Eng Ru
Отправить письмо

Электрическая мощность атомной электростанции в России. Аэс мощность


Мощность атомной электростанции по формуле в России

Атомная электростанция по своей сути ничем не отличается от ТЭС кроме как топливом. Для выработки энергии на АЭС используется ядерное топливо природного или искусственного происхождения. К природным можно отнести уран, добытый в глубоких шахтах естественным путем, а искусственным можно считать вторичное сырье, прошедшее специальную обработку. С точки зрения химии искусственным топливом может быть металлическая или карбидная, оксидная или нитритная, а возможно и смешанное.

Атомная электростанция мощностью 1000 имеет КПД 20

Электрическая мощность атомной электростанции — формула

Так как наше государство является одним из шести стран, где добывается львиная доля урана, то и основным топливом для АЭС в России является данный элемент.

Принцип работы

После трагических событий на Чернобыльской АЭС средства массовой информации активно распространялись слухи и внушали в подсознание граждан, будто любая электростанция, производящие энергию на атомном топливе рано или поздно приведет к взрыву и негативное воздействие на людей и окружающую среду. Самая высокая мощность электростанции в России вырабатывается на Балаковской установке. Но многие ученые утверждают, что вероятность взрыва или любого другого вреда от Балаковской АЭС не больше чем от любого промышленного, производственного предприятия. Всё дело в том, что для выработки энергии необходимо тепло, которое получают в результате цепного ряда действия и реакции деление на атомы одного из вариантов ядерного топлива, чаще всего это Уран. Этот процесс считается основным рабочим на всей территории любой АЭС.

Типы реактивных двигателей

Все установки делятся на категории по используемому топливу для выработки энергии, по теплоносителю, замедлители, которая контролирует весь процесс проведения реакции. Для того чтобы показывать высокий уровень результативности, многие реакторы используют облегченную воду в виде Пара которая воздействует двумя разными способами.

Какова электрическая мощность атомной электростанции?

Первый способ это подача теплого пара непосредственно в активной зоне. Уровень температуры такого энергоблока очень высок, в народе его называют кипящим блоком. Второй зависит от графитных материалов, с помощью которых вырабатывается газ, позволяющий отслеживать всю работу системы. На таком типе работы существует Балаковская станция.

История развития и строительства АЭС

Первым вариантом использования ядерного топлива для выработки энергии был осуществлен в лаборатории на территории Айдахо (вначале 1950-х, в США). Прототип выдавал мощность, которой хватало для работы четырёх ламп накаливания по 200Вт каждая. В ходе разработок, такая система смогла обеспечить электричеством уже целое сооружение в несколько этажей. Пройдя сотни исследований и реакций, только в 1955 году такой реактор был подключен к целой сети, прославив город Арко по всему миру, как место расположения первого на свете реактора на ядерной энергии.

Установленная мощность электростанций России

Но в то время, пока американцы проводили опыты и наблюдения, русские запустили на год раньше в 1954 году в городе Обнинске (СССР, Калужская область) атомной электростанции с мощностью в несколько раз большей. Именно с этого момента началось активное развитие производства атомной энергетики россиян. Далее, спустя пару-тройку лет стали возводиться атомные станции как грибы, в течение следующих 10−15 лет советские граждане возвели 17 атомных станций.

Энергетические выработки ядерной системы

Какова электрическая мощность атомной электростанции? На этот вопрос невозможно ответить однозначно, так как все АЭС в России имеют самые различные мощности от 48 мВт и до 4000 мВт. Последняя цифра достигается, в случае если атомная электростанция мощностью 1000 имеет по 4 реактора. Основное их количество работает на водяной системе, именуемой ВВЭР. Такой тип реактора самый распространенный в нашей стране (всего насчитывает порядка 18 единиц), из них с тысячной цифрой — 12 единиц. Не исключается также использование и кипящих систем канального типа. Таких реакторов в РФ всего 15.

Вода применима не только для энергетической или гетерогенной системы работы реактора, но и для водо-водяной или корпусной. Также, с помощью воды реактор во взаимодействии с тепловыми нейронами может быть применим как отражатель и замедлитель, а возможно и теплоноситель нейтронов.

Кстати, атомная электростанция мощностью 1000 имеет (кпд 20), с каждым реактором по 1000 мВт, является наиболее распространенной моделью не только в нашем государстве, но и в мире. Такого типа сооружений 7% в мире от общего количества.

Разновидности дизельных ЭС

Дизельная электростанция с мощностью необходимой под индивидуальные нужды является отличным вариантом для обеспечения электричеством отдаленного селения или конкретного дома от линий электропередач. Нередко сельские жители и владельцы кафе, магазинов предпочитают иметь дома и по необходимости устанавливать дизельный агрегат для выработки света на случай экстренных условий или общего отключения линейного электричества.

Приобретая такое изделие за не малые деньги, необходимо заранее определиться:

  • нужна подстанция передвижная или стационарная;
  • каков КПД (коэффициент полезного действия) необходим для подключения всего самого необходимого;
  • какой расход топлива и достаточно ли он экономно употребляется системой;
  • сверить комплектацию.

Средняя мощность для типичного дома без электроотопления и чрезмерного потребления составляет 5 кВт, а вот если необходимостей гораздо больше — то обеспечит электрическое отопление в зимний период.

Разновидности ЭС и их приоритеты

Установка дизельной станции преимущественно экономична (относительно бензиновой). А вот потребляет сырья для работы почти в 2 раза меньше, но выдает КПД станция, равнозначный по объему, как для дизельной, так и для бензиновой системы.

Наиболее экономичным способом организовать освещение в доме — это установить солнечные электростанции мощностью от 2 кВт и выше. Стоит заметить, что основой работы является яркое солнце, попадающее внутрь. Солнечная система, вполне может обеспечить собственные жилые помещения светом только в случае яркого солнечного дня.

Каковы масштабы выработки электроэнергии в РФ

Российская Федерация уверенно движется вперед по развитию своей энергетики, к тому же это позволяет делать наличие продуктивно работающих урановых шахт. Ввиду активного роста, все энергетические системы объединены в географические группы. В сотрудничестве с европейскими странами действуют 7 ОЭС, одновременно работают 6 энергетических объединений на территории всего государства: Центр, Урал, Волга, Сибирь, Северо-Запад и Юг. В дополнение имеется параллельная структура Востока, электрическая мощность этой электростанции транзитом обеспечивается Сибирским направлением.

Большой расход тепловой энергии КВТ в суткиВ 2016 году на учет принято объединения Севастополя (Крым). На начало 2017 года в нашей стране действует порядка 700 электрических станций с разным видом обеспечения жизнедеятельности. А установленная мощность электростанций России за прошлый год отметку в 236 ГВт.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Генерация электроэнергии

Балаковская АЭС Белоярская АЭС Билибинская АЭС
Калининская АЭС Кольская АЭС
Курская АЭС Ленинградская АЭС
Ленинградская АЭС-2 Нововоронежская АЭС Нововоронежская АЭС-2
Ростовская АЭС Смоленская АЭС Академик Ломоносов Обнинская АЭС
№1 ВВЭР-1000 В эксплуатации г. Балаково, Саратовская обл. 1000 28.12.1985
№2 ВВЭР-1000 В эксплуатации 1000 08.10.1987
№3 ВВЭР-1000 В эксплуатации 1000 24.12.1988
№4 ВВЭР-1000 В эксплуатации 1000 04.11.1993
№1 АМБ-100 Выведен из эксплуатации г. Заречный, Свердловская обл. 100 26.04.1964
№2 АМБ-200 Выведен из эксплуатации 200 29.12.1967
№3 БН-600 В эксплуатации 600 08.04.1980
№4 БН-800 В эксплуатации 800 01.11.2016
№1 ЭГП-6 В эксплуатации г. Билибино, Чукотский АО 12 12.01.1974
№2 ЭГП-6 В эксплуатации 12 30.10.1974
№3 ЭГП-6 В эксплуатации 12 22.12.1975
№4 ЭГП-6 В эксплуатации 12 27.12.1976
№1 ВВЭР-1000 В эксплуатации г. Удомля, Тверская обл. 1000 09.05.1984
№2 ВВЭР-1000 В эксплуатации 1000 11.12.1986
№3 ВВЭР-1000 В эксплуатации 1000 16.12.2004
№4 ВВЭР-1000 В эксплуатации 1000 24.11.2011
№1 ВВЭР-440 В эксплуатации г. Полярные Зори, Мурманская обл. 440 29.06.1973
№2 ВВЭР-440 В эксплуатации 440 08.12.1974
№3 ВВЭР-440 В эксплуатации 440 24.03.1981
№4 ВВЭР-440 В эксплуатации 440 11.10.1984
№1 РБМК-1000 В эксплуатации г. Курчатов, Курская обл. 1000 19.12.1976
№2 РБМК-1000 В эксплуатации 1000 28.01.1979
№3 РБМК-1000 В эксплуатации 1000 17.10.1983
№4 РБМК-1000 В эксплуатации 1000 02.12.1985
№5 РБМК-1000 Строительство остановлено  1000
№1 РБМК-1000 В эксплуатации г. Сосновый Бор, Ленинградская обл. 1000 21.12.1973
№2 РБМК-1000 В эксплуатации 1000 11.07.1975
№3 РБМК-1000 В эксплуатации 1000 07.12.1979
№4 РБМК-1000 В эксплуатации 1000 09.12.1981
№1 ВВЭР-1200 Сооружается г. Сосновый Бор, Ленинградская обл. 1200
№2 ВВЭР-1200 Сооружается 1200
№1 ВВЭР-210 Выведен из эксплуатации г. Нововоронеж, Воронежская обл. 210 30.09.1964
№2 ВВЭР-365 Выведен из эксплуатации 365 27.12.1969
№3 ВВЭР-440 В эксплуатации 440 27.12.1971
№4 ВВЭР-440 В эксплуатации 440 28.12.1972
№5 ВВЭР-1000 В эксплуатации 1000 31.05.1980
№1 ВВЭР-1200 В эксплуатации г. Нововоронеж, Воронежская обл. 1200 27.02.2017
№2 ВВЭР-1200 Сооружается 1200
№1 ВВЭР-1000 В эксплуатации г. Волгодонск, Ростовская обл. 1000 30.03.2001
№2 ВВЭР-1000 В эксплуатации 1000 16.03.2010
№3 ВВЭР-1000 В эксплуатации 1000 27.12.2014
№4 ВВЭР-1000 Сооружается 1000
№1 РБМК-1000 В эксплуатации г. Десногорск, Смоленская обл. 1000 09.12.1982
№2 РБМК-1000 В эксплуатации 1000 31.05.1985
№3 РБМК-1000 В эксплуатации 1000 17.01.1990
№1 КЛТ-40 Сооружается г. Певек, Чукотский автономный округ 35
№2 KLT-40 Сооружается 35
№1 АМ Выведен из эксплуатации г. Обнинск, Калужская обл. 5 26.06.1954

www.rosatom.ru

Мощность и к. п. д. атомной электростанции

Одновременно со строительством тепловых и гидроэлектрических станций используется сила мирного атома. Атомная энергия является наиболее легко транспортабельным источником энергии, и с ее помощью можно по-новому решить задачу географического размещения промышленности и проблему энергоснабжения. Хотя атомная энергетика еще очень молода, но уже имеет в числе действующих сооружений большие атомные энергетические агрегаты. Программа КПСС предусматривает, что по мере удешевления производства атомной энергии развернется строительство атомных электростанций, особенно в районах с недостатком других источников энергии. Мощности атомных электростанций страны в 1970 г. достигнут нескольких миллионов киловатт.  [c.13] В США энергетическая ситуация, с одной стороны, складывается более благоприятно, чем, например, в странах Западной Европы, в связи с наличием достаточно богатой и развитой собственной ресурсной базы. В то же время ведущая роль в основных секторах энергетики монополистического капитала значительно затрудняет проведение разумной энергетической политики, в частности, в области ограничения импорта нефти, в осуществлении целенаправленных мероприятий по экономии энергии и др. Следует также учитывать серьезные трудности с развитием атомной энергетики в стране в связи с противодействием общественности. Так, по данным XI конгресса МИРЭК, к 2000 г. мощность атомных электростанций в США составит 250—260 млн. кВт при потенциальных возможностях обеспечить 500 млн. кВт.  [c.123]

Установленная мощность атомных электростанций в нашей стране к началу 1978 г. превысила 7,0 млн. кВт. Атомными электростанциями было выработано 60,8 млрд. кВт-ч, что позволило сократить расход органического топлива на электростанциях примерно на 20 млн. т условного топлива.  [c.170]

Наращивание единичной мощности атомных электростанций [68] обусловливает повышение температуры графитовых кладок. В связи с этим возникает необходимость в обеспечении защиты графита от ускоренного окисления в расчете на длительный период эксплуатации.  [c.204]

Рис. 9-1. Ввод мощностей атомных электростанций с реакторами различного типа в капиталистических странах с 1969 по 1974 г. Рис. 9-1. Ввод мощностей атомных электростанций с реакторами различного типа в капиталистических странах с 1969 по 1974 г.
Представляет интерес рассмотреть особенности развития энергетики США и Франции, занимающих первые два места в мире по масштабам развития мощностей атомных электростанций, а также стран Западной Европы.  [c.35]

Так как Цр 1, то электрическая или полезная мощность атомной электростанции зависит от произведения двух величин тепловой мощности реактора и к. п. д. i) gp энергетической части  [c.398]

По мере увеличения мощности атомных электростанций стоимость 1 квт-ч электроэнергии будет ниже, чем на тепловых.  [c.328]

Строительство крупных АЭС ведется преимущественно в Евро-пеской части СССР, в районах удаленных от источников топлива. Установленная мощность атомных электростанций к концу 1975 г. равнялась 4,7 млн. кВт, или 2,2% мощности всех электростанций Советского Союза. За 1971—1975 гг. на атомных электростанциях было выработано 60,8 млрд. кВт ч электроэнергии.  [c.208]

Особенности экономики атомных электростанций заключаются в том, что первоначальная стоимость их (оборудование, горючее, строительство) пока выше стоимости мощных паротурбинных электростанций. Укрупнение мощности атомных электростанций и снижение стоимости горючего, в особенности при его воспроизводстве, может уменьшить эту разницу в стоимости, а малый расход горючего позволяет снизить себестоимость электроэнергии на АЭС до уровня ТЭС на органическом топливе.  [c.381]

Ниже в таблице 7.12 приведены мощности атомных электростанций в различных странах мира и прогнозные оценки развития атомной энергии в этих странах до 2010 года.  [c.375]

Ядерной энергией называется энергия, выделяющаяся при цепных ядерных реакциях деления тяжелых ядер ). В мирных целях ядерная энергия используется в атомных электростанциях. Мощность атомных электростанций определяется мощностью ядерных реакторов. Реакторы достаточной мощности служат источниками энергии в двигателях на судах и подводных лодках. Энергия атомных электростанций может быть использована, например, для опреснения морской воды. Расчеты показывают, что стоимость опресненной воды при этом будет столь низкой, что ее можно будет использовать для орошения засушливых земель.  [c.494]

Менее десяти лет спустя после взрывов американских атомных бомб над Японией в СССР бьша пущена первая в мире атомная электростанция, а затем работы по мирному использованию атомной энергии развернулись в большинстве ведущих стран. Ко времени нефтяного кризиса бьши успешно (как казалось тогда) решены не только физические, но и технические проблемы атомной энергетики, и в производстве электроэнергии она уже обеспечивала коммерческую эффективность в районах относительно дорогого топлива. В середине 70-х годов мощность атомных электростанций (АЭС) превысила 60 ГВт, а к началу 80-х годов еще почти удвоилась.  [c.63]

Важнейшим элементом атомной электростанции является реактор, или атомный котел. Тепловой мощностью реактора называют полное количество теплоты, которое выделяется в нем в течение 1 ч. Обычно эту мощность выражают в киловаттах.  [c.58]

Первая в мире атомная электростанция, построенная в СССР, превращает атомную энергию, выделяющуюся при реакциях цепного деления ядер урана, н тепловую, а затем в электрическую энергию. Тепловая мощность реактора атомной электростанции равна 30 000 кВт, а электрическая мощность электростанции составляет при этом 5000 кВт.  [c.59]

Стоимость атомной электроэнергии пока превосходит стоимость электроэнергии, получаемой на тепловых электростанциях. Однако экономический расчет, основанный на опыте эксплуатации атомных электростанций, показывает, что уже через 5—10 лет эти стоимости должны сравняться, а затем электроэнергия, вырабатываемая на АЭС, станет дешевле тепловой электроэнергии. Одним из условий экономической выгодности АЭС является большая мощность. Поэтому в дальнейшем будут строиться и уже строятся более мощные, чем действующие в настоящее время, АЭС. В ближайшие годы электрическая мощность АЭС будет приближаться к цифре 500 ООО кет. Примером является строящийся на Нововоронежской АЭС второй блок с электрической мощностью 365 ООО кет.  [c.405]

Наконец, немаловажным обстоятельством является то, что практически не существует ограничений для сооружения АЭС любой мощности, причем атомные электростанции гораздо меньше по размерам, чем электростанции другого вида такой же мощности.  [c.406]

Кроме создания мощных и сверхмощных АЭС в настоящее время большое внимание уделяется разработке небольших АЭС, удобных для эксплуатации в специфических условиях (например, в отдаленных районах). Так, например, в Советском Союзе построена транспортабельная атомная электростанция (ТЭС-3) электрической мощностью 1500 кет, которая смонтирована на четырех гусеничных транспортерах. ТЭС-3 имеет реактор водоводяного типа с двумя контурами. Он может работать без перезарядки более года. Общий вес ТЭС-3 (вместе с транспортерами) около 350 т, т. е. ее можно перевозить на большие расстояния по железной дороге. Кроме того, она может двигаться самоходом в любой труднодоступный район страны.  [c.407]

Оптимальный режим. Оптимальный режим работы ядерной энергетической установки зависит от конкретных условий ее использования, а также от экономических факторов. В отличие от тепловых электростанций топливная составляющая стоимости вырабатываемой электроэнергии на атомных электростанциях значительно меньше остальных составляющих (в частности, существенно меньше капитальные затраты на единицу установленной мощности). Поэтому атомная электростанция будет наиболее экономичной в том случае, если ее мощность будет максимальной, так как при этом капитальные затраты на единицу установленной мощности будут наименьшими, а стоимость вырабатываемой электроэнергии минимальной. Для других ядерных энергетических установок требование максимальной мощности имеет еще большее значение. Таким образом, можно считать, что оптимальные условия работы ядерной энергетической установки характеризуются наибольшим значением отношения полезной работы, производимой ядерной энергетической установкой, к капитальным затратам, т. е. максимальной мощностью установки.  [c.592]

Атомные электростанции, работающие на цепной реакции деления, уже сейчас вырабатывают энергию, стоимость которой сравнима со стоимостью энергии тепловых электростанций, а иногда и ниже. Быстрый технический прогресс в области строительства АЭС позволяет предсказать, что в ближайшее время атомная электроэнергия станет дешевле тепловой. И если в Англии АЭС строятся пока в районах, удаленных от других источников электроэнергии, то в США уже строят АЭС даже в непосредственной близости от угольных шахт. В ведуш,их странах мира атомная энергетика уже поставляет заметную (хотя и далеко не основную) часть вырабатываемой электроэнергии. Так, в странах Европейского экономического сообщества мощность АЭС за 1975 г. составила 18-10 Вт = = 18 ГВт, а в США согласно прогнозам мощность АЭС к 1985 г. составит 300 ГВт. К концу нашего столетия на АЭС будет вырабатываться около 45% всей электроэнергии.  [c.596]

Из этих природных энергетических ресурсов по экономическим соображениям и в соответствии с современным состоянием техники более других используется химическая энергия топлива — углей, нефти, торфа, сланцев н энергия движущейся воды (так называемый белый уголь). Ведутся интенсивные научные работы по использованию новых видов энергии — атомной и термоядерной. Построен ряд атомных электростанций . Их общая электрическая мощность в мире составляет к настоящему времени около 10 ООО ООО/сет.  [c.9]

Развитие п совершенствование оборудования АЭС позволило повысить их КПД до 35 %> а единичную мощность энергоблоков довести до 1000 и более МВт. Себестоимость производимой на АЭС электроэнергии соизмерима с себестоимостью электроэнергии, отпускаемой ТЭС, использующими органическое топливо. Например, себестоимость электроэнергии на Ленинградской атомной электростанции мощностью 4000. МВт составляет примерно 0,5 коп/(кВт-ч).  [c.220]

Источником теплоты является топливо, используемое в настоящее время во все возрастающих количествах. При горении органического топлива протекают химические реакции соединения горючих элементов топлива (углерода С, водорода Н и серы S) с окислителем — главным образом кислородом воздуха. Реакции горения протекают с выделением тепла при образовании более стойких соединений — СО2, SO2 и Н2О. Эти реакции связаны с изменением электронных оболочек атомов и не касаются ядер, так как при химических реакциях ядра реагирующих атомов остаются нетронутыми и целиком переходят в молекулы новых соединений. В 1954 г., после пуска в СССР первой в мире промышленной атомной электростанции мощностью 5 Мет, наступил век промышленного использования ядерного топлива, т. е. тепла, выделяющегося при реакциях распада атомных ядер некоторых изотопов тяжелых элементов и Ри . Вследствие ограниченности ресурсов топлива в Европейской части СССР, а также в районах, удаленных от месторождений органического топлива, в СССР строят мощные атомные электрические станции, и тем не менее основным источником тепла остается органическое топливо, о котором ниже приведены краткие сведения. В качестве топлива используют различные сложные органические соединения в твердом, жидком и газообразном состоянии. В табл. 16-1 приведена общепринятая классификация топлива по его происхождению и агрегатному состоянию.  [c.206]

В девятом пятилетий в СССР будут введены в действие атомные электростанции общей мощностью 6—8 Гвт с установкой мощных реакторов.  [c.468]

Преимущества атомных (правильнее было бы ядерпых ) электростанций по сравнению со всеми другими заключаются главным образом в независимости от источников топлива и отсутствии таких собственных нужд, как очистные сооружения, площади для сбора золы, шлака и т. д. Немаловажное значение имеет огромная единичная мощность атомных реакторов —  [c.161]

За десять лет со времени ввода в эксплуатацию Обнинской атомной электростанции в различных районах мира построено или находится в стадии сооружения уже более 60 атомных электростанций промышленного значения. В Советском Союзе в 1958—1964 гг. введены в эксплуатацию Сибирская АЭС, Белоярская АЭС имени И. В. Курчатова на Урале электрической мощностью 100 тыс. кет и Ново-Воронежская АЭС электрической мощностью первой очереди 210 тыс. кет [9].  [c.86]

В 1954 г. в подмосковном городе Обнинске была закончена постройка первой в мире советской атомной электростанции (АЭС) промышленного типа, электрической мощностью 5 тыс. кет (рис. 50).  [c.173]

Несколько позднее на Урале началось сооружение Белоярской атомной электростанции имени И. В. Курчатова. Турбогенератор ее первого блока электрической мощностью также 100 тыс. кет дал ток в электросеть Урал-энерго 26 апреля 1964 г.  [c.177]

Вице-президент компании Форд, Бэконд энд Девис Жерар К. Гембес заявил в 1972 г., что к 1 января 1972 г. США отставали по мощности атомных электростанций от графика на 15 ООО МВт.  [c.259]

Мощности атомных электростанций в мире. Отправной точкой исследования послужил выведенный в варианте L4 МИРЭК региональный суммарный спрос на электроэнергию (табл. 1). Однако оценка фактически возможной доли атомной энергии в покрытии потребностей в электроэнергии была сделана авторами независимо. С этой целью было принято предположение, что в период до 2020 г. атомная энергия в крупных масштабах будет использоваться только для производства электроэнергии. И хотя авторы твердо убеждены в том, что в долгосрочном плане атомная энергия будет широко применяться и для промышленного теплоонабжения, сейчас представляется преждевременным давать умозрительные заключения о степени пронинновения на мировой рынок технологий промышленного теплоснабжения от ядерных 94  [c.94]

Включая атомные и прочие установки (электрические мощности атомных электростанций в 1967 г. Соединенное Ко-ролевство — 3 557 Мет, Франция — 906 Мет, ФРГ —315 Мет и США —2 887 Мет).  [c.93]

Работа атомных электростанций существенно отличается от условий работы тепловых электростанций, так как мощность реактора может меняться в весьма широких пределах, и ограничивается она только условиями отвода теплоты от тепловыделяющих элементов. Тесная связь работы реактора и паросилового контура определяет выбор всех основных параметров атолпюй электростанции. Технико-экономнческнй и терлюдипалн1ческп1 1 анализ циклов позволяет выбрать наиболее целесообразную схему атомной электростанции.  [c.322]

Общая загруженность реактора составляет 550 кг обогащенного урана. Это обеспечивает работу электростанции в течение 100 суток. Расход ядерного горючего — изотопа — составляет 30 г/сутки. Средний поток нейтронов в активной зоне равняется 5 -10 нейтронов на 1 см в сек. Полезная электрическая мощность электростанции 5 тыс. кет., при номинальной тепловой мощности 30тыс. кет. Таким образом, к. п. д. Первой атомной электростанции равен 16,7%.  [c.316]

Всего 10 лет назад в г. Обнинске была пущена первая в мире промышленная атомная электростанция (АЭС) мощностью 5000 кет, а сейчас в разных странах уже работают 35 АЭС и строятся еще 30, причем электрические мощности некоторых из них измеряются сотнями тысяч киловатт. Только в одном Советском Союзе мощность действующих АЭС достигла 900 ООО кет. В качестве примеров можно привести Белоярскую АЭС им. И. В. Курчатова, первый блок которой имеет электрическую мощность ilOOOOO кет, и Нововоронежскую АЭС, первый блок которой имеет электрическую мощность 210 000 кет.  [c.405]

В Советском Союзе создана и другая не менее интересная конструкция малогабаритной АЭС мощностью 750 кет, получившая название АРБУС (атомная реакторная блочная установка). АРБУС — это первая атомная электростанция, в реакторе которой используется органический теплоноситель. Главным преимуществом органического теплоносителя является его неподверженность активации при воздействии излучения. Это существенно упрощает проблему биологической защиты первого контура. Кроме того, конструкция первого контура не требует специальных материалов типа нержавеющей стали и не должна выдерживать очень больших давлений. АРБУС состоит из 19 блоков, каждый из которых весит не более 20 г (общий вес станции 360 г), т. е. практически может быть доставлен в любое место.  [c.407]

В 1964—1966 гг. на электростанциях СССР было введено в эксплуатацию более чем на 30 млн. тт новых энергомощностей. За каждые 60 дней выполнялось по одному плану ГОЭЛРО. Советский Союз не только превзошел США по темпам развития электроэнергетики, но и вплотную подошел к абсолютным показателям ввода новых мощностей. При этом приняты в эксплуатацию энергоблоки мощностью по 300 тыс. кет на Конаковской, Приднепровской и Черепетской ГРЭС. На ряде крупных электростанций введено 13 энергетических блоков мощностью по 200 тыс. кет. Введены в эксплуатацию агрегаты Белоярской и Ново-Воронежской атомных электростанций. Для передачи мощности введенных в действие электростанций построено более 25 тыс. км линий электропередачи и введено в действие электрических подстанций общей трансформаторной мощностью более 13 млн. кет.  [c.10]

Политика сохранения мира между народами, последовательно и решительно проводимая Коммунистической партией и Советским правительством, обусловила наряду с выполнением неотложных оборонных задач широкое развертывание в нашей стране работ по мирному использованию атомной энергии. В 1954 г. в СССР вступила в строй действующих предприятий первая в мире атомная электростанция мощностью 5000 кет. В 1957 г. сошло со стапелей первое в мире надводное атомное судно торгового флота — советский ледокол Ленин . По инициативе Советского Союза — докладом акад. И. В. Курчатова перед учеными английского атомного центра в Харуэлле 25 апреля 1956 г.— бы.л начат поддержанный затем другими странами обмен информацией в области исследований по регулируемым термоядерным реакциям.  [c.149]

За последнее время отчетливо определились исключительные по своей практической значимости перспективы использования атомной энергии для развития энергетики. К концу 1968 г. в разных странах уже находились в эксплуатации десятки атомных электростанций об-1цей установленной электрической мощностью свыше 13 млн. кет (в том числе  [c.149]

Доклад об ее строительстве и первых итогах эксплуатационного освоения, представленный Советским Союзом в августе 1955 г. I Международной конференции по мирному использованию атомной энергии и показавший реальную возможность эффективного производственного применения новых энергетических ресурсов, привлек пристальное внимание специалистов. В крупнейших странах мира была ускорена постройка опытно-промышленных атомных электростанций. Так, в 1956 г. введена в действие атомная электростанция в Колдер-Холле (Англия) мощностью 92 тыс. кет, к концу 1957 г. начала выработку электроэнергии атомная электростанция в Шип-пингпорте (США) мощностью 60 тыс. кет, а в 1958г. завершено строительство атомной электростанции в Маркуле (Франция) мощностью 40 тыс. кет. С учетом результатов эксплуатации Обнинской АЭС и выполненных на ней экспериментальных исследований осуществлялось последующее проектирование крупных советских атомных электростанций.  [c.176]

Проектные решения, принимавшиеся для первой очереди строительства Ново-Воронежской АЭС, выбирались с некоторой осторожностью и с дополнительными запасами прочности, так как проектировщики не располагали еще достаточным опытом строительства крупных промышленных атомных электростанций. При сооружении первого блока станции предусматривалась экспериментальная проверка действия водо-водяного энергетического реактора большой мощности в эксплуатационных условиях. Применительно к полученным опытным данным и с учетом выявленных в ходе эксплуатации недостатков на строительстве второго блока той же АЭС сооружается более совершенный по конструкции и более мощный водо-водяной реактор. Сохранив для него те же размеры корпуса, какие были приняты для реактора первого блока, проектировщики увеличили давление циркулирующей в нем воды до 120 атм и довели число тепловыделяющих элементов до 127 в каждой кассете, предусмотрев получение полезной электрической мощности в 365 тыс. квт .  [c.178]

Атомные электростанции с водяным теплоносителем, общая мощность которых в СССР превысила в 1967 г. 1 млн. кет и по которым накоплен большой опыт строительства и эксплуатации, будут строиться в нашей стране и в будущем, причем по мере совершенствования конструкций и увеличения мощности реакторов их экономические показатели будут последовательно улучшаться. Так, разработан проект атомной электростанции электрической мощностью 880 тыс. кет с двумя водо-водяными реакторами ВВЭР, аналогичными реакторам Ново-Воронежской АЭС, размещенными в одном реакторном зале и отличающимися уменьшенным числом трубопроводов и соответственно увеличенной мощностью циркуляционных насосов первичного контура. Проект этот предусматривает улучшенную компоновку станционных помещений, уменьшение потребности в технологическом оборудовании и пропорциональное снижение строительных и эксплуатационных расходов. Но наряду с графито-водяными и водо-водяными реакторами большой электрической мощности внимание исследователей и инженеров все больше привлекают энергетические реакторы других перспективных типов.  [c.178]

Реактор этот тепловой мощностью 1 млн. кет и номинальной электрической мощностью 350 тыс. кет будет работать на ядерном горючем из спеченной смеси двуокиси нлутония (81%) и урана-238 (19%), помещенной в стальных трубках тепловыделяющих элементов. Его активная зона имеет диаметр 1,5 л и высоту 1,06 м. Теплоносителем в первичном контуре принят жидкий (расплавленный) натрий с температурой на входе в реактор 300° С и на выходе 500° С. Пар, образующийся в парогенераторе вторичного контура, поступает к рабочим агрегатам с температурой 430° С под давлением 50 атм Постройка реактора предпринята на атомной электростанции, сооружаемой в г.Шевченко (на полуостровеМангышлак в восточной части Каспийского моря) и предназначенной для выполнения двух функций выработки 150 тыс. кет электроэнергии и опреснения морской воды для промышленных и бытовых нужд в количестве до 150 тыс. в сутки. Такое комплексное использование ядерной энергии снижает строительные и эксплуатационные затраты на производство электроэнергии и опреснение воды и будет способствовать решению проблемы освоения засушливых и безводных земель — одной из актуальных народнохозяйственных проблем.  [c.179]

В 1963 г. в опытную эксплуатацию вступила атомная электростанция Арбус (арктическая блочная установка). Она составлена из 19 отдельно перевозимых блоков, вес каждого из которых не превышает 20 т, обладает тепловой мощностью 5000 кет и расходует 2 кг ядерного горючего в год (в дизельной установке той же мощности грдовой расход топлива составляет 1500 т). Как и ТЭС-3, она выполнена по двухконтурной схеме, но отличается применением органического замедлителя и теплоносителя — гидростаби-лизированного газойля.  [c.181]

mash-xxl.info

Самые мощные АЭС в мире, крупнейшие атомные электростанции

После ужасных событий, произошедших в Японии, атомные электростанции стали привлекать к себе большое внимание мировой общественности. Споры насчет безопасности АЭС для окружающей среды и жизни человека не угасают и сегодня. Но такие электростанции требуют просто мизерное количество топлива, что является их несомненным преимуществом перед остальными видами подобных сооружений.

В мире существует более 400 АЭС, а те, о которых пойдет речь далее – самые мощные из них.

Для сравнения: производительность печально известной Чернобыльской АЭС составляла 4 000 МВт.

10. АЭС Хамаока (Япония) – 3617 МВт

АЭС Хамаока (Япония) Открывает наш рейтинг станция, расположенная на японском острове Хонсю. После катастрофы на Фукусиме японцы подошли к строительству новой АЭС с высоким уровнем профессионализма и крайней осторожностью: сейчас в эксплуатации находятся всего три реактора из пяти. Два реактора были остановлены по причине технических работ по усовершенствованию системы безопасности и защиты от природных катаклизмов.

9. Балаковская АЭС (Россия) – 4000 МВт

Балаковская АЭС самая крупная и мощная в РоссииБалаковская по праву считается крупнейшей АЭС России и самой мощной в своем роде электростанцией. Именно с нее начинались все исследования ядерного топлива в нашей стране. Все новейшие разработки испытывались здесь, и только после этого получали разрешение на дальнейшее использование на других российских и зарубежных АЭС. Балаковская атомная электростанция вырабатывает пятую часть от всех АЭС России.

8. АЭС Palo Verde (США) – 4174 МВт

АЭС Palo Verde (США)Это самая мощная АЭС в Соединенных Штатах. Но на сегодняшний день мощность в 4174 МВт – не самый высокий показатель, поэтому данная АЭС занимает в нашем рейтинге только восьмую строчку. Но Palo Verde по-своему уникальна: это единственная АЭС в мире, не расположенная на берегу большого водоема. Концепция работы реакторов заключается в охлаждении путем использования сточных вод близлежащих населенных пунктов. Однако нарушение традиций конструирования АЭС американскими инженерами вызывает множество вопросов к безопасности такой электростанции.

7. АЭС Охи (Япония) – 4494 МВт

АЭС Охи (Япония) Еще одна представительница японской атомной промышленности. В резерве этой АЭС целых четыре работающих реактора общей мощностью в 4494 МВт. Как ни парадоксально, это самая безопасная АЭС в Японии. За всю свою историю на Охи не произошло ни одной внештатной ситуации, связанной с безопасностью. Интересный факт: после «заморозки» работ всех АЭС и целой череды технических проверок по всей стране в связи с катастрофой на Фукусиме, атомная электростанция Охи первой возобновила работу.

6. АЭС Палюэль (Франция) – 5320 МВт

АЭС Палюэль (Франция)Хоть эта «француженка» и расположена на берегу водоема, как и другие АЭС, все же она имеет одну характерную особенность. Недалеко от АЭС расположена коммуна «Палюэль» (вопрос о том, в честь чего станция получила свое название, тут же отпадает). Дело в том, что все жители этой коммуны по совместительству являются работниками АЭС (их насчитывается около 1200 человек). Этакий коммунистический подход к проблеме занятости населения.

5. АЭС Гравелин (Франция) – 5460 МВт

АЭС Гравелин (Франция)«Гравелин» является самой мощной атомной электростанцией во Франции. Располагается она на берегу Северного моря, воды которого используются в охлаждении ядерных реакторов. Франция активно развивает свой научный и технический потенциал в ядерной сфере и имеет на своей территории большое число АЭС, которые в совокупности имеют в своем составе более пятидесяти ядерных реакторов.

4. АЭС Хануль (Южная Корея) – 5900 МВт

АЭС Хануль (Южная Корея)Хануль – не единственная АЭС на территории Южной Кореи с показателем мощности в 5900 МВт: в корейском «арсенале» имеется также станция Ханбит. Возникает вопрос, почему же именно Хануль занимает четвертую строчку нашего рейтинга? Дело в том, что в ближайшие 5 лет ведущие корейские специалисты в области атомной энергетики планируют «разогнать» Хануль до рекордных 8700 МВт. Возможно, скоро наш рейтинг возглавит новый лидер.

3. Запорожская АЭС (Украина) – 6000 МВт

Запорожская АЭС (Украина)Начав свою работу в 1993 году, Запорожская АЭС стала самой мощной станцией на всем бывшем советском пространстве. Сегодня она является третьей в мире и первой по Европе АЭС по критерию мощности.

Интересный факт: Запорожская атомная электростанция была построена в непосредственной близости к городу Энергодару. С началом строительства в город хлынул мощный поток инвестиций, да и в целом регион получил экономический толчок, позволивший развить социальную и производственную сферы на высоком уровне.

2. АЭС Брюс (Канада) – 6232 МВт

АЭС Брюс (Канада)Пожалуй, самая мощная и самая крупная по своим размерам атомная электростанция во всей Канаде и на всем Североамериканском континенте. АЭС Брюс отличается масштабностью занимаемой площади – ни много ни мало 932 гектара земли. В ее арсенале аж 8 мощнейших ядерных реакторов, что и выводит «Брюс» на второе место нашего рейтинга. До начала 2000-х годов ни одна АЭС не могла обогнать по своим показателям Запорожскую АЭС, но канадским инженерам это удалось. К еще одной особенности станции относят ее «гедоничное» расположение на берегу живописного озера Гурон.

1. АЭС Касивадзаки-Карива (Япония) – 8212 МВт

Касивадзаки-Карива самая мощная АЭС в миреДаже землетрясение 2007-го года, после которого мощность в ядерных ректорах пришлось понизить, не помешало этому энергетическому гиганту сохранять мировое лидерство. Максимальная мощность АЭС – 8212 МВт, сейчас ее потенциал реализован лишь на 7965 МВт. Сегодня это самая мощная АЭС в мире.

Несмотря на неоднозначное отношение к атомным электростанциям (что вполне обосновано многими объективными причинами) никто не будет спорить с тем, что это самое экологичное производство из всех ныне существующих: отходы от деятельности АЭС практически отсутствуют. В свою очередь, ответственность за безопасность лежит на плечах инженеров. Грамотность при конструировании и строительстве – и у атомной промышленности не останется врагов.

basetop.ru

Атомная электростанция (АЭС)

Значение слова "Атомная электростанция (АЭС)" в Большой Советской Энциклопедии

Атомная электростанция (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор
Рис. 2. Принципиальная схема АЭС: 1 - ядерный реактор; 2 - циркуляционный насос; 3 - теплообменник; 4 - турбина; 5 - генератор электрического тока.
(см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основном 233U, 235U. 239Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

  Первая в мире АЭС опытно-промышленного назначения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

  В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

  В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт).

  За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

  Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяющееся в активной зоне реактора 1, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

  Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

  Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

  В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

  При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

  К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

  В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

  Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

  При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

  Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

  Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

  При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

  В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

  Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

  В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

  В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235U, но и сырьевые материалы 238U и 232Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

  Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

  На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

 

  Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.-Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.

  С. П. Кузнецов.

Рис. 2. Принципиальная схема АЭС: 1 - ядерный реактор; 2 - циркуляционный насос; 3 - теплообменник; 4 - турбина; 5 - генератор электрического тока.Рис. 2. Принципиальная схема АЭС: 1 - ядерный реактор; 2 - циркуляционный насос; 3 - теплообменник; 4 - турбина; 5 - генератор электрического тока.

Рис. 1. Атомная электростанция АН СССР. в г. Обнинске Калужской обл.Рис. 1. Атомная электростанция АН СССР. в г. Обнинске Калужской обл.

Расположение основных объектов станции: 1 - главный корпус; 2 - служебный корпус; 3 - химводоочистка; 4 - газгольдерная; 5 - спецводоочистка.Расположение основных объектов станции: 1 - главный корпус; 2 - служебный корпус; 3 - химводоочистка; 4 - газгольдерная; 5 - спецводоочистка.

Рис. 3. Принципиальная тепловая схема АЭС с ядерным перегревом пара (2-й блок Белоярской АЭС): 1 - реактор; 2 - испарительный канал; 3 - пароперегревательный канал; 4 - барабан-сепаратор; 5 - циркуляционный насос; 6 - деаэратор; 7 - турбина; 8 - конденсатор; 9 - конденсатный насос; 10 - регенеративный подогреватель низкого давления; 11 - питательный насос; 12 - регенеративные подогреватели высокого давления; 13 - генератор электрического тока.Рис. 3. Принципиальная тепловая схема АЭС с ядерным перегревом пара (2-й блок Белоярской АЭС): 1 - реактор; 2 - испарительный канал; 3 - пароперегревательный канал; 4 - барабан-сепаратор; 5 - циркуляционный насос; 6 - деаэратор; 7 - турбина; 8 - конденсатор; 9 - конденсатный насос; 10 - регенеративный подогреватель низкого давления; 11 - питательный насос; 12 - регенеративные подогреватели высокого давления; 13 - генератор электрического тока.

Разрез главного корпуса станции: 1 - реактор;2 - запасные ТВЭЛы; 3 - сепаратор; 4 - деаэратор; 5 - пульт управления; 6 - машинный зал; 7 - мостовой кран; 8 - главный циркуляционный насос; 9 - водоподогреватель; 10 - кран перегрузки ТВЭЛов; 11 - вытяжная вентиляция; 12 - воздухозаборняк приточной вентиляции.Разрез главного корпуса станции: 1 - реактор;2 - запасные ТВЭЛы; 3 - сепаратор; 4 - деаэратор; 5 - пульт управления; 6 - машинный зал; 7 - мостовой кран; 8 - главный циркуляционный насос; 9 - водоподогреватель; 10 - кран перегрузки ТВЭЛов; 11 - вытяжная вентиляция; 12 - воздухозаборняк приточной вентиляции.

Статья про слово "Атомная электростанция (АЭС)" в Большой Советской Энциклопедии была прочитана 47919 раз

bse.sci-lib.com


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта