Разбираемся в многообразии видов солнечных панелей. Кремниевые солнечные батареиКакие бывают типы, виды солнечных батарей и панелейСодержание:
Сегодня различные типы солнечных панелей набирают всё больше и больше популярности. И не зря, ведь помимо того, что население планеты Земля начинает задумываться об экологических источниках энергии, солнечные панели ещё и становятся всё более и более энергоэффективными. Конечно, самое основное что входит в любую солнечную систему энергообеспечения — это панели или батареи, поэтому важно разбираться что к чему. Конечно, система намного сложнее и в неё входят всякие стабилизаторы, инверторы и прочее, однако это не основной момент. На данный момент типы солнечных батарей составляют такое разнообразие и их такое великое множество, что каждый потребитель желающий обзавестись подобным источником энергии задаётся вопросом: “А как выбрать солнечную батарею? Какие есть солнечные батареи?” Об этом наша статья: мы постараемся особо не влезая в дебри технологий разобраться на какие типы делятся батареи или панели, питающиеся от энергии солнца, ведь рынок пестрит выгодными предложениями и желаем продать Вам ту или иную систему. В первую очередь различаются солнечные модули материалами, принципом работы и принципом производства. Так давайте же разбираться что и почему. Кремниевые солнечные батареиТакой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница? Монокристаллические солнечные батареиДля производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель. Поликристаллические солнечные панелиДля того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность. Для того ещё лучше разобраться в различиях между первым и вторым типом батарей, взгляните на таблицу: Сравнительная таблица монокристаллических и поликристаллических солнечных панелей:
Аморфные солнечные панели или батареи из аморфного кремния
Плёночные солнечные батареиПлёночные панели — это следующий шаг развития источников питания на солнечной энергии. Шаг, который продиктован в первую очередь необходимостью снижения цен на производство батарей и стремлением к повышению энергоэффективности. Плёночные батареи на основе теллурида кадмия
Плёночные панели на основе селенида меди-индияТип солнечных батарей из таких материалов используют медь, индий, селен, как полупроводник. Кстати, индий — это основной, очень необходимый материал, который используется в производстве жидкокристаллических мониторов. Поэтому, оставляя такой материал для этих целей, часто используют галлий, который замещает индий по своим функциям. КПД здесь выше, чем у батарей из теллурида кадмия — около 20%. Полимерные солнечные панелиВид солнечных батарей, который не так давно был изобретён и начал производиться. Здесь проводниками выступают полифенилен, фуреллены, фталоцианин меди. При этом такая плёнка очень тонкая — около 100 нм. Несмотря на низкий уровень КПД, около 5%, всё же можно выделить причины, почему стоит выбирать этот тип солнечных батарей: Доступность материалов, дешевизна, отсутствие вредных выделений в атмосферу. Так что такие батареи отлично подходят потребителям, ведь обладают отличной эластичностью и экологичностью. Сравнительная таблица: виды солнечных батарей и уровень КПДНапоследок, хотелось бы сравнить коэффициенты полезного действия каждого типа солнечных батарей, но не забывайте, что помимо КПД есть много других факторов, которые могут охарактеризовать каждый тип как с хорошей, так и плохой стороны.
Что такое концентрационные солнечные модули?Концентрационные модули помогают более эффективно использовать площадь солнечных панелей, получая экономию площади почти в два раза. Однако такая система осложнена необходимостью инсталляции механического модуля, который бы поворачивал линзы в сторону солнца. Особенно такие установки необходимы в местах, где прямое излучение солнца есть в достатке на протяжении всего года. Фотосенсибилизированные батареиФотосенсибилизирующий краситель опять-таки помогает оптимизировать приём солнечной энергии, но при этом солнечные панели работающие по этому принципу, скорее напоминают процесс фотосинтеза в природе. Впрочем, пока что это только концептуальная идея, не имеющая воплощения. Кто знает, может пока Вы соберётесь покупать солнечные панели, она уже будут вовсю продаваться на рынке. Ну что, разобрались какие бывают солнечные батареи? Надеемся, эта статья поможет Вам определиться, какую батарею поставить для дома, но если после прочтения у Вас возникло ещё больше вопросов — милости просим на наш сайт, где Вы найдёте всю информацию про солнечные батареи и источники питания, работающие на солнечной энергии а также про различные виды солнечных панелей. www.solnpanels.com Кремниевые солнечные батареи из аморфного кремнияКремниевые солнечные батареи, основу которых составляет аморфный кремний, являются результатом технологического совершенствования методик изготовления солнечных элементов. Это, преимущественно, тонкопленочные модели. Если сравнивать их с «классическими» на основе кристаллов, технологии их изготовления имеют существенные отличия. Аморфный кремний, вещество, которому можно придать любую желаемую форму — парообразующий гидрид. Его горячие пары остаются на подложке, а образования обычных кристаллов не происходит. Это обеспечивает резкое снижение производственных затрат. Аморфный и кристаллический кремний: главное отличиеАморфные солнечные панели обладают существенным отличием от моно- и поликристаллических. Оно заключается в том, что прямой поток света, исходящий от Солнца, таким батареям не требуется. Они прекрасно генерируют рассеянный свет, исходящий от светила, которое закрыто облаками. Благодаря гибкости, на них легко наносятся современные полупроводниковые элементы. Они могут эффективно работать в условиях сильной загазованности воздушной среды. Или на производстве, где воздух, по тем или иным причинам, перенасыщен аэрозольными веществами.
Из истории созданияЭто может показаться удивительным, но сейчас уже начинают активно совершенствовать третье поколение таких панелей. Коротко обо всех трех можно рассказать таким образом:
Кстати, благодаря широким возможностям технологии, кремниевый слой напыляется и на жесткое, и на гибкое основание. Именно поэтому в тонкопленочных моделях напыление применяется чаще всего. Хотя стоят они, конечно, очень дорого. Аморфные солнечные батареи обладают удивительной способностью к поглощению неяркого, рассеянного светового потока. Они активно применяются в тех регионах, где преобладает прохладная и пасмурная погода. При высоких температурах они не теряют уровня своей производительности. Хотя панели из арсенида галлия по-прежнему их в этом превосходят.
Подводя итоги: достоинства аморфных аккумуляторов и их дальнейшие перспективыИтак, кремниевые солнечные батареи с уникальным свойством аморфности имеют следующие перспективные преимущества:
На фоне всех неоспоримых преимуществ недостаток у таких панелеи всего один, но пока еще весьма существенный. КПД у них, в любом случае, меньше, чем у кристаллов — как минимум, в 2 раза. Это является основным препятствием для их широкого применения.
Сфера примененияНесмотря на меньший показатель КПД, по сравнению с кристаллическими солнечными аккумуляторами, аморфные модели уже постепенно находят достойную нишу применения. Как уже было отмечено, их рекомендуется использовать там, где часто наблюдается облачная и пасмурная погода. Они будут неплохо работать в условиях рассеянного или отраженного света. Также годятся они и для жаркого климата, так как лучше переносят нагревание и теряют при этом меньше мощности.
При необходимости интеграции аккумуляторов в здание такой вариант становится просто незаменимым, так как при первом взгляде от тонированных стекол их не отличить. Они дают широкий простор дизайнерским и архитектурным решениям, если речь идет о современных зданиях, в конструкцию которых они прекрасно впишутся. Это отличная отделка фасадов, которые при желании могут быть частично прозрачными. Уровень деградации у аморфных модулей аналогичен кристаллическим. Считается, что за десятилетний период применения показатель их мощности снизится только на 10% (по одному проценту в год), со сроком работы до 25 лет. Конечно, они не могут быть использованы в качестве постоянных источников энергии. Но роль альтернативных ее накопителей выполняют очень даже неплохо. batteryk.com Разбираемся в многообразии видов солнечных панелей —Дата публикации: 30 октября 2013 На вопрос «Что входит в состав системы электроснабжения, питающейся от солнечной энергии?», первое, что хочется ответить – это солнечные батареи. И это, безусловно, окажется правильным ответом. Конечно, подобная система включает в себя не только солнечные панели, туда также входят аккумуляторы, преимущественно гелевые (подробнее здесь), инверторы, контроллеры и другие устройства, каждое из которых выполняет свою функцию. Но солнечная панель – это тот элемент, с которого начинается весь процесс накопления и преобразования солнечной энергии. Вот только выбирая этот незаменимый элемент солнечной системы, каждый покупатель обязательно столкнется с проблемой выбора — «потеряться» в многообразии типов солнечных батарей несложно. Поэтому сегодняшнюю статью мы решили посвятить такой актуальной теме, как виды солнечных батарей. Сегодня на рынке солнечных модулей представлено несколько различных образцов. Отличаются они друг от друга технологией изготовления и материалами, из которых их производят. На рисунке ниже приведена классификация солнечных батарей. Солнечные батареи на основе кремнияБатареи, основой которым служит кремний, на сегодняшний день являются самыми популярными. Объясняется это широким распространением кремния в земной коре, его относительной дешевизной и высоким показателем производительности, в сравнении с другими видами солнечных батарей. Как видно из рисунка выше кремниевые батареи производят из моно- и поликристаллов Si и аморфного кремния. Монокристаллические солнечные батареи представляют собой силиконовые ячейки, объединенные между собой. Для их изготовления используют максимально чистый кремний, получаемый по методу Чохральского. После затвердевания готовый монокристалл разрезают на тонкие пластины толщиной 250-300 мкм, которые пронизывают сеткой из металлических электродов (рис. нарезка). Используемая технология является сравнительно дорогостоящей, поэтому и стоят монокристаллические батареи дороже, чем поликристаллические или аморфные. Выбирают данный вид солнечных батарей за высокий показатель КПД (порядка 17-22%). Для получения поликристаллов кремниевый расплав подвергается медленному охлаждению. Такая технология требует меньших энергозатрат, следовательно, и себестоимость кремния, полученного с ее помощью меньше. Единственный минус: поликристаллические солнечные батареи имеют более низкий КПД (12-18%), чем их моно «конкурент». Причина заключается в том, что внутри поликристалла образуются области с зернистыми границами, которые и приводят к уменьшению эффективности элементов. В таблице 1 приведены основные различия между моно и поли солнечными элементами. Таблица 1
Батареи из аморфного кремнияЕсли проводить деление в зависимости от используемого материала, то аморфные батареи относятся к кремниевым, а если в зависимости от технологии производства – к пленочным. В случае изготовления аморфных панелей, используется не кристаллический кремний, а силан или кремневодород, который тонким слоем наносится на материал подложки. КПД таких батарей составляет всего 5-6%, у них очень низкий показатель эффективности, но, несмотря на эти недостатки, они имеют и ряд достоинств:
Помимо описанных выше видов кремниевых солнечных батарей, существуют и их гибриды. Так для большей стабильности элементов используют двухфазный материал, представляющий собой аморфный кремний с включениями нано- или микрокристаллов. По свойствам полученный материал сходен с поликристаллическим кремнием. Из чего делают пленочные батареи?Разработка пленочных батарей обусловлена:
На основе CdTeИсследования теллурида кадмия, как светопоглощающего материала для солнечных батарей начались еще в 70-х годах. В то время его рассматривали как один из оптимальных вариантов для использования в космосе, сегодня же батареи на основе CdTe являются одними из самых перспективных в земной солнечной энергетике. Так как кадмий является кумулятивным ядом, то дискуссии возникают лишь по одному вопросу: токсичен или нет? Но исследования показывают, что уровень кадмия, высвобождаемого в атмосферу, ничтожно мал, и опасаться его вреда не стоит. Значение КПД составляет порядка 11%. Согласитесь, цифра небольшая, зато стоимость ватта мощности таких батарей на 20-30% меньше, чем у кремниевых. На основе селенида меди-индияКак понятно из названия, в качестве полупроводников используются медь, индий и селен, иногда некоторые элементы индия замещают галлием. Такая практика объясняется тем, что большая часть производящегося на сегодня индия требуется для производства плоских мониторов. Именно поэтому с целью экономии индий замещают на галлий, который обладает схожими свойствами. Пленочные солнечные батареи на основе селенида меди-индия имеют КПД равный 15-20%. Следует иметь в виду, что без использования галлия эффективность солнечных батарей возрастает примерно на 14%. На основе полимеровРазработка данного вида батарей началась сравнительно недавно. В качестве светопоглощающих материалов используются органические полупроводники, такие как полифенилен, углеродные фуллерены, фталоцианин меди и другие. Толщина пленок составляет 100 нм. Полимерные солнечные батареи имеют на сегодняшний день КПД всего 5-6%. Но их главными достоинствами считаются:
Применяются полимерные батареи в областях, где наибольшее значение имеет механическая эластичность и экологичность утилизации.В таблице 2 приведены обобщенные данные о КПД разных видов солнечных батарей. Таблица 2
Надеемся, что теперь Вы ясно представляете себе, из чего делают поли- и монокристаллические, пленочные, полимерные солнечные батареи и другие. Эта информация поможет Вам сделать правильный выбор при покупке солнечных модулей. Ведь система энергопотребления, основанная на солнечной энергии, является долговременной инвестицией. Переходя на альтернативные, в частности, солнечные источники энергии, Вы не только снижаете свои затраты на потребляемые энергоресурсы, но и делаете ощутимый вклад в чистоту окружающей нас среды. Статью подготовила Абдуллина Регина altenergiya.ru Сравнительный обзор различных видов солнечных батарейАльтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, растет их КПД. При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца необходимо предварительно разобраться в отличиях оборудования, ведь для различных климатических зон используются разные типы солнечных панелей. Содержание статьи: Принцип работы солнечных панелейПодавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода. Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения. Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке. КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели. Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов. Принцип их работы при этом не изменяется. Типы фотоэлектрических преобразователейКлассифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя. Различают такие виды батарей по типу устройства:
Гибкие тонкопленочные солнечные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами. Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:
Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида. Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения. Галерея изображений Фото из Массив монокристаллических солнечных фотоэлементов Солнечная панель на основе поликристаллов кремния Солнечная панель в виде пленки Фотогальванические элементы из селенида индия-меди-галлия Фотоэлемент на основе арсенида галлия Солнечные панели со слоем теллурида кадмия Производство органических солнечных панелей Солнечная батарея из полиэфира Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25 °C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%. Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес. Характеристики панелей на основе кремнияКремний для солнечных батарей изготавливают из кварцевого порошка — размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны. Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно. Монокристаллические кремниевые панелиСовременные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД. Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины. Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам. Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата. К преимуществам монокристаллических кремниевых батарей относят:
Недостатков у таких батарей всего два:
Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов. Поликристаллические солнечные батареиПоликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов. Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны. Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы. На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму. Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий. Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени К достоинствам солнечных батарей с разнонаправленными кристаллами относят:
Недостатки у поликристаллических панелей также имеются:
Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов. Солнечные панели из аморфного кремнияМеханизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку. В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются. Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%. Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие. За счет особенностей данной производственной технологии создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже. Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями. Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия. При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги Подытоживая, можно указать такие преимущества аморфных солнечных панелей:
Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности. Обзор бескремниевых устройствНекоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам. Солнечные панели из редких металловСуществует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей. Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования. Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS). Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно. КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление. Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику. В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью. Полимерные и органические аналогиФотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий. Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм. При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей. Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным. Преимуществами органических солнечных панелей являются:
К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин. Какую солнечную панель выбрать?Выбор солнечных панелей для загородных домов на широте 45-60 ° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели. При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи. Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены
Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало. Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть. Полезное видео по темеПредставленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования. Правила выбора солнечных панелей и сопутствующего оборудования: Виды солнечных панелей: Тестирование монокристаллической и поликристаллической панелей: Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что в ближайшие десятилетия энергия солнца станет главным источником электроэнергии во многих загородных домах и дачах. sovet-ingenera.com Аморфные солнечные батареи (из аморфного кремния)Солнечные батареи начали изготавливать с 1954 г. Сначала это были фотоэлектрические элементы на основе полупроводникового кремния. Намного позже была разработана технология получения аморфных солнечных батарей. Солнечные батареи целиком не изготавливаются, а собираются из отдельных элементов, преобразующих свет в электричество. Современная малогабаритная солнечная батарея Единичный фотоэлектрический полупроводниковый преобразователь изготавливается из металла кремния высочайшей степени очистки. Чаще всего в технологическом процессе очистки получают кристаллический кремний в виде цилиндра диаметром несколько десятков миллиметров.Из цилиндра нарезают диски, имеющие толщину в доли миллиметра. Кремниевые диски легируют нанесением на их поверхность различных примесей, как металлических, так и неметаллических. При этом в пластине кремния формируются зоны с разной степенью насыщенности электронами, с n-проводимостью (электронной) и «дырками» с p-проводимостью. «Дырки» – это металл, из которого дозированными примесями удалили часть электронов и получили p-проводимость, т.е. положительную, а металл с избытком электронов имеет n-проводимость, т.е. отрицательную или электронную. Структура кремниевого ФЭП Комбинацией примесей, их составом, очередностью нанесения, толщиной и мн.др. в толще пластины получают p-n переходы или гетеропереходы. В результате этих процессов полупроводниковые пластины получают способность при облучении светом давать электрический ток. Так были созданы фотоэлектрические преобразователи (ФЭП). К концу первого десятилетия 21-го века КПД кремниевых солнечных батарей промышленного производства, в зависимости от производителя, достиг величины в 28-30%. Эту величину значительно снижает (до 20-22%) нагрев от солнечного освещения, без которого обойтись невозможно. Некоторые недостатки кремниевых элементовМеталлический кремний полупроводниковой чистоты – материал очень дорогой, т.к. при производстве он проходит множество стадий очистки. При резке монокристалла значительная часть материала уходит в стружку – толщина пластины около 0,25 – 0,4 мм. При облучении ФЭП светом, падающая на элемент энергия преобразуется в электричество не полностью:
Эти явления уменьшают КПД кремниево-кристаллических ФЭП до 12-15%, иногда до 22-25%. Производство ФЭП из аморфного кремнияСырьем для производства являются подложки из различных материалов:
Сырьем для главного слоя аморфных ФЭП является силан – кремневодород. Его химическая формула Sih5. Кремний обрабатывают водородом и получают соединение типа (a-Si:H) или гидрогенизированный кремний. Для нанесения аморфного кремния на подложку силан в закрытой камере подвергают воздействию тлеющего электрического разряда. Он испаряется, и пары кремния осаждаются на подложку. Толщина слоя около 1 мкм и менее. Температура осаждения около 250 – 400°С, поэтому для подложек можно выбрать разные материалы невысокой стоимости. Гибкая солнечная батарея Производство безотходное, поэтому цена продукции относительно невелика. Процесс напыления позволяет производить ФЭП значительно большей площади, чем диски из кремния, диаметром в десятки миллиметров. Модули, изготовленные по такой технологии, могут иметь площадь до нескольких квадратных метров. Гидрогенизация кремния позволяет получить полупроводниковые свойства у очень тонких пленок, толщиной до 1 мкм, чему способствует увеличенное в 15 – 20 раз оптическое поглощение этого материала по отношению к кремнию. Солнечная батарея с использованием аморфного кремния на стеклянной подложке Гибкий ФЭП на основе аморфного кремния Особенности тонкопленочных солнечных батарейСолнечные батареи, изготовленные из аморфного кремния, для работы не требуют облучения прямым потоком солнечного света. Им достаточно рассеянного света, например, света Солнца, закрытого облаками. В результате этого такие батареи за год вырабатывают на 10 – 15% больше электроэнергии, чем традиционные кремниевые батареи. Они работают при большой запыленности воздуха или при насыщении его аэрозолями. Элементы малой мощности использоваться начали еще в конце прошлого века в калькуляторах, электронных часах, в карманных радиоприемниках и т.п. Для создания тонкого слоя полупроводникового материала для солнечной энергетической панели нужно в сотни раз меньше, и это тоже уменьшает конечную цену. Использование энергетических солнечных батарей большой мощности позволяет уменьшить зависимость от энергетических компаний, а при наличии в государстве законов по альтернативной энергетике – даже зарабатывать, подавая в промышленную сеть избыток энергии. solarb.ru Технология перовскит кремниевых солнечных батарейСуществующие фотогальванические технологии обеспечили рынок кремниевых солнечных элементов на 90% загрузки. Что касается стоимости, надёжности работы и эффективности – эти качества вне конкуренции. Однако после десятка лет активных исследований и вложенных инвестиций, кремниевые солнечные элементы достигли предела теоретической эффективности. В результате актуальными становятся новые концепции – перовскит кремниевые солнечные батареи, необходимые для достижения долгосрочного снижения цен на солнечную энергетику. Нельзя сбрасывать со счетов и материальное обеспечение, способствующее широкому распространению фотоэлектрических технологий. Решение научного толкаОдним из возможных решений специалисты видят размещение двух разных типов солнечных элементов друг над другом. По мнению учёных, так удастся оптимизировать преобразование световых лучей в электрическую энергию. Ячейки с двойным соединением широко исследуются в научном сообществе, но производство таких конструкций является дорогостоящим. В настоящее время исследовательские группы Лаборатории фото-гальваники EPFL и PV-центра CSEM — разрабатывают экономически конкурентоспособное решение. Специалисты интегрировали перовскит ячейку непосредственно поверх стандартной кремниевой ячейки и таким способом смогли достичь рекордной эффективности — 25,2%. Этот метод производства видится многообещающим, поскольку добавляет лишь несколько шагов к текущему процессу производства кремниевых ячеек. К тому же стоимость ограничивается разумными цифрами. Уникальные свойства перовскита (титанат кальция) последние несколько лет активно привлекают научные круги к широкому исследованию в плане применения к солнечным батареям. Перовскит позволяет достичь высокой эффективности конверсии при потенциально ограниченной себестоимости продукции. В тандемных конструкциях солнечных батарей перовскит удачно дополняет кремний. Вещество более эффективно преобразует синий и зеленый спектр света, а кремний хорошо подходит для преобразования красного и инфракрасного световых диапазонов. Объединив оба материала, можно максимально использовать солнечный спектр и увеличить количество генерируемой энергии. Результаты экспериментов и расчётовРасчеты и проведённые экспериментальные работы показывают 30-процентную эффективность, которая может быть достигнута в современных конструкциях тандемных солнечных панелей. Однако создание эффективной тандемной структуры путем наложения двух материалов — непростая задача. На этот счёт участники проекта заявляют следующее: Поверхность кремния состоит из серии пирамид размером около 5 микрон. Эти пирамиды задерживают свет и препятствуют его отражению. Однако поверхностная текстура затрудняет осаждение однородной пленки перовскита. Когда перовскит осаждается в жидкой форме, минерал обычно накапливается в промежутках оснований пирамид, оставляя открытыми пики. Такое построение попросту приводит к короткому замыканию. До сих пор стандартным подходом создания перовскит кремниевой тандемной ячейки было выравнивание пирамид, что уменьшало оптические свойства. Следовательно, снижалась производительность системы в целом. Доработка существующих технологийНовый тип тандемных ячеек является высокоэффективным и напрямую совместимым с монокристаллическими кремниевыми технологиями. Специалисты предлагают использовать оборудование, которое уже используется, попросту добавив несколько конкретных этапов. Производителям не придётся внедрять новую технологию изготовления солнечных батарей. Достаточно обновить производственные линии, уже задействованные для производства кремниевых ячеек. Сейчас продолжаются исследования с целью повышения эффективности, надёжности, долговечности перовскит плёнки. Несмотря на то, что учёным удалось сделать существенный прорыв, ещё предстоит проделать массу работы, прежде чем технология станет доступной на коммерческой основе. На основе материалов: EPFL zetsila.ru Аморфные солнечные батареи или панелиСодержание:
Поколения аморфных солнечных батарейНа сегодняшний день, тонкоплёночные фотоэлектрические солнечные модули, это технология-кандидат номер один на будущее массовое производство и выход в лидеры рынка в сфере солнечных батерей. Конечно, сегодня абсолютное большинство выпускаемых солнечных панелей — это кристаллические батареи. Больше 80%. Какие бывают аморфные солнечные батареи, в чём их преимущество и недостаткиОднако, развитие плёночных аморфных модулей происходит так быстро, что очень скоро ситуация может измениться. Именно модуль из аморфного кремния, был первой технологией, которая получила широкое коммерческое будущее. На данный момент солнечные панели из аморфного кремния представлены уже тремя поколениями:
Аморфные солнечные батареи второго поколенияСамые популярные аморфные солнечные панели на сегодняшний день — именно аморфные тонкоплёночные однопереходные модули. Свою популярность они достигли, во-первых благодаря низкой стоимости элементов, а во-вторых хорошим показателям мощности, которые могут составить конкуренцию кристаллическим батареям. Низкая стоимость аморфных батарей связана с тем, что на их производство идёт куда меньше кремния, чем на кристаллические панели. Аморные солнечные батареиВ чём заключаются преимущества аморфных батарей?Конечно самое первое преимущество для потребителей — это более низкая стоимость при таком же уровне КПД как у кристаллических элементов. Но помимо этого есть масса других преимуществ, которые располагают при покупке, всё-таки отдать предпочтение аморфным солнечных модулям. Итак, преимущества аморфных батарей:
Недостатки аморфных тонкоплёночных батарей.Основной и пожалуй, единственный минус таких панелей — это в два раза меньший КПД по сравнению с поликристаллическими модулями. Но он, конечно, перекрывается всеми вышеперечисленными плюсами. Конструктивные особенности аморфных панелей и область примененияДля солнечных элементов данного типа могут использоваться в качестве подложки либо стекло, либо гибкие материалы, которые пропускают солнечные лучи. Именно благодаря тому, что для таких панелей может использоваться гибкая основа и они обладают повышенной световосприимчивостью по сравнению с другими батареями, область их применения очень широка. Аморфные модули можно применять:
Напоследок хочется сказать, что тонкоплёночные аморфные модули изнашиваются с такой же скоростью как обычные кристаллические батареи, но при этом имеют массу других преимуществ на которые стоит обратить внимание. Ну а дальше решать Вам. www.solnpanels.com |