Экономичные трансформаторы тмг. Потери в трансформаторе 630 кваКапитализация потерьВ условиях мирового дефицита энергомощностей и постоянного роста энергопотребления вопрос об экономии энергии приобретает все большую актуальность. Разработка ресурсосберегающего оборудования – основная задача, которую ставят перед собой ведущие производители электротехники в Европе. Этот вопрос – один из первостепенных и для России, где с каждым годом на эксплуатацию устаревшего электрооборудования требуется все больше средств. Изучив мировой опыт, на заводе «Трансформер» разработали экономичные трансформаторы с уменьшенными потерями. Проекты прошли экспертную оценку европейских коллег и получили одобрение ведущих специалистов в области трансформаторостроения. О том, что для работы трансформатора необходимо израсходовать часть электроэнергии, известно с момента его изобретения. Но никогда ранее вопрос оптимизации данных затрат не стоял так остро. Дело в том, что потери неизбежны из-за преобразования электрической энергии в тепловую: часть ее расходуется на нагрев проводов (потери короткого замыкания), а часть – на перемагничивание (потери холостого хода). В сумме потери составляют от 9 киловатт в час, что равно затратам на работу 4 бытовых приборов. Поскольку трансформатор работает круглосуточно, потери происходят постоянно. И если умножить улетающие в воздух киловатты на тариф, то получится рублевое выражение процессов нагрева и намагничивания. Так, для трансформатора мощностью 630 кВА это более 100 тысяч рублей в год. Физика процесса такова, что устранить потери полностью невозможно. Но есть способ существенно снизить затраты на работу оборудования – применить экономичный трансформатор, разработанный на заводе «Трансформер». Передовые технологии и материалы позволяют добиться значительно меньшего нагрева проводов при работе оборудования, а значит, - сэкономить киловатты и денежные средства абонентов. Для трансформатора ТМГ-630 кВА это экономия составляет до 20 тысяч рублей в год, а для трансформаторов больших мощностей цифра намного выше. Сравнительная таблица потерь для трансформаторов ТМГ
Разработка завода «Трансформер» - это актуальное предложение для обновляющейся энергосистемы России, которая активно развивается по пути энергосебергающих, высокотехнологичных и экономически эффективных решений. Подробная информация об экономичных трансформаторах приведена на сайте www.трансформер.ru. Уточняйте подробности в коммерческом центре производственной группы «Трансформер»: 142100, г. Подольск, ул. Б.Серпуховская, 43, кор. 101, пом. 1 Телефоны: (495) 545-45-11, (495) 580-27-27/20 Факс: (495) 580-27-23 email: [email protected] Экономичные трансформаторы тмг.В условиях мирового дефицита энергомощностей и постоянного роста энергопотребления вопрос об экономии энергии приобретает все большую актуальность. Разработка ресурсосберегающего оборудования – основная задача, которую ставят перед собой ведущие производители электротехники в Европе. Этот вопрос – один из первостепенных и для России, где с каждым годом на эксплуатацию устаревшего электрооборудования требуется все больше средств. Изучив мировой опыт, на подольском трансформаторном заводе «Трансформер» разработали экономичные трансформаторы с уменьшенными потерями. Проекты прошли экспертную оценку европейских коллег и получили одобрение ведущих специалистов в области трансформаторостроения. О том, что для работы трансформатора необходимо израсходовать часть электроэнергии, известно с момента его изобретения. Но никогда ранее вопрос оптимизации данных затрат не стоял так остро. Дело в том, что потери неизбежны из-за преобразования электрической энергии в тепловую: часть ее расходуется на нагрев проводов (потери короткого замыкания), а часть – на перемагничивание (потери холостого хода). В сумме потери составляют от 9 киловатт в час, что равно затратам на работу 4 бытовых приборов. Поскольку трансформатор работает круглосуточно, потери происходят постоянно. И если умножить улетающие в воздух киловатты на тариф, то получится рублевое выражение процессов нагрева и намагничивания. Так, для трансформатора мощностью 630 кВА это более 100 тысяч рублей в год. Физика процесса такова, что устранить потери полностью невозможно. Но есть способ существенно снизить затраты на работу оборудования – применить экономичный трансформатор, разработанный на ЗАО «Трансформер». Передовые технологии и материалы позволяют добиться значительно меньшего нагрева проводов при работе оборудования, а значит, - сэкономить киловатты и денежные средства абонентов. Для трансформатора ТМГ-630 кВА это экономия составляет до 20 тысяч рублей в год, а для трансформаторов больших мощностей цифра намного выше. Цена трансформатора с уменьшенными потерями будет выше обычного примерно на 15-20%. Поэтому он будет давать экономию не сразу, а через 2-3 года. Но, устанавливая трансформатор на 25 лет, стоит подумать о долгосрочном вложении средств и сопоставить разовую экономию от покупки обычного трансформатора с постоянной экономией на уменьшенных потерях электроэнергии. Приведем простой пример. Если все трансформаторы в стране заменить в один момент на экономичные, это позволит как минимум двум-трем городам России не платить за электроэнергию целый год. Приведенные в таблицах данные позволяют увидеть, что в течение первых 3 лет работы потребитель получает более 50 тысяч рублей экономии, а в течение 10 лет – более 170 тысяч. Расчеты сделаны с допущением того факта, что все это время тарифы на электроэнергию остаются неизменными. Но вряд ли стоит этого ожидать. Более того, со временем российские тарифы все более и более будут приближаться к европейским, а там уже сегодня плата за электроэнергию составляет от 0, 11 евро, или 3, 58 рубля. Разработка ЗАО «Трансформер» - это актуальное предложение для обновляющейся энергосистемы России, которая активно развивается по пути энергосебергающих, высокотехнологичных и экономически эффективных решений. Сравнительная таблица потерь для трансформаторов ТМГ.
Денежное выражение потерь для трансформаторов ТМГ.
* Тариф принимается равным 1, 5 рубля за киловатт-час. Допускается, что он остается неизменным в течение 10 лет. Анализ статьи: Текст статьи соответствует заявленной теме. В статье рассказывается о экономичных трансформаторах ТМГ. Статья является актуальной. В статье представлена таблица потерь в обычных трансформаторах и трансформаторе ТМГ. studfiles.net Трансформатор масляный ТМ 630
ТМ 630 кВА масляные силовые трансформаторы ТМ-630 кВА напряжением 6кВ, 10кВ цена. ТМ-630 кВА это силовые масляные понижающие трехфазные трансформаторы общего назначения мощностью 630кВА. ТМ-630 кВА, ТМ 630/10-0,4, ТМ 630/6-0,4, ТМ 630/10-0.4, ТМ 630/6-0.4 трехфазные используются для нужд народного хозяйства для наружной и внутренней установки. Завод-производитель трансформаторов ТМ "Уральский Завод Трансформаторных Технологий" имеет собственное производство силовых масляных трансформаторов ТМ и производит масляные трансформаторы типа ТМ мощностью 16-2500 кВа. Продажа трансформаторов ТМ. На трансформаторы силовые масляные имеется декларация о соответствии № РОСС RU.АВ67.Д00718. Технические характеристики ТМ-630 кВА.
www.wikitransformer.ru Проектирование силового трансформатора мощностью 630 кВАСодержание работы Аннотация Введение Аналитический обзор Расчеты и основные результаты работы: 1. Техническое задание 2. Предварительный расчёт трансформатора 3. Расчёт обмотки низкого напряжения 4. Расчёт обмотки высокого напряжения 5. Расчёт параметров короткого замыкания 6. Расчёт магнитной системы трансформатора 7. Расчёт потерь и тока холостого хода 8. Тепловой расчет 9. Расчёт основных геометрических размеров бака трансформатора 10. Тепловой расчёт бака. Окончательный расчёт превышения температуры обмоток и масла 11. Определение массы масла и конструктивных материалов 12. Коэффициент полезного действия трансформатора Заключение Список используемой литературы Приложения Аннотация Темников Ю.В. Трансформатор масляный герметизированный ТМВГ-630/6. Страниц: Иллюстраций: Приложений: Таблиц: Представлены результаты расчета масляного трансформатора на мощность Sн =630 кВА, напряжение высокой стороны UВН =6300 В, напряжение низкой стороны UHH =690 В, при частоте питающей сети f=50 Гц. Спроектирован вариант герметизированного трехфазного двухобмоточного масляного трансформатора с пространственной навитой магнитной системой из холоднокатаной анизотропной стали марки 3406. Сборка магнитной системы: магнитопровод состоит из трех овальных пакетов, собранных из стальной ленты переменной ширины. Обмотка НН из алюминиевой ленты, обмотка ВН – непрерывная катушечная из прямоугольного алюминиевого провода. Расчет выполнен в соответствии с рекомендациями, данными, изложенными в учебном пособии Тихомирова П.М. «Расчет трансформаторов», М.: Энергоатомиздат, 1996. – 528с.: ил. Введение Трансформатор – статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока. Принято различать трансформаторы малой мощности с выходной мощностью до 5 кВА для трехфазных сетей и силовые трансформаторы с выходной мощностью от 5 кВА и выше. В данной работе спроектирован силовой трансформатор, мощностью 630 кВА. Навитая магнитная система, использованная в проекте, позволила уменьшить массу используемой электротехнической стали, и улучшить характеристики холостого хода (подробнее в пункте 7). Герметизированная конструкция бака с волнами позволила отказаться от громоздких радиаторов, которые значительно увеличивали бы габариты трансформатора, и от расширителя, тем самым сэкономить на трансформаторном масле (подробнее в пунктах 10-12). Современные способы изготовления витых магнитопроводов позволяют значительно сэкономить на их сборке. В настоящее время начинается применение лазеров в резке электротехнической стали. Исследования Бухановой И.Ф., Дивинского В.В и Журавеля В.Э – сотрудников НПЦ «Лазертерм» АО ВНИИЭТО – показали, что «одним из самых перспективных бесконтактных методов уменьшения потерь на перемагничивание анизотропной электротехнической стали, является лазерная обработка поверхности. При локальном лазерном нагреве в поверхностных слоях материала создаются термические напряжения, изменяющие характер доменной структуры в зонах, прилегающих к лазерной дорожке. Разработанный экологически чистый технологический процесс обработки поверхности электротехнической стали излучением непрерывного СО2 -лазера позволяет обрабатывать трансформаторную сталь без нарушения изоляционного покрытия и создания дополнительных механических напряжений». Затраты на новую технологию окупятся на заводе менее чем за год, при увеличении стоимости трансформатора на 5%. При этом покупатель получает трансформатор немного дороже аналогичного, но более выгодного в эксплуатации. За первый же год эксплуатации покупатель экономит на электроэнергии сверх той суммы, что он переплатил за более современный трансформатор. Аналогичный эффект можно получить при использовании навитой магнитной системы. Соответственно, при внедрении обеих технологий в трансформаторостроение можно получить внушительный экономический эффект. Подобная технология немного увеличит стоимость трансформатора, но значительно упростит его производство и улучшит его качество. Такой трансформатор более выгодный в эксплуатации, чем трансформатор, выполненный по старой технологии (в особенности трансформатор с плоской магнитной системой). Также уменьшению потерь холостого хода способствует применение современных видов холоднокатаной анизотропной электротехнической стали, таких как 3408 и 3409. Удельные потери этих видов сталей меньше потерь устаревших 3404 и 3405. К сожалению, в настоящее время в нашей стране нет производителей качественной электротехнической стали, за исключением нескольких заводов. Этот фактор сказывается на ее цене. Более современная саль дороже, но обеспечивает снижение магнитных потерь в трансформаторе, в особенности, если сталь имеет малую толщину, например 0,27мм. С учетом вышеописанных возможностей в данном проекте рассчитан трансформатор, имеющий пространственную навитую магнитную систему, изготовленную из стали 3406 (лучшую из описанных в доступной литературе). АНАЛИТИЧЕСКИЙ ОБЗОР Краткое описание конструкции трансформатора. Главной частью трансформатора является, так называемая, активная часть, включающая в себя магнитопровод и обмотки. Обмотки служат для трансформации электрической энергии в энергию магнитного поля. Магнитопровод служит для передачи энергии магнитного поля. Активная часть полностью погружена в трансформаторное масло, служащее изолятором и теплоотводом. Активная часть зафиксирована в баке при помощи подъемных шпилек. Бак полностью герметичен, масло заливается под вакуумом. Структура стенок бака позволила отказаться от расширителя масла. На баке установлены вводы – проходные изоляторы, для подключения нагрузки и сети. Внутри активной части расположено устройство ПБВ, переключатель которого находится на крышке бака. Также на крышке расположены коробка выводов, для подключения устройств автоматики, таких как термодатчик и мановакуумметр; пробка для заполнения маслом. Внизу бака имеется пробка для слива масла и зажим заземления. Ко дну бака приварены швеллеры с переставными катками, для транспортировки и установки трансформатора. Описание основных материалов, используемых в трансформаторе. Материалы, применяемые для изготовления трансформатора, разделяются на активные, т.е. сталь магнитной системы, металл обмоток и отводов; изоляционные, применяемые для электрической изоляции обмоток и других частей трансформатора, например электроизоляционный картон, фарфор, дерево, трансформаторное масло и др.; конструкционные, идущие на изготовление бака, различных крепежных частей и т.д., и прочие материалы, употребляемые в сравнительно небольших количествах. Одним из основных активных материалов трансформатора является тонколистовая холоднокатаная анизотропная электротехническая сталь. Это сталь с определённой ориентировкой доменов, имеющая значительно меньшие удельные потери и более высокую магнитную проницаемость по сравнению с горячекатаной сталью. Одной из существенных особенностей холоднокатаной стали является анизотропия её магнитных свойств, т.е. различие этих свойств в различных направлениях внутри листа стали. Наилучшие магнитные свойства эта сталь имеет в направлении прокатки. Магнитные свойства существенно ухудшаются, если вектор индукции магнитного поля направлен под углом, отличающимся от 00 , к направлению прокатки. Другой активный материал трансформатора - металл обмоток. В трансформаторах средней мощности чаще применяется алюминий. Плотность алюминия 2700 кг/м3 . Таким образом, алюминий примерно в 3,5 раза легче меди. При этом стоимость алюминия значительно меньше стоимости меди, которой в электромашиностроении применяются лишь несколько видов.. Температура плавления 657 0 С, удельное сопротивление 0,5 мкОмּм., предел прочности при растяжении σР =160-170 МПа. Главным изоляционным материалом в силовых трансформаторах является трансформаторное масло (ГОСТ 982-80) - жидкий диэлектрик, сочетающий высокие изоляционные свойства со свойствами активной охлаждающей среды и теплоносителя. В данном проекте использовано масло ТК-1500. Кабельная бумага (ГОСТ 23436-83) изготовляется из сульфатной небелёной целлюлозы и выпускается в рулонах шириной 500, 650, 670, 700, 750 и 1000 мм (±3 мм) при диаметре рулона от 450 до 800 мм. В трансформаторах применяется бумага главным образом марки К-120 толщиной 120 мкм для изоляции обмоточного провода; в виде полос разной ширины для межслойной изоляции и в многослойных цилиндрических обмотках класса напряжения 6, 10 ,20 и 35 кВ; в виде полосок шириной 20-40 мм, наматываемых вручную. Картон электроизоляционный (ГСТ494-83) марки Г – картон средней плотности с повышенным сопротивлением к расслаиванию, применяется для получения склеенного картона и изготовления изоляционных деталей. Плотность 1000 кг/м3 , толщина листа, используемого в проекте – 0,50мм, ширина рулона 1000мм. Трубки электротехнические бумажно-бакелитовые (ГОСТ 8726-80). Изготавливаются путем намотки из электроизоляционной пропиточной или намоточной бумаги, предварительно покрытой пленкой бакелитового лака с последующей лакировкой и полимеризацией лака. Выпускаются трубки марки ТБ. Длительно допустимые рабочие температуры от -60 до +105 0 С. Трубки обладают высокой электрической и механической прочностью. mirznanii.com |