию вырабатывают на ГЭС. Что же касается Латинской Америки, то гидроэнергетика является определяющей во всех странах этого континента, за исключением Кубы, Мексики и Аргентины. Из стран Северной Америки во вторую группу входит Канада, из стран Океании – Новая Зеландия, из стран СНГ – Таджикистан, Киргизия и Грузия.

В этом случае первая десятка стран по доле ГЭС в выработке электроэнергии также существенно отличается от первой десятки стран по ее абсолютным размерам. В нее входят (в порядке убывания) Канада, США, Бразилия, Китай, Россия, Норвегия, Япония, Франция, Индия и Швеция. Крупнейшие современные ГЭС имеют мощность 5–6 млн кВт, а некоторые даже 10–12 млн кВт (табл. 96).

Таблица 96

КРУПНЕЙШИЕ ГЭС МИРА

Еще в конце 1980-х гг. из 110 действовавших в мире ГЭС установленной мощностью свыше 1 млн кВт 1/2 находилась в странах Запада, в особенности в США и Канаде, 1/3 – в развивающихся и остальная часть – в социалистических странах. Однако в последнее время очень крупных русловых ГЭС ни в зарубежной Европе, ни даже в Северной Америке уже не строят, перейдя к сооружению гидроаккумулятивных электростанций (ГАЭС), а также малых и низконапорных ГЭС. В значительной мере это связано с тем, что многие страны зарубежной Европы использовали уже более 90 % своего эффективного гидроэнергетического потенциала, Япония – примерно столько же, а США и Канада – более 1/2.

Тем не менее дальнейшее освоение гидроэнергетического потенциала остается важнейшей задачей развития энергетики.

В конце 1990-х гг. во всем мире в стадии строительства находились ГЭС общей установленной мощностью свыше 100 млн кВт. Однако 2/3 этих мощностей приходилось уже на страны Азии и 1/6 – на страны Латинской Америки, где есть еще неиспользованные гидроресурсы. Если иметь в виду отдельные страны, то в первую очередь это относится к Китаю, где сооружают ряд крупных гидростанций, в том числе крупнейшую в мире ГЭС Санься («Три ущелья») проектной мощностью 18,2 млн кВт.

Наконец, третью группу образуют страны с преобладанием электроэнергии, вырабатываемой на АЭС. Это прежде всего Франция, Бельгия, Словакия, Словения и Литва в зарубежной Европе.

Общий объем торговли электроэнергией составляет примерно 500 млрд кВт-ч в год, или 3,8 % от ее суммарного производства. К крупным экспортерам электроэнергии относятся Франция, Канада, Парагвай, Германия, а в роли импортеров выступают прежде всего США, Германия, Италия, Бразилия, Швейцария.

Россия по общей мощности электростанций уступает в мире только США. Она располагает 440 тепловыми и гидравлическими электростанциями мощностью соответственно 132 млн и 44 млн кВт и 10 атомными электростанциями мощностью 22 млн кВт. Эти станции объединены между собой системными ЛЭП напряжением свыше 220 кВ, общая длина которых составляет 150 тыс. км. Примерно 4/5 всех электростанций России образуют Единую энергетическую систему (ЕЭС) страны. Основу этой системы составляют крупные и крупнейшие ТЭС, ГЭС и АЭС мощностью по несколько миллионов киловатт. Электроэнергетика страны всегда развивалась опережающими темпами, однако в 1990-х гг. темпы ее роста замедлились – прежде всего из-за резкого сокращения капиталовложений. В перспективе главная роль в производстве электроэнергии сохранится за тепловыми электростанциями, которые обеспечат более 2/3 всей ее выработки. Доля гидростанций, составляющая ныне 1/5, может немного уменьшиться, поскольку сооружение ГЭС наиболее капиталоемко и при недостатке средств практически невозможно. Впрочем, разработанная программа все же предусматривает строительство ГЭС средней и малой мощности.

Перспективы развития российской электроэнергетики связаны с необходимостью решения ряда сложных проблем. Особенно с учетом того, что более 2/3 ее основных фондов изношены, и для их реконструкции требуется около 20 млрд долл. Если же такую реконструкцию не провести, то страна может столкнуться с дефицитом электроэнергии. Вот почему было принято решение о реформе (реструктуризации) одной из крупнейших российских естественных монополий – РАО «ЕЭС России».

megaobuchalka.ru

NormaCS ~ Новости ~ Более половины выработки электроэнергии в ОЭС Центра приходится на долю ТЭС

По оперативным данным филиала АО «СО ЕЭС» Объединенное диспетчерское управление энергосистемы Центра (ОДУ Центра) потребление электроэнергии в Объединенной энергосистеме Центра в июне 2018 года составило 17 млрд 322,8 млн кВт∙ч, что на 154,9 млн кВт∙ч или 0,9% больше, чем в июне прошлого года.

Суммарные объемы потребления и выработки электроэнергии в ОЭС Центра складываются из показателей энергосистем Белгородской, Брянской, Владимирской, Вологодской, Воронежской, Ивановской, Калужской, Костромской, Курской, Липецкой, Москвы и Московской области, Орловской, Рязанской, Смоленской, Тамбовской, Тверской, Тульской и Ярославской областей.

Выработка электроэнергии в июне 2018 года составила 15 млрд 392,3 млн кВт∙ч, что на 7,7% меньше, чем в июне 2017 года. Разница между выработкой и потреблением в ОЭС Центра компенсировалась за счет перетоков электроэнергии со смежными энергообъединениями Юга, Средней Волги, Урала и Северо-Запада.

Тепловыми электростанциями (ТЭС) в июне 2018 года выработано 7 млрд 779,2 млн кВт∙ч (50,5% в структуре выработки ОЭС Центра), гидроэлектростанциями (ГЭС) – 273,9 млн кВт∙ч (1,8% в структуре выработки ОЭС Центра), атомными электростанциями (АЭС) – 7339,2 млн кВт∙ч (47,7% в структуре выработки ОЭС Центра). По сравнению с июнем прошлого года выработка ТЭС снизилась на 1,7%, выработка ГЭС снизилась на 19,7%, выработка АЭС снизилась на 12,8%.

Рост потребления в июне 2018 года по сравнению с аналогичным месяцем прошлого года зафиксирован в энергосистемах Белгородской области на 0,3%, Вологодской области на 5,6%, Воронежской области на 1,9 %, Липецкой области на 5,1%, Москве и Московской области на 1,8 %, Тамбовской области на 0,2%.

Снижение потребления в июне 2018 года по сравнению с аналогичным месяцем прошлого года зафиксировано в энергосистемах Брянской области на 3%, Владимирской области на 0,4%, Ивановской области на 2 %, Калужской области на 0,5%, Костромской области на 4,6%, Курской области на 1%, Орловской области на 4,2%, Рязанской области на 0,2%, Смоленской области на 6,4%, Тверской области на 1,3%, Тульской области на 0,1%, Ярославской области на 2,7%.

За шесть месяцев 2018 года потребление электроэнергии в ОЭС Центра составило 121 млрд 549,8 млн кВт·ч, что на 1,4% выше уровня потребления аналогичного периода прошлого года.

В январе–июне 2018 года зафиксирован рост электропотребления относительно аналогичного периода прошлого года в энергосистемах Белгородской области на 2,3%, Вологодской области на 3,2%, Воронежской области на 0,8%, Калужской области на 1,6%, Липецкой области на 4,2%, Москвы и Московской области на 2,6%, Тульской области на 0,7%.

Снижение электропотребления за шесть месяцев 2018 года по сравнению с аналогичным периодом 2017 года отмечено в энергосистемах Брянской области на 0,3%, Владимирской области на 0,8%, Ивановской области на 1,6%, Костромской области на 2%, Курской области на 4,1%, Орловской области на 0,01%, Рязанской области на 3%, Смоленской области на 0,7%, Тамбовской области на 0,2%, Тверской области на 2,2%, Ярославской области на 0,8%.

Электростанции ОЭС Центра за период с января по июнь 2018 года выработали 113 млрд 071,7 млн кВт·ч, что на 6,1% меньше, чем за аналогичный период 2017 года.

Выработка ТЭС в этот период составила 65 млрд 157 млн кВт·ч (57,6% в структуре выработки ОЭС Центра), что больше выработки ТЭС в период с января по июнь 2017 года на 0,4%. Выработка ГЭС в этот период составила 2 млрд 182,7 млн кВт·ч (1,9% в структуре выработки ОЭС Центра), что меньше выработки ГЭС в период с января по июнь 2017 года на 0,7%. Выработка АЭС в этот период составила 45 млрд 732 млн кВт·ч (40,5% в структуре выработки ОЭС Центра), что меньше выработки АЭС в период с января по июнь 2017 года на 14,3%.

www.normacs.info


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта