Солнечное отопление частного дома: варианты и схемы устройства. Аккумулятор тепла солнечный
Обзор и изготовление аккумуляторов тепла для теплицы своими руками
Несмотря на то, что теплицы создаются для того, чтобы выращивать урожай на протяжении круглого года, зачастую их эффективность в зимние периоды времени достаточно сильно падает. Связано это, в первую очередь, с недостаточным коэффициентом накопления тепла в холодные периоды из-за снижения средней дневной температуры воздуха и уменьшения светового дня. Решить эту проблему можно, оборудовав вашу теплицу аккумулятором тепла, о некоторых разновидностях которых и пойдет речь в данной статье.
ПоказатьСкрыть
Как это работает
Основные принципы работы любой теплицы основаны на том, что поступающая внутрь помещения теплицы солнечная энергия накапливается там, а засчёт теплоотражающих свойств укрывных материалов, составляющих стенки и крышу теплицы, уходит наружу в куда меньших количествах, нежели изначально поступила. Однако излишки такой энергии, которые не используются непосредственно самими растениями, попросту рассеиваются в пространстве и не приносят никакой пользы.
Знаете ли вы? Первый рабочий прототип современного аккумулятора был предложен в 1802 году итальянцем Алессандро Вольта. Он состоял из медного и цинкового листов, которые соединялись между собой спайками и помещались в заполненную кислотой деревянную коробку.
Если организовать сбор излишков солнечной энергии в теплице и обеспечить её дальнейшее адекватное хранение и применение, это повлечёт за собой повышение продуктивности её работы. Аккумулированное тепло можно использовать для поддержания постоянного комфортного уровня температуры внутри помещения в любое время суток, что улучшит всхожесть и урожайность ваших культур. Немаловажным позитивным фактором в постройке аккумуляторов такого типа является также и то, что вам не придется тратиться на различные дорогостоящие энергоносители, множество электронных компонентов и других составляющих частей, требуемых для сооружения традиционных систем отопления.
Виды аккумуляторов тепла для теплицы
Все виды аккумуляторов тепла для теплиц выполняют одну и ту же функцию — накапливают, а затем отдают в заданный вами временной промежуток энергию солнца. Их основным различием служит материал, из которого изготовлен элемент, лежащий в их основе — тепловой аккумулятор. Ниже представлена информация о том, какими они могут быть.
Видео: аккумулятор тепла
Водяные аккумуляторы тепла
Принцип работы аккумуляторов данного типа основан на способности воды поглощать солнечную энергию вплоть до достижения ею температуры в 100°С и начала процесса её закипания и активного испарения, что достаточно маловероятно в условиях солнечной активности, характерной для наших широт. Данный вид аккумуляторов хорош своей дешевизной и простотой в сооружении. Расходный материал, требующий обновления время от времени, тоже достаточно доступен — это обычная вода.
Схема отопления теплицы: 1 - нагревательный котел; 2 - бак - термос; 3 - циркуляционный насос; 4 - реле - регулятор; 5 - регистры; 6 - термопара. Среди негативных сторон данных аккумуляторов стоит упомянуть их относительно небольшую эффективность, что связано с низкой теплоемкостью воды, а также потребностью в постоянном контроле уровня жидкости в бассейне, баках или рукавах с водой, который неминуемо будет снижаться из-за её постоянного испарения.
Важно! Интенсивность испарения воды можно значительно сократить, если накрыть бак или бассейн с водой полиэтиленовой плёнкой или загерметизировать его каким либо иным способом.
Накопление тепла грунтом
Грунт, являющийся неотъемлемой частью любой теплицы, также способен выполнять функцию аккумулятора солнечной энергии. В дневное время он активно прогревается под солнечными лучами, а с наступлением ночи накопленную им энергию можно выгодно использовать для поддержания в тепличном помещении постоянной температуры.
Делается это по следующей технологии:
Внутри слоев грунта укладываются вертикальные слои пустых труб произвольного диаметра и длительности.
В момент начала падения температуры в помещении теплый воздух из труб, нагреваемый грунтом, поступает под действием тяги наружу и стремится вверх, прогревая помещение.
Остывший воздух опускается вниз, вновь попадает в трубы и цикл повторяется снова до тех пор, пока окончательно не остынет грунт.
Знаете ли вы? Самый популярный современный материал для теплицы — это поликарбонат. Его активное применение позволило снизить средний вес теплицы в 16 раз, а расходы на сооружение — в 5-6 раз.
Данный способ аккумулирования тепла требует применения более затратных материалов, нежели предыдущий, но в то же время единожды наладив подобную систему, вам больше не придется постоянно проверять адекватность её работы. Она не требует совершенно никаких расходников и дополнительных материалов и способна обеспечить постоянную температуру в помещении теплицы на достаточно длительный срок. Видео: как сделать грунтовый тепловой аккумулятор
Каменные аккумуляторы тепла
Данный вид аккумуляторов является самым эффективным, так как камень обладает самой большой теплоемкостью среди всех рассматриваемых в статье материалов. Принцип работы каменных аккумуляторов заключается в том, что освещаемые солнцем участки теплицы обкладываются камнем, который в течение дня нагревается, а с наступлением ночи начинает отдавать накопленное тепло помещению. 1 - каменный теплоаккумулятор под теплицей с открытой циркуляцией воздуха; 2 - самородный тепловой аккумулятор из камня; 3 - прямой каменный тепловой аккумулятор; 4 - аккумулирование тепловой энергии камнями, уложенными свободно. Негативным аспектом применения данного способа отопления является высокая стоимость материала, особенно ощутимая в том случае, если вы желаете оборудовать эстетически приемлемую теплицу, с красивым внешним видом. С другой стороны, сооруженный по такому принципу аккумулятор имеет практически неограниченный срок службы и не теряет со временем своей эффективности.
Водяные аккумуляторы тепла своими руками
Самым популярным и простым в сооружении аккумулятором тепла для теплицы является водяной аккумулятор. Далее мы рассмотрим несколько самых простых способов сооружения таких аккумуляторов закрытого типа.
Рукавного типа
Данный агрегат хорош простотой своего сооружения, ведь всё, что вам потребуется для него, — это эластичный герметичный рукав и вода. Приблизительный алгоритм производства данного аккумулятора:
Приобретенный герметичный рукав (желательно чёрного цвета) требуемой длины и ширины, которая может варьироваться в зависимости от длины грядок и типа выращиваемых растений, укладывается на грядку таким образом, чтобы при наполнении он не травмировал растения.
Далее один из краев рукава надрезается и в него заливается вода так, чтобы она как можно более плотно его заполнила.
Далее рукав повторно герметизируется путем закручивания его края бечёвкой, проволокой, изолентой или хомутом.
Полученный агрегат не только предотвращает гибель растений в теплице в зимний период, но также положительно влияет на процессы роста и развития культур в период активной весенне-летней вегетации, что подтверждается наблюдениями многих огородников и садоводов.
Емкостного типа
Данный вид аккумуляторов тепла имеет несколько меньший КПД из-за того, что солнечные лучи не могут проникнуть глубоко в толщу бочки, представляющей основную составную его часть. Однако в то же время, его гораздо легче заново наполнить водой (когда возникнет такая потребность), чем предыдущий вид.
Сооружаются они по такому алгоритму:
Под грядки помещаются бочки произвольных размеров таким образом, чтобы на них попадал солнечный свет, и у вас была возможность долить в них воды, когда потребуется.
Крышки бочек открываются, в них заливается как можно больше воды. В идеале в бочке полностью должен отсутствовать воздух.
Далее крышка плотно закрывается и подвергается дополнительной герметизации, вид которой зависит от конструкции бочки и планируемой частоты обновления содержимого.
Важно! Для повышения эффективности работы такого агрегата рекомендуется окрасить изнутри бочку краской чёрного цвета.
Используя полученную из данной статьи информацию, вы можете на протяжении круглого года получать обильный урожай в ваших теплицах. Однако стоит помнить, что первостепенную роль в эффективности теплицы играет не наличие в ней того или иного вида теплового аккумулятора, а особенности её конструкции и грамотный подход к проектировке.
Отзывы из сети
Самый экономичный вариант: солнечное отопление с сезонным аккумулятором тепла.
1. Открытая железная бочка, наполненная водой прекрасно справляется с весенними заморозками, а заодно и влажность повышает пока растения не разрослись. 2. В случае опасности заморозков ниже -5, дуги из 20й пнд, накрытые нетканым укрывным прямо в теплице. Это же помогает притенять рассаду после высадки и не бояться что погорит в закрытой теплице.
Напишите в комментариях, на какие вопросы Вы не получили ответа, мы обязательно отреагируем!
Вы можете посоветовать статью своим друзьям!
Вы можете посоветовать статью своим друзьям!
Да
Нет
8 раз ужепомогла
agronomu.com
Тепловой аккумулятор :: Дом солнечного энергетика
Тепловой аккумулятор
Для каркасного дома нужно иметь тепловой аккумулятор (ТА) для снижения скачков температуры днем и ночью. О сезонном аккумулировании тепла - отдельная тема, пока рассмотрим суточное или многосуточное тепловое аккумулирование.
Реальных вариантов для материала для ТА всего 3:
вода
бетон или бетонные блоки (в крайнем случае кирпич, но у него теплоемкость меньше)
грунт
Для аккумуляторов одинаковой тепловой емкости масса воды для водяного аккумулятора примерно в 4 раза меньше. Однако, исходя из объема, разница между водяным и бетонным ТА получается не 4, а около 2 раз, т.к. бетон тяжелее воды.
Удельная теплоёмкость воды 4.19 кДж/(кг*K), при плотности 1000 кг/м.куб, у бетона удельная теплоёмкость 1.13 кДж/(кг*K), плотность 2242 кг/м.куб. Соответственно теплоёмкость воды на м. куб 4190, у бетона 2533. Отсюда получаем коэффициент 1.65, соответственно 200 м. куб бетона по теплоемкости соответствует 121.2 м3 воды.
Есть расчеты, что по стоимости ТА из воды процентов на 10-15 дешевле, чем ТА из бетона. Скорее всего эта разница не включает расходы на усиление фундамента.
Преимущества водяного ТА
Меньшие масса и объем
Возможность использовать температурную стратификацию
Возможность установки нескольких теплообменников на разной высоте
Недостатки водяного ТА:
Вода все-таки может протечь
Вода может замерзнуть, поэтому нужно размещать водяной ТА таким образом, чтобы исключалась возможность его замерзания. Как вариант - размещение его под землей
В конструкции водяного ТА можно применять пластиковые емкости, которые не боятся замораживания. Если разместить их горизонтально с небольшим недоливом, то разрыв из-за замерзания будет исключен. Тут нужно продумать конструкцию, чтобы можно было легко заменять воду и проводить техническое обслуживание.
Идеи с forumhouse.ru
#458 Я так понял надо иметь три ТА. Длительный типа 5 кубов бетона с залитыми трубками под домом, суточный с водой и теплообменником, моментальный где при кристаллизации хим вещества выделяется тепло (принять душ, помыть посуду).
#459 Тоже думаю о ТА.
1 Бетон и грунт- фундамент утепленный. Сброс излишков от СК, нагрев воздухом летом.
2 ТА низкотемпературный (+28С - +35С) для СК, когда пасмурно и сезонные емкости нагретые летом("длительные"). Использовать для нагрева фасадных стен (конечно внури дома) и холодной воды.
3 Возможно и еще более низкотемпературный ТА (+5С -+10С) утилизации уже после рекуператора ТО и канализации, такие температуры любит ТН. Догрев после ГК.
4 Конечно высокотемпературный ТА (+60С-+90С), для котла, ГВС, СК.
По поводу большого ТА под домом - закапывать емкость с водой - опасно и недолговечно. Пластиковые баки дорогие - 10 кубов стоят около 73 тыр. Хотя, на avito.ru нашел кубовые пластиковые емкости в металлическом каркасе за 2,5 тыр. Они не для высоких температур - материал еврокубов HDPE (полиэтилен высокой плотности), температура плавления 130-135 градусов. Температура размягчения, 80-100 градусов для разных марок. #254, #260
Если делать металлический бак - возникает проблема коррозии. Водяной бак надо периодически чистить, следить, чтобы флора-фауна всякая не завелась. С форума подсказали, что можно делать бак из кровельной меди, она не ржавеет и бактерицидна, но на такой большой объем даже не представляю цену.
Вопрос - нужен ли отдельный фундамент для таких емкостей под домом? Как вписать эту конструкцию в УШП? Не будет ли потом сожалений из-за того, что или баки потекут-покосятся, или, еще хуже, УШП вокруг и на них прогнется-вспухнет-поломается?
Поэтому еще раз нужно внимательно посмотреть в сторону грунтового ТА. У меня под домом будет глина не несколько метров глубиной, вода через нее не проходит, УГВ низкий (на 5-6 метрах воды точно нет). Огородить объем грунта теплоизоляцией из ЭППС с организацией дренажа вокруг него - наверняка дешевле, чем заливать почти такой же объем бетоном.
Остается вопрос о тепловой стратификации, которая является большом преимуществом водяного ТА - но в грунтовом она тоже в какой-то мере должна быть.
Нужно продумать размещение труб теплообменника. Наверное, проще решать вопрос отбора тепла из различных зон установкой нескольких контуров теплообменника (например, внешние и внутренние петли) и тепловым насосом.
Нагревать ТА в грунте и бетоне более 20 градусов вряд ли получится, поэтому без ТН не обойтись.
Такой грунтовый ТА нужен не для сезонного аккумулирования тепла - его, даже полностью заряженного, все равно хватит только на несколько недель, - а для многосуточного аккумулирования излишков солнечной энергии и для сброса излишков тепла от СК летом.
С учетом вышесказанного, пока рабочий вариант такой:
1. Небольшой ТА на 500 л с несколькими теплообменниками и температурной стратификацией - для ГВС. Излишки из него идут во второй ТА. Также, можно предусмотреть переключение контура СК (или его части) на второй ТА после нагрева первого до 80С - это усложнит систему, но может повысить эффективность СК за счет уменьшения разницы между температурами окружающей среды и теплоносителя. Можно увеличить этот ТА до 700-1000 л, чтобы иметь запас ГВС на несколько пасмурных дней, чтобы уменьшить потребление электроэнергии. #273
Также, переключение или разделение СК необходимо будет при увеличении количества СК больше 5-4 шт. #278 , т.к. мощности теплообменника в баке не будет хватать для полного отбора тепла от большого СК.
2. Многосуточный ТА для накопления солнечной энергии и как буферный ТА для пеллетной или дровяной печи. Думаю, кубов на 5-8. Разместить под домом на этапе строительства фундамента. Сделать бетонную или металлическую коробку размером примерно 2,5*2,5*2 м, утеплить ее снаружи немного пенопластом (максимум 10 см. С него скидывать излишки тепловой энергии от СК летом. Не думаю, что вода там будет сильно греться, максимум до 60-70 градусов.
Другой вариант реализации многосуточного ТА - галечный по образцу, описанного в книге Андерсона "Солнечное проектирование".
В этом варианте появляется возможность использования воздушных солнечных коллекторов. При этом в зимнее время галечный ТА будет служить аккумулятором солнечной энергии и энергии от пеллетного камина. В летнее время можно использовать его для охлаждения помещения.
В ТА нужно сделать несколько воздухозаборов/отверстия для выхода
1. забор воздуха
- в верхней части ТА - для подачи горячего воздуха от СК на стене и из чердака.
- в верхней части помещений - для забора горячего воздуха летом из помещений
- в нижней части со стороны столовой, со стороны кухни - для создания тяги через теплый ТА и выброса теплого воздуха из помещения наружу, для охлаждения ТА ночью, чтобы днем он мог охлаждать помещение.
2. выход воздуха - из нижней части ТА, прогретый СК воздух передается в помещение через ТА.
Летний режим. Запасать тепло внутри дома не нужно, а наоборот, нужно ночную прохладу. Вокруг ТА можно сделать теплоизоляцию, но скорее всего она не нужна. Если ночью нужно дополнительное тепло, можно запасать его днем, так как ТА имеет большую инерционность, то как раз к вечеру он прогреется от СК и можно будет от него забирать тепло. Если же ночью нужна прохлада, то в дневное время воздух от СК через этот ТА не прокачивается, а направляется на чердак в теплообменник грунтового или большого водяного ТА.
3. Грунтовый ТА под домом. Сделать несколько петель из ПНД в рамках периметра дома, вокруг второго ТА. Потери от второго ТА будут нагревать грунт, плюс, на эти петли можно летом скидывать тепло от фанкойлов. По периметру дома сделать вертикальную теплоизоляцию из ЭППС 10-15 см на глубину до 2-3 м. С учетом того, что большая часть земляных работ все равно должна производиться при обустройстве УШП, добавка к стоимости на такой ГТА должна быть небольшой - стоимость пары сотен метров ПНД с их укладкой, стоимость ЭППС для теплоизоляции периметра на глубину 2-3 м, стоимость траншеи по периметру для размещения этой теплоизоляции.
4. Ну и, конечно, тепловым аккумулятором будет ФП. Она должна обеспечить охлаждение летом и отопление зимой.
По материалу второго ТА - т.к. он будет самодельным, то важен выбор материала. #275
❏ Pазличные виды пластиковых поверхностей, в первую очередь на основе полиэтилена, полипропилена, ПВХ, способствуют образованию на внутренней поверхности биопленок, в которых крайне охотно селится легионелла, особенно полиэтилены, некоторые пригодны для тепловой профилактики, хотя применяемые в ХВС типы как правило не рассчитаны на t 70-80 °С, уязвимы перед гиперхлорированием и озонированием и УФ (уязвимы не означает немедленной аварии после применения процедуры, а означает сокращение, а в некоторых случаях существенное, срока службы),
при снижении t до 50 °С демонстрируют высокие темпы вторичного расселения и роста легионеллы.
❏ Hержавеющая сталь в некоторой мере бактериостатична, в малой степени подвержена зарастанию и образованию биопленок, пригодна для всех видов профилактики, но сложна в монтаже и дорогостояща, а при снижении температуры до 50 °С демонстрирует эффект вторичного расселения и
роста колоний легионеллы.
❏ Mедные поверхности:
ярко выраженное бактериостатическое и бактерицидное действие — при сравнительных экспериментах при t = 25 °С KIWA лишь с пятой попытки сумела высадить на медной поверхности колонию легионелл), безусловно препятствуют росту колоний Л при t < 25 °С, после «теплового удара» при охлаждении до 50 °С единственные, на поверхности которых легионелла не восстанавливается. В наиболее опасном диапазоне t 38-42 °С колонии легионелл, тем не менее, размножаются, хотя их количество и темпы роста наименьшие, причем на два порядка, по сравнению с пластиками и оцинкованной сталью.
Взято тут - http://www.c-o-k.com.ua/content/view/1344Получается, что пластиковый бак с точки зрения развития легионелл и прочей живности - не вариант. Хотя воду оттуда пить не будут, но периодически его нужно обеззараживать, а пластик к химии слабостоек. Учитывая, что бак закапывается в грунт практически навсегда, то такая экономия может выйти боком.
Основное отопление будет грунтовым ТН. Пока не решил - будет ли это многоэтажка или несколько скважин метров по 8-10 глубиной. Говорят, 20 таких скважин хватает на отопление дома 200 м2 (хорошо утепленный, но без фанатизма, каркасник).
См. также #313
Стена Тромба
Большие окна - это хорошо с точки зрения поступления света. Но зачастую (особенно летом) слишком много света "напрягает", а излишняя открытость солнечному свету приводит к выцветанию мебели, тканей, ковров и т.п., находиться на ярком солнце тоже некомфортно. Есть вариант размещения тепплоаккумулирующей массы внутри дома пере окнами
В этом случае полезная солнечная энергия улавливается стеной, но яркий свет не проникает вглубь помещений.
Ссылки по теме
Phase Change Material Trombe Wall
Масса и место размещения теплоаккумулятора
Еще интересная информация по тепловым аккумуляторам
Немецкий ТА с использованием энергии замораживания воды. Энергия кристаллизации 1 л воды - 0.8 кВт*ч, что равнозначно энергии нагрева 1 л воды с 0 до 80С.
Демонстрационный дом в Мичигане, США. Построен в 1994 году.
Грунтовый ТА из песка, изолирован от фундаментной плиты 5 см ЭППС. Тепло сохраняется несколько месяцев. На 42 минуте видео показана таблица переключения кранов для перераспределения солнечной энергии между грунтовым ТА (ГТА), фундаментной плитой (ФП) и т.п. Солнечная система - drainback, одноконтурная, одна и та же вода проходит через коллекторы и через ГТА и ФП.
На 49 минуте говорится о том, что для разогрева даже такого суперутепленного дома необходимо минимум полдня, т.к. дом имеет большую термическую массу в виде фундамента и дровяной печи. Что, в принципе, подтверждается цитатой #229
"... конструктор каркасников советовал держать круглогодичную температуру не ниже +7...+10грЦ, если хозяева собираются периодически приезжать на выходные зимой. (Если зимой совсем не пользоваться, то можно без проблем консервировать) Он же предупреждал, что ТП в плите прогревает помещение не за пару- тройку часов, а сутки- двое."
Дом не имеет кондиционеров, летом не бывает жарко. В восточной части дома 2 спальни, соединенные с солярием, который позволяет также иметь комфортную температуру в течение всего года.
На 54 минуте показаны трубы, которые были использованы в ГТА и в ФП. На 56 минуте говорится о том, что нужно делать теплоизолированую дверь и хорошо теплоизолировать помещение, где расположены баки и т.п., т.к. иначе тепло проникает в помещения и летом нагревает их, что нежелательно.
Фотоэлектрическая система старая, силовая электроника тоже. СБ были установлены б/у с какой то большой станции.
Thermal Storage Solutions - Roy House В этом доме применен водяной ТА примерно на 9 кубов, который может запасать до 440 кВт*ч энергии. В системе гликолевая петля от СК, через теплообменник отдает тепло теплым полам (вода). Также есть аварийная петля с насосом постоянного тока для сброса излишков тепла от СК в землю. Контроллеры и аварийный насос питаются от АБ 12В.
Тепловой аккумумулятор на 50 м3
Еще ТА на 130 м3
20.08.2018
dom.solarhome.ru
Солнечное отопление частного дома: обзор лучших конструкций
«Зеленые технологии» — весьма перспективное направление. Использование растрачиваемой вхолостую энергии природных стихий позволяет существенно сокращать коммунальные расходы. К примеру, устроив солнечное отопление частного дома, вы будете снабжать фактически бесплатным теплоносителем низкотемпературные радиаторы и системы теплых полов. Согласитесь, это уже немалая экономия.
Все о видах систем, перерабатывающих неисчерпаемую энергию солнца в необходимое для обогрева тепло, вы узнаете из предложенной нами статьи. С нашей помощью вы запросто разберетесь в разновидностях солнечных установок, способах их устройства и специфике эксплуатации. Наверняка заинтересуетесь одним из популярных вариантов, интенсивно работающих в мире, но не слишком пока востребованных у нас.
В представленном вашему вниманию обзоре приведены конструктивные особенности систем, детально описаны схемы подключения. Приведен пример расчета солнечного отопительного контура для оценки реалий его сооружения. В помощь самостоятельным мастерам прилагаются фото-подборки и видео.
Содержание статьи:
«Зеленые» технологии получения тепла
В среднем 1 м2 поверхности земли получает 161 Вт солнечной энергии в час. Разумеется, на экваторе этот показатель будет во много раз выше чем в Заполярье. Кроме того, плотность солнечного излучения зависит от времени года.
В Московской области интенсивность солнечного излучения в декабре-январе отличается от мая-июля более чем в пять раз. Однако современные системы настолько эффективны, что способны работать практически всюду на земле.
Современные гелиосистемы способны эффективно работать в пасмурную и холодную погоду до -30°С (+)
Задача использования энергии солнечной радиации с максимальным КПД решается двумя путями: прямой нагрев в тепловых коллекторах и солнечные фотоэлектрические батареи.
Солнечные батареи вначале преобразуют энергию солнечных лучей в электричество, затем передают через специальную систему потребителям, например электрокотлу.
Тепловые коллекторы нагреваясь под действием солнечных лучей нагревают теплоноситель систем отопления и горячего водоснабжения.
Галерея изображений
Фото из
Солнечные коллекторы - основные поставщики подготовленного к использованию теплоносителя в системы отопления загородных домов
Коллектор представляет собой систему трубок, незакрытых или закрытых темной, усиливающей эффект поглощения солнечных лучей поверхностью
Трубки открытых солнечных приборов изнутри покрыты составом, привлекающим к себе солнечные лучи и усиливающим действие
Трубчатые разновидности коллекторов применяются в подогреве всех видов теплоносителей, задействованных в системах отопления
В наших широтах тепла, поступающего в результате переработки солнечной энергии, недостаточно для полноценной работы отопления. Повысить производительность поможет концентрическая форма и крупногабаритная лупа
Модификации солнечных коллекторов, позволяющие привлечь наибольшее количество солнечных лучей, выпускаются в виде вогнутых концентраторов с зеркальным отражателем
Модели, используемые для получения переработанной солнечной энергии в больших масштабах, оснащают устройствами "слежения" за движением солнца
Усиливают производительность системы не только с помощью изменения формы и использования устройств движения. В основном повышают, увеличивая приемную площадь
Солнечный коллектор на крыше дома
Прибор с поглощающей поверхностью
Открытый вакуумный солнечный коллектор
Для воздушного и парового отопления
Линза для повышения производительности прибора
Коллектор концентратор с отражателем
Промышленная модель с устройством движения
Мощная группа коллекторов-концентраторов
Тепловые коллекторы бывают нескольких видов, в числе которых открытые и закрытые системы, плоские и сферические конструкции, полусферические коллекторы концентраторы и многие другие варианты.
Тепловая энергия, полученная с солнечных коллекторов используется для нагревания горячей воды или теплоносителя системы отопления.
Промышленность в широком ассортименте производит коллекторные системы для включения в независимую отопительную сеть. Однако простейший вариант для дачи несложно сделать собственноручно:
Галерея изображений
Фото из
Самодельный закрытый солнечный коллектор
Простейшая конструкция
Змеевик коллектора из медных трубок
Методы усиления эффективности
Использование жестких водопроводных труб и фитингов
Пластиковые бутылки в изготовлении коллекторов
Воздушный солнечный коллектор из металлических банок
Полимерные трубы в самостоятельном производстве
Несмотря на явный прогресс в разработке решений по собиранию, аккумулированию и использованию солнечной энергии, существуют достоинства и недостатки.
Эффективное использование энергии солнца
Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.
Второй плюс — это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.
Эффективность солнечного отопления в наших широтах довольно низка, что объясняется недостаточным количеством солнечных дней для регулярной работы системы (+)
Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году.
Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.
Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.
Существенный недостаток отопления, основанного на применении солнечных коллекторов, заключается в отсутствии возможности накапливать тепловую энергию. В схему включен только расширительный бак (+)
Открытые солнечные коллекторы
Открытый солнечный коллектор представляет собой незащищенную от внешних воздействий систему трубок, по которым циркулирует нагреваемый непосредственно солнцем теплоноситель. В качестве теплоносителя применяется вода, газ, воздух, антифриз. Трубки либо закрепляются на несущей панели в виде змеевика, либо присоединяются параллельными рядами к выходному патрубку.
Солнечные коллекторы открытого типа не способны справиться с отоплением частного дома. Из-за отсутствия изоляции теплоноситель быстро остывает. Их используют в летнее время в основном для нагрева воды в душевых или бассейнах
У открытых коллекторов нет обычно никакой изоляции. Конструкция очень простая, поэтому имеет невысокую стоимость и часто изготавливается самостоятельно.
Ввиду отсутствия изоляции практически не сохраняют полученную от солнца энергию, отличаются низким КПД. Применяются их преимущественно в летний период для подогрева воды в бассейнах или летних душевых. Устанавливаются в солнечных и теплых регионах, при небольших перепадах температуры окружающего воздуха и подогреваемой воды. Хорошо работают только в солнечную, безветренную погоду.
Самый простой солнечный коллектор с теплоприемником, сделанным из бухты полимерных труб, обеспечит поставку подогретой воды на даче для полива и бытовых нужд
Трубчатые коллекторные разновидности
Трубчатые солнечные коллекторы собираются из отдельных трубок, по которым курсирует вода, газ или пар. Это одна из разновидностей гелиосистем открытого типа. Однако теплоноситель уже намного лучше защищен от внешнего негатива. Особенно в вакуумных установках, устроенных по принципу термосов.
Каждая трубка подключается к системе отдельно, параллельно друг другу. При выходе из строя одной трубки ее легко поменять на новую. Вся конструкция может собираться непосредственно на кровле здания, что значительно облегчает монтаж.
Трубчатый коллектор имеет модульную структуру. Основным элементом является вакуумная трубка, количество трубок варьируется от 18 до 30, что позволяет точно подобрать мощность системы
Веский плюс трубчатых солнечных коллекторов заключается в цилиндрической форме основных элементов, благодаря которым солнечное излучение улавливается круглый световой день без применения дорогостоящих систем слежения за передвижением светила.
Специальное многослойное покрытие создает своего рода оптическую ловушку для солнечных лучей. На схеме частично показана внешняя стенка вакуумной колбы отражающая лучи на стенки внутренней колбы (+)
По конструкции трубок различают перьевые и коаксиальные солнечные коллекторы.
Коаксиальная трубка представляет собой сосуд Дьаюра или всем знакомый термос. Изготовлены из двух колб между которыми откачан воздух. На внутреннюю поверхность внутренней колбы нанесено высокоселективное покрытие эффективно поглощающее солнечную энергию.
При цилиндрической форме трубки солнечные лучи всегда падают перпендикулярно поверхности
Тепловая энергия от внутреннего селективного слоя передается тепловой трубке или внутреннему теплообменнику из алюминиевых пластин. На этом этапе происходят нежелательные теплопотери.
Перьевая трубка представляет собой стеклянный цилиндр со вставленным внутрь перьевым абсорбером.
Свое название система получила от перьевого абсорбера, который плотно обхватывает тепловой канал из теплопроводящего металла
Для хорошей теплоизоляции из трубки откачан воздух. Передача тепла от абсорбера происходит без потерь, поэтому КПД перьевых трубок выше.
По способу передачи тепла есть две системы: прямоточные и с термотрубкой (heat pipe).
Термотрубка представляет собой запаянную емкость с легкоиспаряющейся жидкостью.
Поскольку легкоиспаряющаяся жидкость естественным образом стекает на дно термотрубки, минимальный угол наклона составляет 20°
Внутри термотрубки находится легкоиспаряющаяся жидкость, которая воспринимает тепло от внутренней стенки колбы или от перьевого абсорбера. Под действием температуры жидкость закипает и в виде пара поднимается вверх. После того как тепло отдано теплоносителю отопления или горячего водоснабжения, пар конденсируется в жидкость и стекает вниз.
В качестве легкоиспаряющейся жидкости часто применяется вода при низком давлении.
В прямоточной системе используется U-образная трубка, по которой циркулирует вода или теплоноситель системы отопления.
Одна половина U-образной трубки предназначена для холодного теплоносителя, вторая отводит нагретый. При нагреве теплоноситель расширяется и поступает в накопительный бак, обеспечивая естественную циркуляцию. Как и в случае систем с термотрубкой, минимальный угол наклона должен составлять не менее 20⁰.
При прямоточном подключении давление в системе не может быть высоким, так как внутри колбы технический вакуум
Прямоточные системы более эффективны так как сразу нагревают теплоноситель.
Если системы солнечных коллекторов запланированы к использованию круглый год, то в них закачивается специальные антифризы.
Применение трубчатых солнечных коллекторов имеет ряд достоинств и недостатков. Конструкция трубчатого солнечного коллектора состоит из одинаковых элементов, которые относительно легко заменить.
Достоинства:
низкие теплопотери;
способность работать при температуре до -30⁰С;
эффективная производительность в течение всего светового дня;
хорошая работоспособность в областях с умеренным и холодным климатом;
низкая парусность, обоснованная способностью трубчатых систем пропускать сквозь себя воздушные массы;
возможность производства высокой температуры теплоносителя.
Конструктивно трубчатая конструкция имеет ограниченную апертурную поверхность. Обладает следующими недостатками:
не способна к самоочистке от снега, льда, инея;
высокая стоимость.
Несмотря на первоначально высокую стоимость, трубчатые коллекторы быстрее окупаются. Имеют большой срок эксплуатации.
Трубчатые коллекторы относятся к гелиоустановкам открытого типа, потому не подходят для круглогодичного использования в системах отопления (+)
Плоские закрытые системы
Плоский коллектор состоит из алюминиевого каркаса, специального поглощающего слоя – абсорбера, прозрачного покрытия, трубопровода и утеплителя.
В качестве абсорбера применяют зачерненную листовую медь, отличающуюся идеальной для создания гелиосистем теплопроводностью. При поглощении солнечной энергии абсорбером происходит передача полученной им солнечной энергии теплоносителю, циркулирующему по примыкающей к абсорберу системе трубок.
С наружной стороны закрытая панель защищена прозрачным покрытием. Оно изготовлено из противоударного закаленного стекла, имеющего полосу пропускания 0,4-1,8мкм. На такой диапазон приходится максимум солнечного излучения. Противоударное стекло служит хорошей защитой от града. С тыльной стороны вся панель надежно утеплена.
Плоские солнечные коллекторы отличаются максимальной производительностью и простой конструкцией. КПД их увеличен за счет применения абсорбера. Они способны улавливать рассеянное и прямое солнечное излучение
В перечне преимуществ закрытых плоских панелей числятся:
простота конструкции;
хорошая производительность в регионах с теплым климатом;
возможность установки под любым углом при наличии приспособлений для изменения угла наклона;
способность самоочищаться от снега и инея;
низкая цена.
Плоские солнечные коллекторы особенно выгодны, если их применение запланировано еще на стадии проектирования. Срок службы у качественных изделий составляет 50 лет.
К недостаткам можно отнести:
высокие теплопотери;
большой вес;
высокая парусность при расположении панелей под углом к горизонту;
ограничения в производительности при перепадах температуры более 40°С.
Сфера применения закрытых коллекторов значительно шире, чем гелиоустановок открытого типа. Летом они способны полностью удовлетворить потребность в горячей воде. В прохладные дни, не включенные коммунальщиками в отопительный период, они могут поработать вместо газовых и электрообогревателей.
Сравнение характеристик солнечных коллекторов
Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.
Значения КПД зависят от качества изготовления солнечного коллектора. Цель графика показать эффективность применения разных систем в зависимости от разницы температуры
При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора.
Для солнечных коллекторов есть несколько важных характеристики:
коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
общая и апертурная площадь;
КПД.
Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.
Способы подключения к системе отопления
Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.
Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.
Схема с водяным коллектором
В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:
Летний вариант для горячего водоснабжения
Зимний вариант для отопления и горячего водоснабжения
Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.
Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.
Зимой при отрицательных температурах прямой нагрев воды не возможен. По закрытому контуру циркулирует специальный антифриз, обеспечивая перенос тепла от коллектора к теплообменнику в баке
Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор.
Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.
Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.
Чтобы ночью коллектор не превратился в радиатор охлаждения необходимо прекращать циркуляцию воды принудительно
По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.
Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй — на трубе подачи горячего теплоносителя солнечного коллектора. Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе.
В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.
Схема с солнечной батареей
Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.
При снижении мощности электрического тока от солнечной батареи блок АВР (автоматическое включение резерва) обеспечивает подключение потребителей к общей элетросети
С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.
Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.
Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.
Галерея изображений
Фото из
Солнечные электростанции в отоплении дома
Процесс установки солнечных панелей на кровлю
Самостоятельный монтаж прибора на крышу гаража
Самодельный электроприбор для солнечного отопления
Пример расчета необходимой мощности
При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.
Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.
Компании производители рекомендуют исходить из таких цифр:
обеспечение горячего водоснабжения не более 70%;
обеспечение отопительной системы не более 30%.
Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.
Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией. Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.
Пример расчета:
Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:
S = 1,6 * 0,058 = 0,0928м2
КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:
W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч
Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д.
Полезное видео по теме
Демонстрация действия солнечного коллектора в зимнее время:
Сравнение разных моделей солнечных коллекторов:
На протяжении всего собственного существования человечество с каждым годом потребляется все больше энергии. Попытки использовать бесплатное солнечное излучение предпринимались давно, но только в последнее время стало возможным эффективно использовать солнце в наших широтах. Несомненно, что за гелиосистемами будущее.
sovet-ingenera.com
Солнечный аккумулятор тепла
Изобретение относится к гелиотехнике и предназначено для преобразования солнечной энергии в тепловую и аккумулирования ее с целью последующего использования в бытовых условиях, например, для обогрева туристских палаток, юрт, различного рода помещений. В солнечном аккумуляторе тепла, содержащем корпус, светопрозрачный защитный экран, теплоприемную панель, наполнитель аккумулятора тепла и теплоизоляцию, наполнитель аккумулятора тепла помещен в съемный герметичный контейнер, установленный в корпусе с поджатием к теплоприемной панели откидывающейся крышкой через теплоизоляцию. Наполнителем аккумулятора тепла является вещество с фазовым превращением. Изобретение должно обеспечить удобство в эксплуатации. 1 ил.
Предлагаемое изобретение относится к гелиотехнике и предназначено для преобразования солнечной энергии в тепловую и аккумулирования ее с целью последующего использования в бытовых условиях, например, для обогрева туристских палаток, юрт, различного рода помещений.
Известен солнечный коллектор - нагреватель жидкости, содержащий корпус в виде заполненного жидкостью бака с патрубками, светопрозрачную для лучей теплоизоляцию, поглощающую энергию солнечных лучей крышку бака (см. патент РФ 2108520, F 24 J 2/04, 1996).
Известен также солнечный воздухонагреватель, включающий коллектор, светопрозрачное покрытие, двухслойный аккумулятор тепла (наиболее близкий аналог, см. патент РФ 2193147, F 24 J 2/24, 2/34, 2001).
Недостатком приведенных конструкций является недостаточная эффективность действия и неудобство в эксплуатации, особенно в случае выполнения солнечного аккумулятора переносным. Двухслойный (песчано-гравийный) аккумулятор медленнее и не в полной мере воспринимает поступающую солнечную радиацию и обладает более низкими теплоинерционными характеристиками по сравнению с веществами с фазовым переходом.
Целью предлагаемого технического решения является устранение указанного недостатка.
Указанная цель достигается тем, что в солнечном аккумуляторе тепла, содержащем корпус, светопрозрачный защитный экран, теплоприемную панель, наполнитель аккумулятора тепла, теплоизоляцию, согласно изобретению наполнитель аккумулятора тепла помещен в съемный герметичный контейнер, установленный в корпусе с поджатием к теплоприемной панели откидывающейся крышкой через теплоизоляцию.
При этом в солнечном аккумуляторе наполнителем аккумулятора тепла может является вещество с фазовым превращением.
Корпус съемного герметичного контейнера изготовлен из материала с высокой теплопроводностью, например из металла (сплавов алюминия), что позволяет эффективно передавать тепло от нагретой солнечным излучением теплоприемной панели к наполнителю аккумулятора тепла.
Крышка корпуса солнечного аккумулятора тепла выполнена откидывающейся для извлечения нагретого герметичного контейнера и использования его в бытовых условиях.
Установленная между герметичным контейнером и откидывающейся крышкой теплоизоляция сокращает утечки тепла через крышку корпуса. В качестве теплоизоляции использован пенопласт (пенополистирол и т.п.) или подобный ему материал с малым коэффициентом теплопроводности.
При этом толщина теплоизоляции выбрана немного больше - на 3-5% от номинального размера для поджатия контейнера с наполнителем аккумулятора тепла к теплоприемной панели откидывающейся крышкой. Таким образом обеспечен надежный контакт между теплоприемной панелью и контейнером и, следовательно, малое термическое сопротивление между ними.
Для повышения эффективности действия предложенного устройства в качестве наполнителя аккумулятора использовано вещество с фазовым превращением в диапазоне температур ~20-100°С. Применение такого наполнителя позволяет аккумулировать в герметичном контейнере в несколько раз (2-3) больше тепла по сравнению с обычным наполнителем, поглощающим тепловую энергию за счет теплоемкости. Конструкция контейнера выполнена герметичной, т.к. наполнитель при нагреве меняет фазовое состояние - из твердого превращается в жидкое, а при охлаждении - наоборот.
Сущность предлагаемого устройства поясняется чертежом.
В корпусе 1 с откидывающейся крышкой 2 и светопрозрачным защитным экраном 3 установлена теплоприемная панель 4, герметичный контейнер 5 с наполнителем 6 аккумулятора тепла и теплоизоляция 7.
Функционирование предложенного устройства происходит следующим образом. Солнечное излучение, проходя через светопрозрачный защитный экран, нагревает теплоприемную панель и герметичный контейнер с наполнителем аккумулятора тепла. Наполнитель аккумулятора, нагреваясь, переходит из твердого состояния в жидкое и накапливает при этом тепловую энергию. При интенсивном солнечном излучении контейнер с аккумулятором тепла нагревается в течение 1,5-2 часов. После этого контейнер извлекают из корпуса и используют в бытовых условиях, например, для подогрева палатки, юрты и т.п. На место извлеченного контейнера ставится запасной.
Следует отметить, что контейнер с наполнителем аккумулятора тепла можно нагревать любым источником тепла (печь и т.п.).
В рамках данного изобретения авторами разработан, выполнен в металле и испытан солнечный коллектор-аккумулятор со всеми описанными признаками.
Корпус герметичного контейнера изготовлен из нержавеющей стали Х18Н10Т. В качестве наполнителя аккумулятора тепла использован парафиносодержащий состав с температурой плавления ~60°С. Поверхность теплоприемной панели со стороны солнечных лучей покрыта селективным покрытием с высоким значением коэффициента поглощения солнечного излучения и малым значением степени черноты.
Технико-экономическая эффективность представленного устройства заключается в том, что солнечный коллектор-аккумулятор удобен в эксплуатации - герметичный контейнер с наполнителем аккумулятора тепла занимает небольшой объем, быстро нагревается, легко извлекается из корпуса и продолжительное время служит для обогрева различных помещений.
1. Солнечный аккумулятор тепла, содержащий корпус, светопрозрачный защитный экран, теплоприемную панель, наполнитель аккумулятора тепла, теплоизоляцию, отличающийся тем, что наполнитель аккумулятора тепла помещен в съемный герметичный контейнер, установленный в корпусе с поджатием к теплоприемной панели откидывающейся крышкой через теплоизоляцию.
2. Солнечный аккумулятор тепла по п.1, отличающийся тем, что наполнителем аккумулятора тепла является вещество с фазовым превращением.
www.findpatent.ru
солнечный аккумулятор тепла - патент РФ 2252374
Изобретение относится к гелиотехнике и предназначено для преобразования солнечной энергии в тепловую и аккумулирования ее с целью последующего использования в бытовых условиях, например, для обогрева туристских палаток, юрт, различного рода помещений. В солнечном аккумуляторе тепла, содержащем корпус, светопрозрачный защитный экран, теплоприемную панель, наполнитель аккумулятора тепла и теплоизоляцию, наполнитель аккумулятора тепла помещен в съемный герметичный контейнер, установленный в корпусе с поджатием к теплоприемной панели откидывающейся крышкой через теплоизоляцию. Наполнителем аккумулятора тепла является вещество с фазовым превращением. Изобретение должно обеспечить удобство в эксплуатации. 1 ил.
Рисунки к патенту РФ 2252374
Предлагаемое изобретение относится к гелиотехнике и предназначено для преобразования солнечной энергии в тепловую и аккумулирования ее с целью последующего использования в бытовых условиях, например, для обогрева туристских палаток, юрт, различного рода помещений.
Известен солнечный коллектор - нагреватель жидкости, содержащий корпус в виде заполненного жидкостью бака с патрубками, светопрозрачную для лучей теплоизоляцию, поглощающую энергию солнечных лучей крышку бака (см. патент РФ 2108520, F 24 J 2/04, 1996).
Известен также солнечный воздухонагреватель, включающий коллектор, светопрозрачное покрытие, двухслойный аккумулятор тепла (наиболее близкий аналог, см. патент РФ 2193147, F 24 J 2/24, 2/34, 2001).
Недостатком приведенных конструкций является недостаточная эффективность действия и неудобство в эксплуатации, особенно в случае выполнения солнечного аккумулятора переносным. Двухслойный (песчано-гравийный) аккумулятор медленнее и не в полной мере воспринимает поступающую солнечную радиацию и обладает более низкими теплоинерционными характеристиками по сравнению с веществами с фазовым переходом.
Целью предлагаемого технического решения является устранение указанного недостатка.
Указанная цель достигается тем, что в солнечном аккумуляторе тепла, содержащем корпус, светопрозрачный защитный экран, теплоприемную панель, наполнитель аккумулятора тепла, теплоизоляцию, согласно изобретению наполнитель аккумулятора тепла помещен в съемный герметичный контейнер, установленный в корпусе с поджатием к теплоприемной панели откидывающейся крышкой через теплоизоляцию.
При этом в солнечном аккумуляторе наполнителем аккумулятора тепла может является вещество с фазовым превращением.
Корпус съемного герметичного контейнера изготовлен из материала с высокой теплопроводностью, например из металла (сплавов алюминия), что позволяет эффективно передавать тепло от нагретой солнечным излучением теплоприемной панели к наполнителю аккумулятора тепла.
Крышка корпуса солнечного аккумулятора тепла выполнена откидывающейся для извлечения нагретого герметичного контейнера и использования его в бытовых условиях.
Установленная между герметичным контейнером и откидывающейся крышкой теплоизоляция сокращает утечки тепла через крышку корпуса. В качестве теплоизоляции использован пенопласт (пенополистирол и т.п.) или подобный ему материал с малым коэффициентом теплопроводности.
При этом толщина теплоизоляции выбрана немного больше - на 3-5% от номинального размера для поджатия контейнера с наполнителем аккумулятора тепла к теплоприемной панели откидывающейся крышкой. Таким образом обеспечен надежный контакт между теплоприемной панелью и контейнером и, следовательно, малое термическое сопротивление между ними.
Для повышения эффективности действия предложенного устройства в качестве наполнителя аккумулятора использовано вещество с фазовым превращением в диапазоне температур ~20-100°С. Применение такого наполнителя позволяет аккумулировать в герметичном контейнере в несколько раз (2-3) больше тепла по сравнению с обычным наполнителем, поглощающим тепловую энергию за счет теплоемкости. Конструкция контейнера выполнена герметичной, т.к. наполнитель при нагреве меняет фазовое состояние - из твердого превращается в жидкое, а при охлаждении - наоборот.
Сущность предлагаемого устройства поясняется чертежом.
В корпусе 1 с откидывающейся крышкой 2 и светопрозрачным защитным экраном 3 установлена теплоприемная панель 4, герметичный контейнер 5 с наполнителем 6 аккумулятора тепла и теплоизоляция 7.
Функционирование предложенного устройства происходит следующим образом. Солнечное излучение, проходя через светопрозрачный защитный экран, нагревает теплоприемную панель и герметичный контейнер с наполнителем аккумулятора тепла. Наполнитель аккумулятора, нагреваясь, переходит из твердого состояния в жидкое и накапливает при этом тепловую энергию. При интенсивном солнечном излучении контейнер с аккумулятором тепла нагревается в течение 1,5-2 часов. После этого контейнер извлекают из корпуса и используют в бытовых условиях, например, для подогрева палатки, юрты и т.п. На место извлеченного контейнера ставится запасной.
Следует отметить, что контейнер с наполнителем аккумулятора тепла можно нагревать любым источником тепла (печь и т.п.).
В рамках данного изобретения авторами разработан, выполнен в металле и испытан солнечный коллектор-аккумулятор со всеми описанными признаками.
Корпус герметичного контейнера изготовлен из нержавеющей стали Х18Н10Т. В качестве наполнителя аккумулятора тепла использован парафиносодержащий состав с температурой плавления ~60°С. Поверхность теплоприемной панели со стороны солнечных лучей покрыта селективным покрытием с высоким значением коэффициента поглощения солнечного излучения и малым значением степени черноты.
Технико-экономическая эффективность представленного устройства заключается в том, что солнечный коллектор-аккумулятор удобен в эксплуатации - герметичный контейнер с наполнителем аккумулятора тепла занимает небольшой объем, быстро нагревается, легко извлекается из корпуса и продолжительное время служит для обогрева различных помещений.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Солнечный аккумулятор тепла, содержащий корпус, светопрозрачный защитный экран, теплоприемную панель, наполнитель аккумулятора тепла, теплоизоляцию, отличающийся тем, что наполнитель аккумулятора тепла помещен в съемный герметичный контейнер, установленный в корпусе с поджатием к теплоприемной панели откидывающейся крышкой через теплоизоляцию.
2. Солнечный аккумулятор тепла по п.1, отличающийся тем, что наполнителем аккумулятора тепла является вещество с фазовым превращением.
www.freepatent.ru
Солнечное отопление частного дома: варианты и схемы устройства
Экология потребления.Усадьба:Большую часть года мы вынуждены тратить деньги на отопление своих домов. В такой ситуации любая помощь будет не лишней. Энергия солнца подходит для этих целей как нельзя лучше: абсолютно экологически чистая и бесплатная.
Большую часть года мы вынуждены тратить деньги на отопление своих домов. В такой ситуации любая помощь будет не лишней. Энергия солнца подходит для этих целей как нельзя лучше: абсолютно экологически чистая и бесплатная. Современные технологии позволяют осуществлять солнечное отопление частного дома не только в южных районах, но и в условиях средней полосы.
Что могут предложить современные технологии
В среднем 1 м2 поверхности земли получает 161 Вт солнечной энергии в час. Разумеется, на экваторе этот показатель будет во много раз выше чем в Заполярье. Кроме того, плотность солнечного излучения зависит от времени года. В Московской области интенсивность солнечного излучения в декабре-январе отличается от мая-июля более чем в пять раз. Однако современные системы настолько эффективны, что способны работать практически всюду на земле.
Современные гелиосистемы способны эффективно работать в пасмурную и холодную погоду до -30°С
Задача использования энергии солнечной радиации с максимальным КПД решается двумя путями: прямой нагрев в тепловых коллекторах и солнечные фотоэлектрические батареи.
Солнечные батареи вначале преобразуют энергию солнечных лучей в электричество, затем передают через специальную систему потребителям, например электрокотлу.
Тепловые коллекторы нагреваясь под действием солнечных лучей нагревают теплоноситель систем отопления и горячего водоснабжения.
Тепловые коллекторы бывают нескольких видов, в числе которых открытые и закрытые системы, плоские и сферические конструкции, полусферические коллекторы концентраторы и многие другие варианты.
Тепловая энергия, полученная с солнечных коллекторов используется для нагревания горячей воды или теплоносителя системы отопления.
Несмотря на явный прогресс в разработке решений по собиранию, аккумулированию и использованию солнечной энергии, существуют достоинства и недостатки.
Эффективность солнечного отопления в наших широтах довольно низка, что объясняется недостаточным количеством солнечных дней для регулярной работы системы
Плюсы и минусы от использования энергии солнца
Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.
Второй плюс — это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.
Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году.
Существенный недостаток отопления, основанного на применении солнечных коллекторов, заключается в отсутствии возможности накапливать тепловую энергию. В схему включен только расширительный бак
Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.
Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.
Открытые солнечные коллекторы
Открытый солнечный коллектор представляет собой незащищенную от внешних воздействий систему трубок, по которым циркулирует нагреваемый непосредственно солнцем теплоноситель. В качестве теплоносителя применяется вода, газ, воздух, антифриз. Трубки либо закрепляются на несущей панели в виде змеевика, либо присоединяются параллельными рядами к выходному патрубку.
Солнечные коллекторы открытого типа не способны справиться с отоплением частного дома. Из-за отсутствия изоляции теплоноситель быстро остывает. Их используют в летнее время в основном для нагрева воды в душевых или бассейнах
У открытых коллекторов нет обычно никакой изоляции. Конструкция очень простая, поэтому имеет невысокую стоимость и часто изготавливается самостоятельно.
Ввиду отсутствия изоляции практически не сохраняют полученную от солнца энергию, отличаются низким КПД. Применяются их преимущественно в летний период для подогрева воды в бассейнах или летних душевых. Устанавливаются в солнечных и теплых регионах, при небольших перепадах температуры окружающего воздуха и подогреваемой воды. Хорошо работают только в солнечную, безветренную погоду.
Самый простой солнечный коллектор с теплоприемником, сделанным из бухты полимерных труб, обеспечит поставку подогретой воды на даче для полива и бытовых нужд
Трубчатые солнечные коллекторы
Трубчатые солнечные коллекторы собираются из отдельных трубок, по которым курсирует вода, газ или пар. Это одна из разновидностей гелиосистем открытого типа. Однако теплоноситель уже намного лучше защищен от внешнего негатива. Особенно в вакуумных установках, устроенных по принципу термосов.
Каждая трубка подключается к системе отдельно, параллельно друг другу. При выходе из строя одной трубки ее легко поменять на новую. Вся конструкция может собираться непосредственно на кровле здания, что значительно облегчает монтаж.
Трубчатый коллектор имеет модульную структуру. Основным элементом является вакуумная трубка, количество трубок варьируется от 18 до 30, что позволяет точно подобрать мощность системы
Веский плюс трубчатых солнечных коллекторов заключается в цилиндрической форме основных элементов, благодаря которым солнечное излучение улавливается круглый световой день без применения дорогостоящих систем слежения за передвижением светила.
Специальное многослойное покрытие создает своего рода оптическую ловушку для солнечных лучей. На схеме частично показана внешняя стенка вакуумной колбы отражающая лучи на стенки внутренней колбы
По конструкции трубок различают перьевые и коаксиальные солнечные коллекторы.
Коаксиальная трубка представляет собой сосуд Дьаюра или всем знакомый термос. Изготовлены из двух колб между которыми откачан воздух. На внутреннюю поверхность внутренней колбы нанесено высокоселективное покрытие эффективно поглощающее солнечную энергию.
При цилиндрической форме трубки солнечные лучи всегда падают перпендикулярно поверхности
Тепловая энергия от внутреннего селективного слоя передается тепловой трубке или внутреннему теплообменнику из алюминиевых пластин. На этом этапе происходят нежелательные теплопотери.
Перьевая трубка представляет собой стеклянный цилиндр со вставленным внутрь перьевым абсорбером.
Свое название система получила от перьевого абсорбера, который плотно обхватывает тепловой канал из теплопроводящего металла
Для хорошей теплоизоляции из трубки откачан воздух. Передача тепла от абсорбера происходит без потерь, поэтому КПД перьевых трубок выше.
По способу передачи тепла есть две системы: прямоточные и с термотрубкой (heat pipe).
Термотрубка представляет собой запаянную емкость с легкоиспаряющейся жидкостью.
Поскольку легкоиспаряющаяся жидкость естественным образом стекает на дно термотрубки, минимальный угол наклона составляет 20°
Внутри термотрубки находится легкоиспаряющаяся жидкость, которая воспринимает тепло от внутренней стенки колбы или от перьевого абсорбера. Под действием температуры жидкость закипает и в виде пара поднимается вверх. После того как тепло отдано теплоносителю отопления или горячего водоснабжения, пар конденсируется в жидкость и стекает вниз.
В качестве легкоиспаряющейся жидкости часто применяется вода при низком давлении.
В прямоточной системе используется U-образная трубка, по которой циркулирует вода или теплоноситель системы отопления.
Одна половина U-образной трубки предназначена для холодного теплоносителя, вторая отводит нагретый. При нагреве теплоноситель расширяется и поступает в накопительный бак, обеспечивая естественную циркуляцию. Как и в случае систем с термотрубкой, минимальный угол наклона должен составлять не менее 20⁰.
При прямоточном подключении давление в системе не может быть высоким, так как внутри колбы технический вакуум
Прямоточные системы более эффективны так как сразу нагревают теплоноситель.
Если системы солнечных коллекторов запланированы к использованию круглый год, то в них закачивается специальные антифризы.
Плюсы и недостатки трубчатых коллекторов
Применение трубчатых солнечных коллекторов имеет ряд достоинств и недостатков. Конструкция трубчатого солнечного коллектора состоит из одинаковых элементов, которые относительно легко заменить.
Достоинства:
низкие теплопотери;
способность работать при температуре до -30⁰С;
эффективная производительность в течение всего светового дня;
хорошая работоспособность в областях с умеренным и холодным климатом;
низкая парусность, обоснованная способностью трубчатых систем пропускать сквозь себя воздушные массы;
возможность производства высокой температуры теплоносителя.
Конструктивно трубчатая конструкция имеет ограниченную апертурную поверхность. Обладает следующими недостатками:
не способна к самоочистке от снега, льда, инея;
высокая стоимость.
Несмотря на первоначально высокую стоимость, трубчатые коллекторы быстрее окупаются. Имеют большой срок эксплуатации.
Трубчатые коллекторы относятся к гелиоустановкам открытого типа, потому не подходят для круглогодичного использования в системах отопления
Плоские закрытые солнечные коллекторы
Плоский коллектор состоит из алюминиевого каркаса, специального поглощающего слоя – абсорбера, прозрачного покрытия, трубопровода и утеплителя.
В качестве абсорбера применяют зачерненную листовую медь, отличающуюся идеальной для создания гелиосистем теплопроводностью. При поглощении солнечной энергии абсорбером происходит передача полученной им солнечной энергии теплоносителю, циркулирующему по примыкающей к абсорберу системе трубок.
С наружной стороны закрытая панель защищена прозрачным покрытием. Оно изготовлено из противоударного закаленного стекла, имеющего полосу пропускания 0,4-1,8мкм. На такой диапазон приходится максимум солнечного излучения. Противоударное стекло служит хорошей защитой от града. С тыльной стороны вся панель надежно утеплена.
Плоские солнечные коллекторы отличаются максимальной производительностью и простой конструкцией. КПД их увеличен за счет применения абсорбера. Они способны улавливать рассеянное и прямое солнечное излучение
В перечне преимуществ закрытых плоских панелей числятся:
простота конструкции;
хорошая производительность в регионах с теплым климатом;
возможность установки под любым углом при наличии приспособлений для изменения угла наклона;
способность самоочищаться от снега и инея;
низкая цена.
Плоские солнечные коллекторы особенно выгодны, если их применение запланировано еще на стадии проектирования. Срок службы у качественных изделий составляет 50 лет.
К недостаткам можно отнести:
высокие теплопотери;
большой вес;
высокая парусность при расположении панелей под углом к горизонту;
ограничения в производительности при перепадах температуры более 40°С.
Сфера применения закрытых коллекторов значительно шире, чем гелиоустановок открытого типа. Летом они способны полностью удовлетворить потребность в горячей воде. В прохладные дни, не включенные коммунальщиками в отопительный период, они могут поработать вместо газовых и электрообогревателей.
Сравнение характеристик солнечных коллекторов
Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.
Значения КПД зависят от качества изготовления солнечного коллектора. Цель графика показать эффективность применения разных систем в зависимости от разницы температуры
При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора.
Для солнечных коллекторов есть несколько важных характеристики:
коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
общая и апертурная площадь;
КПД.
Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.
Способы подключения к системе отопления
Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.
Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.
Схема подключении теплового коллектора
В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:
Летний вариант для горячего водоснабжения
Зимний вариант для отопления и горячего водоснабжения
Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.
Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.
Зимой при отрицательных температурах прямой нагрев воды не возможен. По закрытому контуру циркулирует специальный антифриз, обеспечивая перенос тепла от коллектора к теплообменнику в баке
Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор.
Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.
Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.
Чтобы ночью коллектор не превратился в радиатор охлаждения необходимо прекращать циркуляцию воды принудительно
По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.
Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй — на трубе подачи горячего теплоносителя солнечного коллектора. Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе.
В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.
Схема подключения солнечной батареи
Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.
При снижении мощности электрического тока от солнечной батареи блок АВР (автоматическое включение резерва) обеспечивает подключение потребителей к общей элетросети
С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.
Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.
Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.
Как посчитать необходимую мощность коллектора
При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.
Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.
Компании производители рекомендуют исходить из таких цифр:
обеспечение горячего водоснабжения не более 70%;
обеспечение отопительной системы не более 30%.
Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.
Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией. Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.
Пример расчета:
Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:
S = 1,6 * 0,058 = 0,0928м2
КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:
W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч
Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д. опубликовано econet.ru
econet.ru
Солнечное отопление — баки-аккумуляторы тепла | Как экономить на отоплении
Баки-аккумуляторы тепла — вот спасение в эффективном использовании солнечной энергии, если Вы решили ее использовать, проживая в России. Сегодня делаем небольшой обзор того, какие виды баков существуют и выпускаются. К сожалению, среди них нет наши, российских, производителей баков. Итак, начнем.
Для чего нужны баки-аккумуляторы тепла
Вы решили оборудовать свой дом солнечными батареями. Но энергии солнечных батарей может быть недостаточно в пики разбора тепла, когда повышается расход горячей воды для бытовых нужд, особенно в зимнее время, когда дополнительно к этому нужно подогревать воду для отопления помещения. Пиковое время разбора обычно начинается с 6-7 часов утра и продолжается в течение полутора-двух часов. То же самое происходит и вечером, когда люди возвращаются с работы и вся семья собирается дома. К тому же температура горячей воды для системы отопления отличается от температуры воды для бытовых нужд.
Чтобы решить эту проблему — необходимо использовать баки-аккумуляторы тепла. В обычных баках, змеевик которых нагревается с помощью солнечной энергии, располагается внизу. Горячая вода возле змеевика, постепенно смешивается с холодной водой, лежащей выше. Общая температура получается ниже той, что выдает солнечный коллектор. Для решения этой проблемы фирма Buderus выпустила аккумуляторные баки марки Logasol SL.
Есть и другой вариант решения этой проблемы. Тут уже в работе участвуют два бака. Один бак-аккумулятор тепла должен быть предназначен для горячей воды, идущей на отопление жилья, а второй бак подает горячую воду для бытовых нужд. Оба бака в своей нижней части оборудованы змеевиками, которые подключаются к солнечному коллектору. В верхней части баков расположены змеевики, которые подключены к водогрейным котлам.
Днем, когда солнечного тепла больше всего, автоматика направляет энергию солнца на подогрев воды для бытовых нужд. По мере заполнения бака горячей водой, умная автоматика переключает солнечную энергию на подогрев воды для системы отопления. Если температура горячей воды недостаточна, та же автоматика включает в работу водогрейный котел, из которого при помощи насосов горячая вода поступает в оба бака.
Еще один бак — аккумулятор тепла сделан по другому принципу — бак в баке". В одном баке встроен еще один бак, по своей форме похожий на бутылку, перевернутую вниз горлышком. На узкой части «бака -бутылки» наматывается солнечный змеевик, а сам бак подключается внизу к водопроводной сети и горячее водоснабжение для бытовых нужд происходит из под низа солнечного змеевика. В большом, основном баке, производится подогрев воды водогрейным котлом, и эта вода идет на отопление помещения.
Баки-аккумуляторы тепла других конструкций представляют из себя воронки с трубками, которые устанавливаются в баках непосредственно над солнечными змеевиками. Горячая вода перемещается в верхнюю часть бака, а вот холодная — поступает в нижнюю часть. Вокруг солнечного змеевика располагаются трубки, подключаемые к водогрейному котлу. Такие баки -аккумуляторы изготавливает фирма Citrin Solar.