Методы определения групп соединения обмоток. Группы и схемы соединения обмоток силовых трансформаторовВыбор группы и схемы соединений обмоток трансформаторовwww.tor-trans.com.ua 2.3 Схемы соединения силовых трансформаторов.Трехфазный трансформаторимеет две трехфазные обмотки - высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквамиA, B, С, конечные выводы - X, Y, Z, а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a,b,c,x,y,z. В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду -Y, либо в треугольник - Δ (рис. 1).
Рис.1 Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение. С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник (Δ ). Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе: nф = Uфвнх / Uфннх, а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле: nл = Uлвнх / Uлннх. Если соединений фазных обмоток выполнено по схемам "звезда-звезда" (Y/Y) или "треугольник-треугольник" (Δ/Δ), то оба коэффициента трансформации одинаковы, т.е. nф = nл. При соединении фаз обмоток трансформатора по схеме "звезда - треугольник" (Y/Δ) - nл = nф√3, а по схеме "треугольник-звезда" (Δ / Y) - nл = nф /√3 Группы соединений обмоток трансформатора Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток. Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1. Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).
Рис.2 Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние - концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°. Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° - группе 6 (рис. 3).
В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров. Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой. Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y - О.
Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y - б.
На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки (а→b , b→c, с→a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.
Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме Y/Δ номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11. Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: Y/Y - 0 и Y/Δ-11. Они, как правило, и применяются на практике. studfiles.net Методы определения групп соединения обмотокОбратная связь ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Лекция №18 Группы соединений обмоток
Группой соединения обмоток называется угол сдвига фаз между линейными напряжениями, измеренными на одноименных зажимах. Группы соединений обозначают целыми числами от 0 до 11. Всего 12 групп. Номер группы определяют величиной угла, на который вектор линейного напряжения обмотки НН отстает от вектора линейного напряжения обмотки ВН. Группа 0 - угол сдвига равен нулю, группа 1 - угол сдвига 30°, группа 2 - угол сдвига 60°, Группа 6 - угол сдвига 180° и т.д. Угол смещения отсчитывают от вектора ЭДС обмотки ВН по часовой стрелке до вектора ЭДС обмотки НН. Например, группа соединения 5 указывает, что вектор ЭДС НН отстает по фазе от вектора ЭДС ВН на угол 5·30° = 150°. Для лучшего понимания принятого обозначения групп соединения пользуются сравнением с часами. При этом вектор ЭДС обмотки ВН соответствует минутной стрелке, установленной на цифре 12, а вектор ЭДС обмотки НН — часовой стрелке (рис. 18.1). Так же необходимо иметь в виду, что совпадение по фазе векторов ЭДС и , эквивалентное совпадению стрелок часов на циферблате, обозначается группой 0 (а не 12). Кроме того, следует помнить, что за положительное направление вращения векторов ЭДС принято их вращение против часовой стрелки. В однофазном трансформаторе ЭДС первичной и вторичной обмоток могут совпадать по фазе или быть сдвинутыми на 180°. Это зависит от направления намотки обмоток и обозначения выводов, т. е. от маркировки. Если обмотки трансформатора намотаны в одну сторону и имеют симметричную маркировку выводов, то индуцированные в них ЭДС имеют одинаковое направление. Следовательно, совпадают по фазе и направление ЭДС. Это соответствует нулевой группе (группа 0). При изменении маркировки выводов одной из фаз или направления намотки одной фазы получается сдвиг по фазе между векторами первичного и вторичного напряжения, равный 180°. Получим группу 6. Таким образом, в однофазном трансформаторе возможны лишь две группы соединения: группа 0, и группа 6. Из этих групп ГОСТ предусматривает лишь группу 0, она обозначается I/I—0.
Рис.18.1 Сравнение положения стрелок часов с обозначением групп соединения
В трехфазных трансформаторах фазные ЭДС двух обмоток, расположенных на одном и том же стержне, могут, так же как и в однофазных трансформаторах, либо совпадать, либо быть противоположными по фазе. Однако в зависимости от схемы соединения обмоток (Υ или ∆) и порядка соединения их начал и концов получаются различные углы сдвига фаз между линейными напряжениями. Изменяя маркировку выводов обмоток, можно получить и другие группы соединений. Согласно ГОСТу отечественная промышленность выпускает трехфазные силовые трансформаторы только двух групп: нулевой и одиннадцатой (см. табл.18.1). Это облегчает практическое включение трансформаторов на параллельную работу.
Таблица 18.1
Методы определения групп соединения обмоток
При изготовлении или в процессе эксплуатации трансформаторов иногда возникает необходимость в опытной проверке группы соединения. Существует несколько методов такой проверки, но наиболее распространены методы фазометра и вольтметра.
Рис. 18.2 Проверка группы соединения Y/Y—0 методами фазометра (а) и вольтметра (б)
Метод фазометра.
Основан на непосредственном измерении угла фазового сдвига между соответствующими линейными напряжениями (ЭДС) обмоток ВН и НН с помощью фазометра φ, включенного по схеме, показанной на рис. 18.2, а.
Метод вольтметра.
Непосредственного измерения угла фазового сдвига между линейными напряжениями (ЭДС) этот метод не дает. Это косвенный метод и основан на измерении вольтметром напряжений (ЭДС) между одноименными выводами обмоток ВН и НН. Этот метод позволяет только подтвердить предполагаемую группу. Для подтверждения предполагаемой группы необходимо, чтобы выполнись равенство напряжений представленных для этой конкретной группы. Например, если проверяют группу соединения Y/Y—0 (рис. 18.2, б), то, соединив проводом выводы А и а, измеряют напряжение Ub-B (между выводами b и В) и Uc-С (между выводами с и С). Если предполагаемая группа соединения Y/Y—0 соответствует фактической, то выполняется равенство напряжений (В), представленное формулой
Ub-B=Uc-C=Uав(kл-1)(18.1)
где kл=UАВ/Uab — отношение линейных напряжений (ЭДС) ВН и НН, т, е. коэффициент трансформации линейных напряжений (ЭДС).
Если проверяют группы соединения 6, 11 или 5, то для проверки измеренных значений напряжений пользуются формулами:
группа Y/Y—6
(18.2)
группа Y/D — 11
(18.3)
группа Y/D —5
(18.4)
Здесь UаЬ и Uxy — линейные напряжения на выводах обмоток НН, В.
Если условия равенства напряжений по приводимым формулам не соблюдаются, то это свидетельствует о нарушениях в маркировке выводов трансформатора или предполагаемая другая. Существуют, также, формулы и для других групп.
megapredmet.ru Схемы и группы соединений обмоток трансформаторовТема: Электрические станции и подстанции Лекция 5. СИЛОВЫЕ ТРАНСФОРМАТОРЫ. Оглавление 5.1 Схемы и группы соединений обмоток трансформаторов. 1 5.2 Системы охлаждения силовых трансформаторов. 7 5.3 Системы регулирования напряжения в силовых трансформаторах. 10 5.4 Параллельное включение трансформаторов. 11
Схемы и группы соединений обмоток трансформаторов Обмотки трансформаторов имеют обычно соединения: звезда — Y, звезда с выведенной нейтралью — Y и треугольник — Δ. Сдвиг фаз между ЭДС первичной и вторичной обмоток (Е1 и Е2) принято выражать условно группой соединений. В трёхфазном трансформаторе применением разных способов соединений обмоток можно образовать двенадцать различных групп соединений, причём при схемах соединения обмоток звезда — звезда мы можем получить любую чётную группу (2, 4, 6, 8, 10, 0), а при схеме звезда—треугольник или треугольник—звезда — любую нечётную группу (1, 3, 5, 7, 9, 11). Группы соединений указываются справа от знаков схем соединения обмоток. Трансформаторы по рис. 5.2 имеют схемы и группы соединения обмоток: Y/Δ-11; Y/Ύ/Δ-0-11; Y/Δ/Δ - 11 - 11. Соединение в звезду обмотки ВН позволяет выполнить внутреннюю изоляцию из расчёта фазной ЭДС, т.е. в раз меньше линейной. Обмотки НН преимущественно соединяются в треугольник, что позволяет уменьшить сечение обмотки, рассчитав ее на фазный ток . Кроме того, при соединении обмотки трансформатора в треугольник создаётся замкнутый контур для токов высших гармоник, кратных трём, которые при этом не выходят во внешнюю сеть, вследствие чего улучшается симметрия напряжения на нагрузке. Соединение обмоток в звезду с выведенной нулевой точкой применяется в том случае, когда нейтраль обмотки должна быть заземлена. Эффективное заземление нейтрали обмоток ВН обязательно в трансформаторах 330 кВ и выше и во всех автотрансформаторах (подробнее ниже). Системы 110, 150 и 220 кВ также работают с эффективно заземлённой нейтралью, однако для уменьшения токов однофазного КЗ нейтрали части трансформаторов могут быть разземлены. Так как изоляция нулевых выводов обычно не рассчитывается на полное напряжение, то в режиме разземления нейтрали необходимо снизить возможные перенапряжения путем присоединения ограничителей перенапряжений к нулевой точке трансформатора (рис. 5.1). Рис.5.1 . Схемы заземления трансформаторов и автотрансформаторов: а – трансформаторов 110 – 220 кВ без РПН; б – трансформаторов 330 – 750 кВ без РПН; в – трансформаторов 110 кВ с РПН; г – автотрансформаторов всех напряжений; д - трансформаторов 150 – 220 кВ с РПН; е – трансформаторов 330 – 500 кВ с РПН.
Нейтраль заземляется также на вторичных обмотках трансформаторов, питающих четырёхпроводные сети 380/220 и 220/127 В. Нейтрали обмоток при напряжении 10—35 кВ не заземляются или заземляются через дугогасящий реактор для компенсации емкостных токов. Технические данные силовых трансформаторов и автотрансформаторов, их схемы и группы соединений определяются действующими ГОСТ и приводятся в каталогах и справочниках. К основным параметрам трансформатора относятся: номинальные мощность, напряжение, ток; напряжение КЗ; ток холостого хода; потери холостого хода и КЗ. Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.
Рис. 5.2 Условное обозначение и схемы соединения обмоток трансформаторов: а – двухобмоточного; б – трехобмоточного; г - с расщепленной обмоткой низкого напряжения
Номинальная мощность для двухобмоточного трансформатора — это мощность каждой из его обмоток. Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора. За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон (ВН или СН), имеющих между собой автотрансформаторную связь («проходная мощность»). Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора. Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трёхфазную группу, соединённую в звезду, — это .При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения на вторичной обмотке напряжение меньше номинального на величину потери напряжения в трансформаторе. Коэффициент трансформации трансформатора n определяется отношением номинальных напряжений обмоток высшего и низшего напряжений В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и НН; ВН и СН; СН и НН. Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют по ее номинальной мощности и номинальному напряжению. Напряжение короткого замыкания uк — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному. Напряжение КЗ определяют по падению напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора. В трехобмоточных трансформаторах и автотрансформаторах напряжение КЗ определяется для любой пары его обмоток при разомкнутой третьей обмотке. Таким образом, в каталогах приводятся три значения напряжения КЗ: u к ВН – НН , uк ВН – СН, uк СН - НН. Поскольку индуктивное сопротивление обмоток значительно выше активного (у небольших трансформаторов в 2 — 3 раза, а у крупных в 15 — 20 раз), то uк в основном зависит от реактивного сопротивления, т.е. взаимного расположения обмоток, ширины канала между ними, высоты обмоток. Величина uк регламентируется ГОСТ в зависимости от напряжения и мощности трансформаторов. Чем больше высшее напряжение и мощность трансформатора, тем больше напряжение КЗ. Так, трансформатор мощностью 630 кВ*А с высшим напряжением 10 кВ имеет uK=5,5%, с высшим напряжением 35 кВ — uк= 6,5 %; трансформатор мощностью 80000 кВ-А с высшим напряжением 35 кВ имеет uK=9%, a с высшим напряжением110кВ — uк= 10,5%. Увеличивая значение uк, можно уменьшить токи КЗ на вторичной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость трансформаторов. Если трансформатор 110 кВ мощностью 25 MB•А выполнить с uK= 20% вместо 10%, то расчетные затраты на него возрастут на 15,7 %, а потребляемая реактивная мощность возрастёт вдвое (с 2,5 до 5,0 МВАр). Трехобмоточные трансформаторы могут иметь два исполнения по значению ик в зависимости от взаимного расположения обмоток. Если обмотка НН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка СН — между ними, то наибольшее значение имеет uк ВН – НН, а меньшее значение — uк ВН – СН. В этом случае потери напряжения по отношению к выводам СН уменьшатся, а ток КЗ в сети НН будет ограничен благодаря повышенному значению uкВН-НН. Это понижающий трансформатор на подстанциях. Если обмотка СН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка НН — между ними, то наибольшее значение имеет uк ВН – СН, а меньшее —uк ВН – НН. Значение uк СН - НН останется одинаковым в обоих исполнениях. Это повышающий трансформатор на станциях. Ток холостого хода IХ характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора. В современных трансформаторах с холоднокатаной сталью токи холостого хода имеют небольшие значения. Потери холостого хода Рх и короткого замыкания Рк определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи. Для их уменьшения применяются электротехническая сталь с малым содержанием углерода и специальными присадками, холоднокатаная сталь толщиной 0,3 мм марок 3405, 3406 и других с жаростойким изоляционным покрытием. В справочниках и каталогах приводятся значения Рх для уровней А и Б. Уровень А относится к трансформаторам, изготовленным из электротехнической стали с удельными потерями не более 0,9 Вт/кг, уровень Б — с удельными потерями не более 1,1 Вт/кг (при В= 1,5 Тл, f= 50 Гц). Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экранируются магнитными шунтами. В современных конструкциях трансформаторов потери значительно снижены. Например, в трансформаторе мощностью 250000 кВ-А при U=110кВ (Рх=200 кВт, Рк=790 кВт), работающем круглый год (Ттах=6300 ч), потери электроэнергии составят 0,43% электроэнергии, пропущенной через трансформатор. Чем меньше мощность трансформатора, тем больше относительные потери в нем. В сетях энергосистем установлено большое количество трансформаторов малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны, и очень важно для экономии электроэнергии совершенствовать конструкции трансформаторов с целью дальнейшего уменьшения значений Рх и Рк. Особенности автотрансформаторов. В установках 110 кВ и выше широкое применение находят автотрансформаторы (AT) большой мощности. Объясняется это рядом преимуществ, которые они имеют по сравнению с трансформаторами той – же мощности: · меньший расход меди, стали, изоляционных материалов; · меньшая масса, а, следовательно, меньшие габариты; · меньшие потери и больший КПД; · более лёгкие условия охлаждения. Однофазный автотрансформатор имеет электрически связанные обмотки ОВ и ОС (рис. 5.3). Часть обмотки, заключённая между выводами В и С, называется последовательной, а между С и О — общей. При работе автотрансформатора в режиме понижения напряжения в последовательной обмотке проходит ток Iв, который, создавая магнитный поток, наводит в общей обмотке ток I0. Ток нагрузки вторичной обмотки IС складывается из тока Iв, проходящего благодаря гальванической (электрической) связи обмоток, и тока I0, созданного магнитной связью этих обмоток: Ic= Iв+I0, откуда I0=IC -IВ. Полная мощность, передаваемая автотрансформатором из первичной сети во вторичную, называется проходной. Если пренебречь потерями в сопротивлениях обмоток автотрансформатора, можно записать следующее выражение: S= UBIB~ UCIC. Преобразуя правую часть выражения, получаем S= UBIB=[(UB- UC)+UC]IB=(UB- UC)IB+ UCIB, (2.6) где (UB- UC)IB= ST — трансформаторная мощность, передаваемая магнитным путем из первичной обмотки во вторичую; UCIB=SЭ— электрическая мощность, передаваемая из первичной
Рис.5.3 . Схема однофазного трансформатора. обмотки во вторичную за счет их гальванической связи, без трансформации. Эта мощность не нагружает общей обмотки, потому что ток IВ из последовательной обмотки проходит на вывод С, минуя обмотку ОС. В номинальном режиме проходная мощность является номинальной мощностью автотрансформатора S= Sном, а трансформаторная мощность — типовой мощностью SТ= Sтип. Размеры магнитопровода, а следовательно, его масса определяются трансформаторной (типовой) мощностью, которая составляет лишь часть номинальной мощности: где nВС= UB/UC — коэффициент трансформации; Кт — коэффициент выгодности или коэффициент типовой мощности. Из формулы для Кт следует, что чем ближе UB к UС, тем меньше Кт и меньшую долю номинальной составляет типовая мощность. Это означает, что размеры автотрансформатора, его масса, расход активных материалов уменьшаются по сравнению с трансформатором одинаковой номинальной мощности. Например, при UВ= 330 кВ и UС=110 кВ КТ=0,667, а при UВ= 550 кВ и UС= 330 кВ КТ= 0,34. Наиболее целесообразно применение автотрансформаторов при сочетании напряжений 220/110; 330/150; 500/220; 750/330. Из схемы (см. рис. 5.3) видно, что мощность последовательной обмотки: ; мощность общей обмотки: . Таким образом, еще раз можно подчеркнуть, что обмотки и магнитопровод автотрансформатора рассчитываются на типовую мощность, которую иногда называют расчетной мощностью. Какая бы мощность ни подводилась к зажимам В или С, последовательную и общую обмотки загружать больше чем на SТИП нельзя. Этот вывод особенно важен при рассмотрении комбинированных режимов работы автотрансформатора. Такие режимы возникают, если имеется третья обмотка, связанная с автотрансформаторными обмотками только магнитным путем. Третья обмотка автотрансформатора (обмотка НН) используется для питания нагрузки, для присоединения источников активной или реактивной мощности (генераторов и синхронных компенсаторов), а в некоторых случаях служит лишь для компенсации токов третьих гармоник. Мощность обмотки НН SHH не может быть больше SТИП, так как иначе размеры автотрансформатора будут определяться мощностью этой обмотки. Номинальная мощность обмотки НН указывается в паспортных данных автотрансформатора. В автотрансформаторах с обмоткой НН возможны различные режимы работы: передача мощности из обмотки ВН в обмотку СН при отключенной обмотке НН; передача мощности из обмотки НН в СН или ВН; передача из обмотки ВН и НН в обмотку СН и другие режимы Во всех случаях необходимо контролировать загрузку общей, последовательной обмоток и вывода СН. К особенностям следует отнести необходимость глухого заземления нейтрали у автотрансформаторов, общей для ВН и СН. stydopedia.ru |