Eng Ru
Отправить письмо

Как устроена атомная электростанция (фоторепортаж). Аэс как устроена


«Как устроена атомная электростанция (фоторепортаж)» в блоге «Энергетика и ТЭК»

Автор репортажа — Андрей Кирнов (ЖЖ muph)

http://muph.livejournal.com/411513.html

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал? Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, вживую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!02. Итак, мы в сорока пяти километрах от Воронежа неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту «АЭС-2006», который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.03. Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.04. Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока № 6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина — 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес — 180 т, диаметр — около 25 м, высота - 13 м) — это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на «Фукусиме»), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.05. Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.06. Высота оболочки башенной градирни энергоблока № 6 — 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда-либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.07. В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть «вымощена» оросительными блоками. Ороситель — это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.08. Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока № 7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.09. Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.10. Подумал тут… А может нас просто не пустили на верх из соображений безопасности?11. Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.12. Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.13. Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.14. Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю). 15. Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.16. Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.17. В проекте «АЭС-2006», по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого — в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.18. Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.19. Но не только. Вот, к примеру, автотрансформатор Hyundai.Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.20. Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО «Электрозавод». Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой «Электрозавод» работает более чем в 60 странах мира.21. На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов — 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть — на автотрансформаторы (те самые «хюндаи»), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих «электрозаводских» трансформатора (мощность каждого — 533 МВт, вес — 340 тонн).22. Если понятно, переходим к паротурбинной установке энергоблока № 6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.23. Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина — это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе — в нужную нам электрическую энергию. Вес машины в собранном состоянии — более 2600 тонн, длина — 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200−7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту «АЭС-2006». На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.24. Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.25. Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.26. Перемещаемся в блочный пульт управления энергоблоком № 6.Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.27. Элементы БПУ.28. Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.29. И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.30. Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.31. Фланец корпуса реактора. Позже на него убудет установлен верхний блок с приводами СУЗ (система управления и защиты реактора), обеспечивающий уплотнение главного разъема.32. Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).33. А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте «АЭС-2006», по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты — гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая — объемом 120 кубометров.34. При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.35. С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок № 7 в частности.36. Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба — это один из контуров, так что мы уже совсем близко.37. А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1−13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны — например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?38. Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.39. Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))40. Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2006 года здесь потрудились многие тысячи специалистов различного профиля.41. Кто-то внизу…42. А кто-то вверху… Хоть вы их и не видите, но они есть.43. А это один из самых заслуженных строителей Нововоронежской АЭС — гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность — 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру ЖЖ vmulder — за приятную компанию.

Перепост сделан с разрешения автора. Автор убедительно просит все возможные перепубликаци согласовывать с ним!

sdelanounas.ru

Как устроена самая мощная АЭС России. Балаковская АЭС

Балаковская АЭС — крупнейший в России производитель электроэнергии — более 30 млрд кВт·ч. ежегодно, что составляет 1/5 часть выработки всех АЭС страны. Среди крупнейших электростанций всех типов в мире занимает 51-ю позицию. Первый энергоблок БалАЭС был включен в Единую энергосистему СССР в декабре 1985 года, четвёртый блок в 1993 году стал первым введённым в эксплуатацию в России после распада СССР.

1. Балаковская АЭС расположена на левом берегу Саратовского водохранилища реки Волги в 10 км северо-восточнее г. Балаково Саратовской обл. приблизительно на расстоянии 900 км юго-восточнее г. Москвы.

Техническое водоснабжение, что чрезвычайно существенно для водо-водяных энергетических реакторов, осуществляется по замкнутой схеме с использованием водохранилища-охладителя, образованного путём отсечения дамбами мелководной части Саратовского водохранилища.

2. На Балаковской АЭС эксплуатируются 4 типовых энергоблока с реакторной установкой, в состав которой входит реактор типа ВВЭР-1000 (Водо-Водяной Энергетический Реактор – 1000 мегаватт электрической мощности, корпусного типа на тепловых нейтронах с легкой водой в качестве замедлителя и теплоносителя) – это наиболее распространенный тип РУ в мире, зарубежный аналог носит аббревиатуру PWR.

3. Масштабы энергоблоков можно оценить «с вертолета».

Каждый энергоблок состоит из турбинного и реакторного отделений – образуя моноблок. Бесперебойное электропитание каждого энергоблока обеспечивают по три независимых Резервных Дизельных Электрических Станции типа АСД-5600 (РДЭС – мощностью 5,6 мегаватта).

4. Высота верхней отметки купола энергоблока – 67,5 метров.

Герметичная оболочка является локализующей системой безопасности и предназначена для предотвращения выхода радиоактивных веществ при тяжёлых авариях с разрывом крупных трубопроводов первого контура и удержания в зоне локализации аварии среды с высоким давлением и температурой. Она имеет цилиндрическую форму и состоит из предварительно напряжённого железобетона толщиной 1,2 метра.

5. Попасть в реакторное отделение энергоблока можно только из санитарно-бытового блока спецкорпуса по переходной эстакаде. В санитарно-бытовом блоке расположены санпропускники для прохода в зону ионизирующих излучений. Здесь персонал станции полностью переодевается в защитную спецодежду. После выхода из санпропускника в Зону контролируемого доступа персонал проходит на щит радиационного контроля к дежурным дозиметристам для получения индивидуальных дозиметров.

6. Внутренняя дверь основного шлюза ГО на отметке +36 метров.

При работе реакторной установки на мощности гермооболочка закрыта – находится под небольшим разряжением. Для доступа оперативного персонала внутрь необходимо пройти процедуру шлюзования. Основной шлюз – сложное устройство, предназначенное для обеспечение прохода внутрь геромообъема с сохранением перепада давлений между гермообъемом и обстройкой реакторного отделения.

7. Центральный зал в гермооболочке ГО 2-го энергоблока.

Гермооболочка выполнена в виде цилиндра внутренним диаметром 45 метров и высотой 52 м, с отметки 13,2 м над уровнем земли, где находится её плоское днище, до отметки 66,35 м, где находится вершина её куполообразного верха.

8. Технологическая схема каждого блока двухконтурная. Первый контур является радиоактивным, в него входит водо-водяной энергетический реактор тепловой мощностью 3000 МВт и четыре циркуляционных петли охлаждения, по которым через активную зону с помощью главных циркуляционных насосов прокачивается теплоноситель — вода под давлением 16 МПа.

9. Спускаемся к реактору.

На Балаковской АЭС используется модернизированный серийный ядерный реактор ВВЭР-1000 с водой под давлением, который предназначен для выработки тепловой энергии за счёт цепной реакции деления атомных ядер. Регулирование мощности реактора осуществляется изменением положения в активной зоне кластеров из стержней с поглощающими элементами, стальными трубками с карбидом бора, а также изменением концентрации борной кислоты в воде первого контура.

10. Ядерный реактор.

Температура воды на входе в реактор равна 289 °C, на выходе — 320 °C. Циркуляционный расход воды через реактор составляет 84000 т/ч.Нагретая в реакторе вода направляется по четырём трубопроводам в парогенераторы.

11. Парогенератор – это горизонтальный теплообменник с погруженной поверхностью теплообмена, предназначенный для выработки осушенного насыщенного пара с производительностью 1470т/ч. Вода из реактора поступает в коллектор и раздается внутрь на 11 тысяч трубок. Проходя по ним, она отдает тепло котловой воде второго контура и выходит через аналогичный собирающий коллектор на всасывающий патрубок главного циркуляционного насоса (ГЦН). Таким образом, парогенератор является граничным элементом между первым - радиоактивным контуром и вторым – нерадиоактивным.

12. Второй контур — нерадиоактивный, состоит из испарительной и водопитательной установок, блочной обессоливающей установки и турбоагрегата электрической мощностью 1000 МВт. Теплоноситель первого контура охлаждается в парогенераторах, отдавая при этом тепло воде второго контура.

Насыщенный пар, производимый в парогенераторе, с давлением 6,4 МПа и температурой 280 °C подается в сборный паропровод и направляется к турбоустановке, приводящей во вращение электрогенератор.

13. Вид вглубь бокса главного циркуляционного насоса (ГЦН).

Принудительная циркуляция теплоносителя осуществляется за счёт работы четырёх главных циркуляционных насосов ГЦН-195М. Каждый из ГЦН при частоте вращения 1000 об/мин. обеспечивает прокачивание через активную зону реактора 21000 тонн воды в час.

14. Бассейн мокрой перегрузки ядерного топлива.

Для поддержания нормальной работы реактора необходимо выполнять перегрузку топлива. Перегрузка топлива осуществляется частями, в конце борной кампании реактора треть ТВС выгружается и такое же количество свежих сборок загружается в активную зону, для этих целей в гермооболочке имеется специальная перегрузочная машина МПС-1000. Ядерное топливо для Балаковской АЭС производится Новосибирским заводом химконцентратов.

Все операции с отработанным ядерным топливом (ОЯТ) выполняются дистанционно под 3-х метровым слоем борированной воды. В отработавших ТВС содержится большое количество продуктов деления урана. Ядерное топливо имеет свойство саморазогреваться до больших температур и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточного тепловыделения. Обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки.

15. Пульт управления перегрузочной машиной МПС-1000.

Один из наиболее эффективных способов увеличения выработки электроэнергии – увеличение продолжительности кампании ядерного реактора, работы в этом направлении велись на Балаковской АЭС многие годы. С улучшением конструкции ядерного топлива переход на 18-месячный топливный цикл стал возможен и в настоящее время постепенно реализуется. Суть заключается в том, что перегрузки топлива стали осуществлять реже, чем раз в год, при полной его реализации перегрузки будут совершаться раз 1,5 года, соответственно реактор дольше работает без остановок, увеличивается его энерговыработка.

В настоящий момент на БАЭС реализуются кампании с планируемой длительностью 420-480 эфф. суток, что является решающим переходным этапом к 18-месячному топливном циклу.

16. Для измерения температуры и давления теплоносителя внутри корпуса реактора используют датчики, размещенные нейтронно-измерительных каналах на траверсе блока защитных труб реактора.

17. Дефектоскописты проводят плановый контроль сварных соединений и основного металла.

Всего на станции трудятся около 3770 человек, более 60 % которых имеют высшее или среднее профессиональное образование.

18. Гайковерт главного разъема реактора ВВЭР-1000.

Применение гайковерта обеспечивает герметизацию узла уплотнения одновременной и равномерной вытяжкой шпилек, уменьшает временя на проведение работ по уплотнению и разуплотнению главного разъема реактора, снижает трудозатраты обслуживающего персонал и как следствие их дозовые нагрузи.

19. Для нормального функционирования парогенератора в течение срока службы необходимо производить контроль теплообменной поверхности труб от отложений.

20. Для контроля состояния металла на балаковской АЭС применяется вихретоковый метод контроля (ВТК).

21. Полярный кран под куполом гермооболочки.

При разуплотнении и течах первого контура происходит испарение воды, что сопровождается ростом давления под куполом гермообъема. Для снижения давления пара в него разбрызгивается холодная вода.

22. Измерение загрязненности спецодежды в санитарном шлюзе.

В помещениях обстройки реакторного отделения организованы специальные посты дополнительного дозиметрического контроля и санитарной обработки – саншлюзы. Персонал, выходящий из зоны производства работ или расположения технологического оборудования, проходит обязательный дозиметрический контроль и при необходимости – отмывку и обработку одежды и кожных покровов для предотвращения распространения радиоактивного загрязнения в более чистые помещения постоянного пребывания персонала.

23. Блочный щит управления.

Персонал ведет весь технологический процесс (управляет оборудованием и контролирует работу автоматики) с блочного щита управления (БЩУ).

24. Условно БЩУ поделен на три зоны ответственности. Первая зона находится в непосредственном оперативном ведении начальника смены блока и включает системы энергоснабжения и панели систем безопасности, вторая зона – в оперативном ведении ведущего инженера по управлению реактором – с неё осуществляется контроль работы реактора, основного оборудования первого контура и технологических систем реакторного отделения. Третья зона – в ведении ведущего инженера по управлению турбиной.

25. Ведущий инженер по управлению турбиной одного из энергоблоков.

26. На БЩУ одного энергоблока контролируется свыше 19 000 параметров.

27. Весь пар, вырабатываемый четырьмя парогенераторами энергоблока, объединяется и подается на турбину.

28. Машинный зал с турбогенератором.

Паровая турбина конденсационная, одновальная, четырёхцилиндровая (один цилиндр высокого давления, три – низкого давления).Номинальная мощность 1000МВт, частота вращения 1500 оборотов в минуту.

29. Цилиндр высокого давления (ЦВД) предназначен для срабатывания «острого» пара, поступающего из главного парового коллектора.

30. Начальное давление в корпусе 60 атмосфер, температура пара 274 градуса.На одном валу с турбиной закреплен генератор марки ТВВ-1000, генерируемое напряжение 24000 вольт.

31. Старший машинист в обходе на турбине.

32.

33. Выдача электричества.

Электрооборудование АЭС в целом мало отличается от оборудования тепловых электростанций, за исключением повышенных требований к надёжности.

34. Выдача мощности Балаковской АЭС осуществляется через шины ОРУ-220/500 кВ в объединённую энергосистему Средней Волги.

35. Эти шины являются узловыми в энергосистеме и связывают Саратовскую энергосистему с Ульяновской, Самарской, Волгоградской и Уральской.

36. Водоем-охладитель площадью 24,1 км² — источник циркуляционного водоснабжения АЭС.

37. Здесь живут белый амур и толстолобик, необходимые для естественного биологического очищения и поддержания качества воды пруда–охладителя.

38. Вода из охладителя по открытым подводящим каналам поступает к четырём блочным насосным станциям (БНС), располагающимся на его берегу. Эти насосные станции обеспечивают технической водой неответственных потребителей.

39. Для технического водоснабжения ответственных потребителей (оборудования, в том числе и аварийного, перерыв в водоснабжении которого не допускается в любых режимах работы) используется специальная замкнутая оборотная система, включающая в себя брызгальные бассейны.

40. Охлаждение воды происходит за счет разбрызгивания, что увеличивает площадь теплообмена.

41. Химводоподготовка.

На щите химводоочистки размещены приборы контроля и органы управления элементов, обеспечивающих процессы очистки и обессоливания воды, дозирование реагентов при водоподготовке и пр.

42. Аналитическая лаборатория предназначена для обеспечения высокой достоверности при проведении химического анализа, для обработки и накопления баз данных по химическим режимам работы энергоблоков.

43. Лаборатория оборудована ионным хроматографам, рентгеновским кристалл-дифракционным спектрометром, титратором влаги, оптическим эмиссионным спектрометром с индуктивно связанной плазмой и т.д.

44. Обсуждается строительство второй очереди станции, состоящие из пятого и шестого энергоблока той же конструкции, что и уже действующие на станции.

45.

Благодарю пресс-службу Балаковской АЭС за помощь в создании репортажа!

Взят у gelio в Балаковская АЭС – самая мощная АЭС России

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected]) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс, где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

kak-eto-sdelano.livejournal.com

Как устроена атомная электростанция

топ 100 блогов muph — 12.11.2014 — Ликбез

Как устроена атомная электростанция

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал?

Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, в живую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!

02. Итак, мы в сорока пяти километрах от Воронежа неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту "АЭС-2006", который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.Как устроена атомная электростанция

03. Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.Как устроена атомная электростанция

04. Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока №6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина – 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес – 180 т, диаметр – около 25 м, высота – 13 м) – это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на "Фукусиме"), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.Как устроена атомная электростанция

05. Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.Как устроена атомная электростанция

06. Высота оболочки башенной градирни энергоблока №6 – 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.Как устроена атомная электростанция

07. В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть "вымощена" оросительными блоками. Ороситель – это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.Как устроена атомная электростанция

08. Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока №7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.Как устроена атомная электростанция

09. Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.Как устроена атомная электростанция

10. Подумал тут... А может нас просто не пустили на верх из соображений безопасности?Как устроена атомная электростанция

11. Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.Как устроена атомная электростанция

12. Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.Как устроена атомная электростанция

13. Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.Как устроена атомная электростанция

14. Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю).Как устроена атомная электростанция

15. Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.Как устроена атомная электростанция

16. Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.Как устроена атомная электростанция

17. В проекте "АЭС-2006", по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого - в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.Как устроена атомная электростанция

18. Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.Как устроена атомная электростанция

19. Но не только. Вот, к примеру, автотрансформатор Hyundai.Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.Как устроена атомная электростанция

20. Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО "Электрозавод". Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой "Электрозавод" работает более чем в 60 странах мира.Как устроена атомная электростанция

21. На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов – 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть – на автотрансформаторы (те самые "хюндаи"), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих "электрозаводских" трансформатора (мощность каждого – 533 МВт, вес – 340 тонн).Как устроена атомная электростанция

22. Если понятно, переходим к паротурбинной установке энергоблока №6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.Как устроена атомная электростанция

23. Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина – это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе – в нужную нам электрическую энергию. Вес машины в собранном состоянии – более 2600 тонн, длина – 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200–7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту "АЭС-2006". На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.Как устроена атомная электростанция

24. Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.Как устроена атомная электростанция

25. Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.Как устроена атомная электростанция

26. Перемещаемся в блочный пульт управления энергоблоком №6.Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.Как устроена атомная электростанция

27. Элементы БПУ.Как устроена атомная электростанция

28. Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.Как устроена атомная электростанция

29. И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.Как устроена атомная электростанция

30. Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.Как устроена атомная электростанция

31. Вокруг реактора так называемая опорная ферма. Это один из важнейших элементов оборудования шахты реактора, предназначенный для надежного закрепления корпуса реактора и его защиты в случае возникновения сейсмических нагрузок. Ферма представляет собой сварную металлоконструкцию, состоящую из радиальных балок, которые залиты спецбетоном. Диаметр фермы – более 9 м, высота – 1,3 м, масса – около 100 тонн. Опорная ферма рассчитана на тепловое и радиационное воздействие в течение всего срока эксплуатации реактора, составляющего 60 лет.Как устроена атомная электростанция

32. Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность тоже представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).Как устроена атомная электростанция

33. А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте "АЭС-2006", по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты – гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая - объемом 120 кубометров.Как устроена атомная электростанция

34. При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.Как устроена атомная электростанция

35. С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок №7 в частности.Как устроена атомная электростанция

36. Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба - это один из контуров, так что мы уже совсем близко.Как устроена атомная электростанция

37. А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1–13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?Как устроена атомная электростанция

38. Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.Как устроена атомная электростанция

39. Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))

40. Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2008 года здесь потрудились многие тысячи специалистов различного профиля.Как устроена атомная электростанция

41. Кто-то внизу...Как устроена атомная электростанция

42. А кто-то вверху... Хоть вы их и не видите, но они есть.Как устроена атомная электростанция

43. А это один из самых заслуженных строителей Нововоронежской АЭС – гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность – 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.Как устроена атомная электростанция

И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру vmulder - за приятную компанию.

Любое воспроизведение данных фотографий и текста ЗАПРЕЩЕНО без предварительного согласования со мной.

yablor.ru

Как устроена атомная электростанция (36 фото)

Как устроена атомная электростанция атом, станция

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал?

Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, в живую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!

Итак, мы в сорока пяти километрах от Воронежа неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту «АЭС-2006», который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.

Как устроена атомная электростанция атом, станция

Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.

Как устроена атомная электростанция атом, станция

Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока №6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина – 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес – 180 т, диаметр – около 25 м, высота – 13 м) – это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на «Фукусиме»), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.

Как устроена атомная электростанция атом, станция

Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.

Как устроена атомная электростанция атом, станция

Высота оболочки башенной градирни энергоблока №6 – 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.

Как устроена атомная электростанция атом, станция

В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть «вымощена» оросительными блоками. Ороситель – это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.

Как устроена атомная электростанция атом, станция

Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока №7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.

Как устроена атомная электростанция атом, станция

Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.

Как устроена атомная электростанция атом, станция

Подумал тут… А может нас просто не пустили на верх из соображений безопасности?

Как устроена атомная электростанция атом, станция

Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.

Как устроена атомная электростанция атом, станция

Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).

Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.

Как устроена атомная электростанция атом, станция

Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.

Как устроена атомная электростанция атом, станция

Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю).

Как устроена атомная электростанция атом, станция

Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.

Как устроена атомная электростанция атом, станция

Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.

Как устроена атомная электростанция атом, станция

В проекте «АЭС-2006», по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого — в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.

Как устроена атомная электростанция атом, станция

Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.

Как устроена атомная электростанция атом, станция

Но не только. Вот, к примеру, автотрансформатор Hyundai.

Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.

Как устроена атомная электростанция атом, станция

Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО «Электрозавод». Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой «Электрозавод» работает более чем в 60 странах мира.

Как устроена атомная электростанция атом, станция

На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов – 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть – на автотрансформаторы (те самые «хюндаи»), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих «электрозаводских» трансформатора (мощность каждого – 533 МВт, вес – 340 тонн).

Как устроена атомная электростанция атом, станция

Если понятно, переходим к паротурбинной установке энергоблока №6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.

Как устроена атомная электростанция атом, станция

Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина – это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе – в нужную нам электрическую энергию. Вес машины в собранном состоянии – более 2600 тонн, длина – 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200–7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту «АЭС-2006». На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.

Как устроена атомная электростанция атом, станция

Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.

Как устроена атомная электростанция атом, станция

Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.

Как устроена атомная электростанция атом, станция

Перемещаемся в блочный пульт управления энергоблоком №6.

Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.

Как устроена атомная электростанция атом, станция

Элементы БПУ.

Как устроена атомная электростанция атом, станция

Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.

Как устроена атомная электростанция атом, станция

И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.

Как устроена атомная электростанция атом, станция

Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.

Как устроена атомная электростанция атом, станция

Фланец корпуса реактора. Позже на него убудет установлен верхний блок с приводами СУЗ (система управления и защиты реактора), обеспечивающий уплотнение главного разъема.

Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).

Как устроена атомная электростанция атом, станция

А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте «АЭС-2006», по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты – гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая — объемом 120 кубометров.

При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.

Как устроена атомная электростанция атом, станция

С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок №7 в частности.

Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба — это один из контуров, так что мы уже совсем близко.

А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1–13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?

Как устроена атомная электростанция атом, станция

Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.

Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))

Как устроена атомная электростанция атом, станция

Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2006 года здесь потрудились многие тысячи специалистов различного профиля.

Как устроена атомная электростанция атом, станция

Кто-то внизу…

А кто-то вверху… Хоть вы их и не видите, но они есть.

Как устроена атомная электростанция атом, станция

А это один из самых заслуженных строителей Нововоронежской АЭС – гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность – 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.

И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру vmulder — за приятную компанию.

Другие статьи:

nlo-mir.ru

Как устроена самая мощная АЭС России. Балаковская АЭС

Балаковская АЭС — крупнейший в России производитель электроэнергии — более 30 млрд кВт·ч. ежегодно, что составляет 1/5 часть выработки всех АЭС страны. Среди крупнейших электростанций всех типов в мире занимает 51-ю позицию. Первый энергоблок БалАЭС был включен в Единую энергосистему СССР в декабре 1985 года, четвёртый блок в 1993 году стал первым введённым в эксплуатацию в России после распада СССР.

1. Балаковская АЭС расположена на левом берегу Саратовского водохранилища реки Волги в 10 км северо-восточнее г. Балаково Саратовской обл. приблизительно на расстоянии 900 км юго-восточнее г. Москвы.

Техническое водоснабжение, что чрезвычайно существенно для водо-водяных энергетических реакторов, осуществляется по замкнутой схеме с использованием водохранилища-охладителя, образованного путём отсечения дамбами мелководной части Саратовского водохранилища.

2. На Балаковской АЭС эксплуатируются 4 типовых энергоблока с реакторной установкой, в состав которой входит реактор типа ВВЭР-1000 (Водо-Водяной Энергетический Реактор – 1000 мегаватт электрической мощности, корпусного типа на тепловых нейтронах с легкой водой в качестве замедлителя и теплоносителя) – это наиболее распространенный тип РУ в мире, зарубежный аналог носит аббревиатуру PWR.

3. Масштабы энергоблоков можно оценить «с вертолета».

Каждый энергоблок состоит из турбинного и реакторного отделений – образуя моноблок. Бесперебойное электропитание каждого энергоблока обеспечивают по три независимых Резервных Дизельных Электрических Станции типа АСД-5600 (РДЭС – мощностью 5,6 мегаватта).

4. Высота верхней отметки купола энергоблока – 67,5 метров.

Герметичная оболочка является локализующей системой безопасности и предназначена для предотвращения выхода радиоактивных веществ при тяжёлых авариях с разрывом крупных трубопроводов первого контура и удержания в зоне локализации аварии среды с высоким давлением и температурой. Она имеет цилиндрическую форму и состоит из предварительно напряжённого железобетона толщиной 1,2 метра.

5. Попасть в реакторное отделение энергоблока можно только из санитарно-бытового блока спецкорпуса по переходной эстакаде. В санитарно-бытовом блоке расположены санпропускники для прохода в зону ионизирующих излучений. Здесь персонал станции полностью переодевается в защитную спецодежду. После выхода из санпропускника в Зону контролируемого доступа персонал проходит на щит радиационного контроля к дежурным дозиметристам для получения индивидуальных дозиметров.

6. Внутренняя дверь основного шлюза ГО на отметке +36 метров.

При работе реакторной установки на мощности гермооболочка закрыта – находится под небольшим разряжением. Для доступа оперативного персонала внутрь необходимо пройти процедуру шлюзования. Основной шлюз – сложное устройство, предназначенное для обеспечение прохода внутрь геромообъема с сохранением перепада давлений между гермообъемом и обстройкой реакторного отделения.

7. Центральный зал в гермооболочке ГО 2-го энергоблока.

Гермооболочка выполнена в виде цилиндра внутренним диаметром 45 метров и высотой 52 м, с отметки 13,2 м над уровнем земли, где находится её плоское днище, до отметки 66,35 м, где находится вершина её куполообразного верха.

8. Технологическая схема каждого блока двухконтурная. Первый контур является радиоактивным, в него входит водо-водяной энергетический реактор тепловой мощностью 3000 МВт и четыре циркуляционных петли охлаждения, по которым через активную зону с помощью главных циркуляционных насосов прокачивается теплоноситель — вода под давлением 16 МПа.

9. Спускаемся к реактору.

На Балаковской АЭС используется модернизированный серийный ядерный реактор ВВЭР-1000 с водой под давлением, который предназначен для выработки тепловой энергии за счёт цепной реакции деления атомных ядер. Регулирование мощности реактора осуществляется изменением положения в активной зоне кластеров из стержней с поглощающими элементами, стальными трубками с карбидом бора, а также изменением концентрации борной кислоты в воде первого контура.

10. Ядерный реактор.

Температура воды на входе в реактор равна 289 °C, на выходе — 320 °C. Циркуляционный расход воды через реактор составляет 84000 т/ч.Нагретая в реакторе вода направляется по четырём трубопроводам в парогенераторы.

11. Парогенератор – это горизонтальный теплообменник с погруженной поверхностью теплообмена, предназначенный для выработки осушенного насыщенного пара с производительностью 1470т/ч. Вода из реактора поступает в коллектор и раздается внутрь на 11 тысяч трубок. Проходя по ним, она отдает тепло котловой воде второго контура и выходит через аналогичный собирающий коллектор на всасывающий патрубок главного циркуляционного насоса (ГЦН). Таким образом, парогенератор является граничным элементом между первым — радиоактивным контуром и вторым – нерадиоактивным.

12. Второй контур — нерадиоактивный, состоит из испарительной и водопитательной установок, блочной обессоливающей установки и турбоагрегата электрической мощностью 1000 МВт. Теплоноситель первого контура охлаждается в парогенераторах, отдавая при этом тепло воде второго контура.

Насыщенный пар, производимый в парогенераторе, с давлением 6,4 МПа и температурой 280 °C подается в сборный паропровод и направляется к турбоустановке, приводящей во вращение электрогенератор.

13. Вид вглубь бокса главного циркуляционного насоса (ГЦН).

Принудительная циркуляция теплоносителя осуществляется за счёт работы четырёх главных циркуляционных насосов ГЦН-195М. Каждый из ГЦН при частоте вращения 1000 об/мин. обеспечивает прокачивание через активную зону реактора 21000 тонн воды в час.

14. Бассейн мокрой перегрузки ядерного топлива.

Для поддержания нормальной работы реактора необходимо выполнять перегрузку топлива. Перегрузка топлива осуществляется частями, в конце борной кампании реактора треть ТВС выгружается и такое же количество свежих сборок загружается в активную зону, для этих целей в гермооболочке имеется специальная перегрузочная машина МПС-1000. Ядерное топливо для Балаковской АЭС производится Новосибирским заводом химконцентратов.

Все операции с отработанным ядерным топливом (ОЯТ) выполняются дистанционно под 3-х метровым слоем борированной воды. В отработавших ТВС содержится большое количество продуктов деления урана. Ядерное топливо имеет свойство саморазогреваться до больших температур и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточного тепловыделения. Обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки.

15. Пульт управления перегрузочной машиной МПС-1000.

Один из наиболее эффективных способов увеличения выработки электроэнергии – увеличение продолжительности кампании ядерного реактора, работы в этом направлении велись на Балаковской АЭС многие годы. С улучшением конструкции ядерного топлива переход на 18-месячный топливный цикл стал возможен и в настоящее время постепенно реализуется. Суть заключается в том, что перегрузки топлива стали осуществлять реже, чем раз в год, при полной его реализации перегрузки будут совершаться раз 1,5 года, соответственно реактор дольше работает без остановок, увеличивается его энерговыработка.

В настоящий момент на БАЭС реализуются кампании с планируемой длительностью 420-480 эфф. суток, что является решающим переходным этапом к 18-месячному топливном циклу.

16. Для измерения температуры и давления теплоносителя внутри корпуса реактора используют датчики, размещенные нейтронно-измерительных каналах на траверсе блока защитных труб реактора.

17. Дефектоскописты проводят плановый контроль сварных соединений и основного металла.

Всего на станции трудятся около 3770 человек, более 60 % которых имеют высшее или среднее профессиональное образование.

18. Гайковерт главного разъема реактора ВВЭР-1000.

Применение гайковерта обеспечивает герметизацию узла уплотнения одновременной и равномерной вытяжкой шпилек, уменьшает временя на проведение работ по уплотнению и разуплотнению главного разъема реактора, снижает трудозатраты обслуживающего персонал и как следствие их дозовые нагрузи.

19. Для нормального функционирования парогенератора в течение срока службы необходимо производить контроль теплообменной поверхности труб от отложений.

20. Для контроля состояния металла на балаковской АЭС применяется вихретоковый метод контроля (ВТК).

21. Полярный кран под куполом гермооболочки.

При разуплотнении и течах первого контура происходит испарение воды, что сопровождается ростом давления под куполом гермообъема. Для снижения давления пара в него разбрызгивается холодная вода.

22. Измерение загрязненности спецодежды в санитарном шлюзе.

В помещениях обстройки реакторного отделения организованы специальные посты дополнительного дозиметрического контроля и санитарной обработки – саншлюзы. Персонал, выходящий из зоны производства работ или расположения технологического оборудования, проходит обязательный дозиметрический контроль и при необходимости – отмывку и обработку одежды и кожных покровов для предотвращения распространения радиоактивного загрязнения в более чистые помещения постоянного пребывания персонала.

23. Блочный щит управления.

Персонал ведет весь технологический процесс (управляет оборудованием и контролирует работу автоматики) с блочного щита управления (БЩУ).

24. Условно БЩУ поделен на три зоны ответственности. Первая зона находится в непосредственном оперативном ведении начальника смены блока и включает системы энергоснабжения и панели систем безопасности, вторая зона – в оперативном ведении ведущего инженера по управлению реактором – с неё осуществляется контроль работы реактора, основного оборудования первого контура и технологических систем реакторного отделения. Третья зона – в ведении ведущего инженера по управлению турбиной.

25. Ведущий инженер по управлению турбиной одного из энергоблоков.

26. На БЩУ одного энергоблока контролируется свыше 19 000 параметров.

27. Весь пар, вырабатываемый четырьмя парогенераторами энергоблока, объединяется и подается на турбину.

28. Машинный зал с турбогенератором.

Паровая турбина конденсационная, одновальная, четырёхцилиндровая (один цилиндр высокого давления, три – низкого давления).Номинальная мощность 1000МВт, частота вращения 1500 оборотов в минуту.

29. Цилиндр высокого давления (ЦВД) предназначен для срабатывания «острого» пара, поступающего из главного парового коллектора.

30. Начальное давление в корпусе 60 атмосфер, температура пара 274 градуса.На одном валу с турбиной закреплен генератор марки ТВВ-1000, генерируемое напряжение 24000 вольт.

31. Старший машинист в обходе на турбине.

32.

33. Выдача электричества.

Электрооборудование АЭС в целом мало отличается от оборудования тепловых электростанций, за исключением повышенных требований к надёжности.

34. Выдача мощности Балаковской АЭС осуществляется через шины ОРУ-220/500 кВ в объединённую энергосистему Средней Волги.

35. Эти шины являются узловыми в энергосистеме и связывают Саратовскую энергосистему с Ульяновской, Самарской, Волгоградской и Уральской.

36. Водоем-охладитель площадью 24,1 км² — источник циркуляционного водоснабжения АЭС.

37. Здесь живут белый амур и толстолобик, необходимые для естественного биологического очищения и поддержания качества воды пруда–охладителя.

38. Вода из охладителя по открытым подводящим каналам поступает к четырём блочным насосным станциям (БНС), располагающимся на его берегу. Эти насосные станции обеспечивают технической водой неответственных потребителей.

39. Для технического водоснабжения ответственных потребителей (оборудования, в том числе и аварийного, перерыв в водоснабжении которого не допускается в любых режимах работы) используется специальная замкнутая оборотная система, включающая в себя брызгальные бассейны.

40. Охлаждение воды происходит за счет разбрызгивания, что увеличивает площадь теплообмена.

41. Химводоподготовка.

На щите химводоочистки размещены приборы контроля и органы управления элементов, обеспечивающих процессы очистки и обессоливания воды, дозирование реагентов при водоподготовке и пр.

42. Аналитическая лаборатория предназначена для обеспечения высокой достоверности при проведении химического анализа, для обработки и накопления баз данных по химическим режимам работы энергоблоков.

43. Лаборатория оборудована ионным хроматографам, рентгеновским кристалл-дифракционным спектрометром, титратором влаги, оптическим эмиссионным спектрометром с индуктивно связанной плазмой и т.д.

44. Обсуждается строительство второй очереди станции, состоящие из пятого и шестого энергоблока той же конструкции, что и уже действующие на станции.

45.

Благодарю пресс-службу Балаковской АЭС за помощь в создании репортажа!

Источник 

 

 

 

kak-eto-sdelano.ru

Как устроена атомная электростанция | Техника

Техника | Как устроена атомная электростанция

Как устроена атомная электростанция

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал?

Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, в живую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!

Итак, мы в сорока пяти километрах от Воронежа неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту "АЭС-2006", который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.

Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.

Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока №6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина – 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес – 180 т, диаметр – около 25 м, высота – 13 м) – это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на "Фукусиме"), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.

Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.

Высота оболочки башенной градирни энергоблока №6 – 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.

В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть "вымощена" оросительными блоками. Ороситель – это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.

Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока №7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.

Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.

Подумал тут... А может нас просто не пустили на верх из соображений безопасности?

Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.

Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).

Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.

Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.

Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю).

Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.

Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.

В проекте "АЭС-2006", по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.

Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.

Но не только. Вот, к примеру, автотрансформатор Hyundai.

Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.

Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО "Электрозавод". Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой "Электрозавод" работает более чем в 60 странах мира.

На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов – 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть – на автотрансформаторы (те самые "хюндаи"), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих "электрозаводских" трансформатора (мощность каждого – 533 МВт, вес – 340 тонн).

Если понятно, переходим к паротурбинной установке энергоблока №6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.

Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина – это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе – в нужную нам электрическую энергию. Вес машины в собранном состоянии – более 2600 тонн, длина – 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200–7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту "АЭС-2006". На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.

Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.

Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.

Перемещаемся в блочный пульт управления энергоблоком №6.

Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.

Элементы БПУ.

Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.

И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.

Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.

Фланец корпуса реактора. Позже на него убудет установлен верхний блок с приводами СУЗ (система управления и защиты реактора), обеспечивающий уплотнение главного разъема.

Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).

А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте "АЭС-2006", по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты – гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая - объемом 120 кубометров.

При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.

С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок №7 в частности.

Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба - это один из контуров, так что мы уже совсем близко.

А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1–13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?

Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.

Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))

Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2006 года здесь потрудились многие тысячи специалистов различного профиля.

Кто-то внизу...

А кто-то вверху... Хоть вы их и не видите, но они есть.

А это один из самых заслуженных строителей Нововоронежской АЭС – гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность – 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.

И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру vmulder - за приятную компанию.

Источник: http://tehnowar.ru/2014/11/16/

www.rgo-sib.ru

Как устроена атомная электростанция

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал?

Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, в живую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!

02. Итак, мы в сорока пяти километрах от Воронежа неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту "АЭС-2006", который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.

03. Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.

04. Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока №6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина – 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес – 180 т, диаметр – около 25 м, высота – 13 м) – это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на "Фукусиме"), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.

05. Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.

06. Высота оболочки башенной градирни энергоблока №6 – 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.

07. В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть "вымощена" оросительными блоками. Ороситель – это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.

08. Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока №7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.

09. Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.

10. Подумал тут... А может нас просто не пустили на верх из соображений безопасности?

11. Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.

12. Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.

13. Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.

14. Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю).

15. Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.

16. Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.

17. В проекте "АЭС-2006", по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого - в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.

18. Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.

19. Но не только. Вот, к примеру, автотрансформатор Hyundai.Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.

20. Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО "Электрозавод". Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой "Электрозавод" работает более чем в 60 странах мира.

21. На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов – 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть – на автотрансформаторы (те самые "хюндаи"), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих "электрозаводских" трансформатора (мощность каждого – 533 МВт, вес – 340 тонн).

22. Если понятно, переходим к паротурбинной установке энергоблока №6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.

23. Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина – это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе – в нужную нам электрическую энергию. Вес машины в собранном состоянии – более 2600 тонн, длина – 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200–7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту "АЭС-2006". На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.

24. Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.

25. Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.

26. Перемещаемся в блочный пульт управления энергоблоком №6.Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.

27. Элементы БПУ.

28. Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.

29. И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.

30. Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.

31. Вокруг реактора так называемая опорная ферма. Это один из важнейших элементов оборудования шахты реактора, предназначенный для надежного закрепления корпуса реактора и его защиты в случае возникновения сейсмических нагрузок. Ферма представляет собой сварную металлоконструкцию, состоящую из радиальных балок, которые залиты спецбетоном. Диаметр фермы – более 9 м, высота – 1,3 м, масса – около 100 тонн. Опорная ферма рассчитана на тепловое и радиационное воздействие в течение всего срока эксплуатации реактора, составляющего 60 лет.

32. Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность тоже представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).

33. А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте "АЭС-2006", по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты – гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая - объемом 120 кубометров.

34. При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.

35. С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок №7 в частности.

36. Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба - это один из контуров, так что мы уже совсем близко.

37. А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1–13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?

38. Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.

39. Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))

40. Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2008 года здесь потрудились многие тысячи специалистов различного профиля.

41. Кто-то внизу...

42. А кто-то вверху... Хоть вы их и не видите, но они есть.

43. А это один из самых заслуженных строителей Нововоронежской АЭС – гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность – 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.

И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру vmulder - за приятную компанию.

Любое воспроизведение данных фотографий и текста ЗАПРЕЩЕНО без предварительного согласования со мной.

yablor.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта