Eng Ru
Отправить письмо

...Электроэнергия без вреда экологии: миф или реальность? Вред и польза аэс


Устройство атомных электростанций. Вред и польза ( Балаковская аэс)

Устройство атомных электростанций. Вред и польза ( Балаковская АЭС)

Работа выполнена учащимися 11 класа Селиверстовым В., Руденко Н.

Необходимость атомной энергетики.

  • Мы научились получать электрическую энергию из невосполняемых ресурсов — нефти и газа, из восполняемых — воды, ветра, солнца. Но энергии солнца или ветра недостаточно, чтобы обеспечить активную жизнедеятельность нашей цивилизации. А гидроэлектростанции и ТЭЦ не так чисты и экономны, как того требует современный ритм жизни

Физические основы атомной энергетки.

  • Ядра некоторых тяжелых элементов — например, некоторых изотопов плутония и урана — при определенных условиях распадаются, выделяя колоссальное количество энергии и превращаясь в ядра других изотопов. Этот процесс и называется расщеплением ядер. Каждое ядро, расщепляясь, «по цепочке» вовлекает в расщепление и своих соседей, поэтому процесс называется цепной реакцией. Ход ее непрерывно контролируется с помощью специальных технологий, так что он еще и контролируемый. Все это и происходит в реакторе, сопровождаясь выбросом огромной энергии. Эта энергия разогревает воду, которая вращает могучие турбины, которые вырабатывают электричество

Принцип работы аЭС

Мировая атомная энергетика.

  • Ведущие производители атомной энергии в мире — почти все самые технически развитые страны: США, Япония, Великобритания, Франция и, конечно, Россия. Сейчас во всем мире действует около 450 атомных реакторов.

  • Отказались от атомных электростанций: Германия, Швеция, Австрия, Италия.

Российские АЭС.

  • Балаковская

  • Белоярская

  • Волгодонская

  • Калининская

  • Кольская

  • Курская

  • Ленинградская

  • Нововоронежская

  • Смоленская

Российская атомная энергетика.

  • История атомной энергетики в России началась 20 августа 1945 года, когда был создан «Специальный комитет по управлению работами с ураном», а спустя 9 лет уже была построена первая АЭС — Обнинская. Впервые в мире атомная энергия была приручена и поставлена на службу мирным целям. Безупречно проработав 50 лет, Обнинская АЭС стала легендой, а выработав свой ресурс, была отключена.

  • Сейчас в России работает 31 атомный энергоблок на 10 АЭС, которые питают четверть всех электрических лампочек в стране.

Балаковская Атомная.

Балаковская Атомная.

  • Балаковская АЭС — крупнейший в России производитель электроэнергии. Ежегодно она вырабатывает более 30 миллиардов кВт. час электроэнергии (больше, чем любая другая атомная, тепловая и гидроэлектростанция страны). Балаковская АЭС обеспечивает четверть производства электроэнергии в Приволжском федеральном округе и пятую часть выработки всех атомных станций страны. Ее электроэнергией надежно обеспечиваются потребители Поволжья (76 % поставляемой ею электроэнергии), Центра (13 %), Урала (8 %) и Сибири (3 %). Электроэнергия Балаковской АЭС — самая дешевая среди всех АЭС и тепловых электростанций России. Коэффициент использования установленной мощности (КИУМ) на Балаковской АЭС составляет более 80 процентов.

технические характеристики.

  • Реактор типа ВВЭР-1000 (В-320)

  • Турбоустановка типа К-1000-60/1500-2 с номинальной мощностью 1000 МВт и частотой вращения 1500 об./мин.;

  • Генераторы типа ТВВ-1000-4 мощностью 1000 МВт и напряжением 24 кВ.

  • Ежегодная выработка электроэнергии составляет свыше 30—32 млрд кВт(2009 — 31,299 млрд кВт·ч.

  • Коэффициент использования установленной мощности  — 89,3 %.

История Балаковской атомной.

  • 28 октября 1977 г – закладка первого камня.

  • 12 декабря 1985 г – пуск 1 энергоблока.

  • 24 декабря 1985 г – первый ток.

  • 10 октября 1987 г – 2 энергоблок.

  • 28 декабря 1988 г – 3 энергоблок.

  • 12 мая 1993 г – 4 энергоблок.

Достоинства атомных станций:

  • Небольшой объём используемого топлива и возможность его повторного использования после переработки.

  • Высокая единичная мощность: 1000—1600 МВт на энергоблок;

  • Относительно низкая себестоимость энергии, особенно тепловой;

  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики;

  • Хотя при работе АЭС в атмосферу и выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит ещё большее количество радиационных выбросов из-за естественного содержания радиоактивных элементов в каменном угле.

Недостатки атомных станций:

  • Облученное топливо опасно: требует сложных, дорогих, длительных мер переработки и хранения;

  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

  • С точки зрения статистики крупные аварии весьма маловероятны, однако последствия такого инцидента крайне тяжёлы, что делает трудноприменимым страхование, обычно применяемое для экономической защиты от аварий;

  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также для последующей ликвидации отслуживших блоков;

  • Так как для АЭС необходимо предусматривать особо тщательно процедуры ликвидации (из-за радиоактивности облученных конструкций) и особо длительное наблюдение отходов — по времени заметно большем, чем период самой эксплуатации АЭС — то это делает неоднозначным экономический эффект от АЭС, сложным его корректный расчет.

Используемые ресурсы:

  • Буклет Балаковская АЭС

rpp.nashaucheba.ru

насколько он реален? Как работают АЭС? Насколько опасен данный вид добычи электроэнергии?

Краткое содержание статьи:

 

Катастрофы всегда пугают своими последствиями, одна только мысль о возможном повторении вгоняет в страх. Но что если все меры по предотвращению подобных инцидентов создадут ещё больше проблем? И речь идёт не о терроризме, как можно было подумать.

 

Вред атомных станций для человека

 

Атомная энергетика – положение дел

Во всём мире на 2015 год существовала 191 атомная электростанция, все они обеспечивали 10% от мировой потребности в электроэнергии. Правда, процент рассчитывается и с учётом стран, в которых АЭС никогда не было.

Франция, Украина и Словакия входят в тройку лидеров, в плане обеспечения собственных потребностей в электроэнергии за счёт атомных станций. От 50 до 75%, что впечатляет, учитывая низкую себестоимость производства и определённые сложности с эксплуатацией.

В России лишь немногим более 20% от потребляемой энергии вырабатывается на АЭС, перспективы для развития в этом направлении имеются.

Самым громким случаем стал отказ от строительства новых станций в Японии, после событий на Фукусиме. Но в последние несколько лет японцы начали снова наращивать количество добываемой таким способом энергии, ввиду незавидного положения с полезными ископаемыми.

Страх перед последствиями отходит на второй план, когда есть вполне реальная потребность, которую необходимо удовлетворять, любым способом.

Развитие атомной энергетики

 

Чем страшна авария на АЭС?

Когда речь идёт о подобных катастрофах, все вспоминают Чернобыль и Фукусиму. На самом деле, аварий было не меньше десятка, но лишь две имели столь серьёзные последствия для экологии, жизни людей и экономики стран. Любой выброс радиоактивного вещества влечёт за собой:

  1. Загрязнение окружающей территории активными изотопами, распадающимися в течение тысяч или даже миллионов лет;
  2. Последствия для соседних стран, за счёт осадков и морских течений;
  3. Повышение уровня заболеваемости онкологией на сотни километров вокруг;
  4. Риск гибели сотрудников станции и ликвидаторов;
  5. Прекращение работы станции и энергетический коллапс.

Каждый, кто знает, что недалеко от его города расположена АЭС, хоть раз и задумывался, не произойдёт ли чего плохого? В случае катастрофы паника возможна даже в удалённых городах, каждый будет переживать за своё здоровье, и пытаться выяснить, как далеко могут распространиться радиоактивные элементы за счёт попутного ветра и прочих природных явлений.

Особого страха могло бы и не быть, если бы не печальный опыт. Каждый, кто хоть раз обжёгся, будет обходить стороной печи, плиты и прочие раскалённые предметы. Такие настроения активно используются политиками, для манипуляции общественным мнением и достижением своих целей.

Авария на Фукусиме

 

Как работают атомные электростанции?

Многие не особо понимают, как работает атомная электростанция, и переживают уже от одного этого момента.

В общих чертах это можно объяснить так:

  • Имеется активная зона, в которой за счёт радиоактивных элементов вырабатывается тепло;
  • Теплоноситель передаёт его воде, находящейся в отдельном резервуаре;
  • Дойдя до температуры кипения, жидкость начинает вращать турбину;
  • Движение турбины обеспечивает накопление заряда в генераторе и дальнейшее распространение электричества;
  • Пар конденсируется в воду, которая возвращается в водохранилище и повторно используется.

Может показаться, что таким образом загрязняется вода, но это не так. Жидкость не контактирует ни с чем радиоактивным, в водоём она возвращается в «первозданном виде». Разве что, становится чуть теплее, что является единственным видом загрязнения, которое оказывают станции – тепловым.

В остальном – станция абсолютно безопасна, пока работает в штатном режиме и не нарушается технологический процесс. С точки зрения экологии, она не причиняет никакого вреда, в отличие от ТЭЦ.

АЭС внутри

 

Реальная опасность АЭС

Почему же мы отказались от массового использования АЭС и не перешли на новый вид энергии? Как же «мирный атом в каждый дом» и прочие громкие лозунги? Всё дело в общественном мнении и страхе перед последствиями.

Загрязнение радиоактивными изотопами опасно тем, что территория, на которой произошла катастрофа, будет недоступна для человека на протяжении десятилетий, если не веков. Примером тому является Чернобыль, с его зоной – катастрофа произошла в прошлом столетии, но до сих пор никто всерьёз не обсуждает возможность возвращения человека в Припять и на близлежащие территории.

Почти все аварии произошли в момент тестирования нового механизма или внесения поправок в производственный процесс. Поддержание работоспособности АЭС, при неукоснительном соблюдении всех разработанных инструкций – не самая сложная задача. Но речь идёт о 191 станции и более 400 блоков, которые функционируют постоянно, без перерывов и выходных. На такой длинной дистанции ошибка оного человека может иметь серьёзные последствия для всей энергетики, что уже говорить об экологии и жизнях сотен тысяч людей.

Чернобыльская станция внутри

 

Энергия атома в мире

В прошлом веке фантасты мечтали о том, что в каждом бытовом приборе будет миниатюрный атомный двигатель, по типу батарейки. К сожалению или к счастью, подобные смелые надежды не оправдались, существует не более двухсот АЭС и ни одна страна в мире не обеспечивает все свои потребности за счёт этого вида энергии.

Касательно использования ТЭЦ вместо атомных станций – здесь есть некоторые проблемы. Мы не сможем назвать ни одной серьёзной катастрофы, произошедшей в связи со сжиганием угля. Но живя неподалёку от таких «источников энергии», о природе думать очень сложно. Мешает постоянный дым и радиационный фон.

Да, при сжигании угля активируются радиоактивные изотопы, которые в качестве примесей находились в ископаемых ресурсах. Даже по этому параметру АЭС обходят своих ближайших конкуренток.

Кстати, перспектива атомной энергетики напрямую зависит от цен на нефть. Чем ниже этот показатель, тем доступнее «чёрное золото» и прочие углеродные энергоносители. В таких условиях, нет смысла развивать более «опасное» направление, когда можно получить много дешёвой энергии, получая единственный необходимый ресурс по нефтепроводу.

Страх толкает людей на необдуманные и бессмысленные поступки. Одним из таких является отказ от атомной энергетики и дальнейшее загрязнение окружающей среды.

Энергетические станции

 

Видео про аварии на АЭС

В данном ролике Тимур Сычев расскажет про 7 аварий на атомных электростанциях, которые правительство тщательно скрывало, не допуская разглашения:

1-vopros.ru

...Электроэнергия без вреда экологии: миф или реальность? | Вопрос-Ответ

Развитая энергетика – это фундамент для будущего прогресса цивилизации. Если на заре мировой и отечественной энергетической отрасли ставку делали на получение максимума электроэнергии для промышленности, то сегодня на первый план вышел вопрос о влиянии электростанций на окружающую среду и человека. Современная энергетика наносит значимый вред природе, и странам приходится делать непростой выбор между тепловыми, атомными и гидроэлектростанциями.

Тепловые электростанции – «привет» из прошлого

В начале 20 века в нашей стране ставку сделали именно на тепловые электростанции. На тот момент плюсов у них было достаточно, а о влиянии такого вида производства энергии на окружающую среду задумывались мало. ТЭС работают на дешевом топливе, которым богата Россия, да и их сооружение стоит не так дорого по сравнению со строительством ГЭС или АЭС. ТЭС не требуют больших площадей и их можно строить в любой местности. Последствия технологических аварий на тепловых станциях не так разрушительны, как на других электростанциях.

Доля ТЭС в отечественной энергосистеме самая большая: в 2011 году на тепловых станциях России было выработано 67,8% (это 691 млрд. кВт*ч) от всей энергии в стране. Между тем, тепловые электростанции наносят самый значимый ущерб окружающей среде по сравнению с другими электростанциями.

Ежегодно тепловые электростанции выбрасывают в атмосферу огромное количество отходов. Согласно госдокладу «О состоянии и об охране окружающей среды РФ в 2010 году», самыми крупными источниками выбросов загрязняющих веществ в атмосферный воздух стали именно ГРЭС – крупные тепловые электростанции. Только за 2010 год 4 ГРЭС, принадлежащие ОАО «Энел ОГК-5», – Рефтинская, Среднеуральская, Невинномысская и Конаковская ГРЭС – выбросили в атмосферу 410 360 тонн загрязняющих веществ.

Источник фото: russianlook.com

При сжигании ископаемого топлива образуются продукты сгорания, содержащие оксид азота, серный и сернистый ангидрид, частички несгоревшего пылевидного топлива, летучую золу и газообразные продукты неполного сгорания. При сжигании мазута образуются соединения ванадия, кокс, соли натрия, частицы сажи, а в выбросах угольных ТЭС присутствуют окислы алюминия и кремния. И все тепловые электростанции, независимо от используемого топлива, выбрасывают колоссальные количества углекислого газа, вызывающего глобальное потепление.

Газ значительно удорожает стоимость электроэнергии, но при его сжигании не образуется зола. Правда в атмосферу также попадают окись серы и оксиды азота, как и при сжигании мазута. А ТЭС нашей страны, в отличие от зарубежных, не оснащены эффективными системами очистки уходящих газов. В последние годы в этом направлении ведется серьезная работа: реконструируются котлоагрегаты и золоулавливающие установки, электрофильтры, внедряются автоматизированные системы экологического мониторинга выбросов.

Достаточно остро стоит вопрос нехватки качественного топлива для ТЭС. Многие станции вынуждены работать на топливе низкого качества, при сгорании которого в атмосферу вместе с дымом попадает большое количество вредных веществ.

Главная проблема угольных ТЭС – это золоотвалы. Они не только занимают значительные территории, но и являются очагами скопления тяжелых металлов и обладают повышенной радиоактивностью.

Более того, тепловые электростанции сбрасывают в водоемы тёплую воду и этим загрязняют их. Как следствие, нарушение кислородного баланса и зарастание водорослями, что несет угрозу ихтиофауне. Загрязняют водоемы и сточные производственные воды ТЭС, которые содержат нефтепродукты. При том на ТЭС, работающих на жидком топливе, сбросы производственных вод выше.

Несмотря на относительную дешевизну ископаемого топлива, оно все же является невосполнимым природным ресурсом. Основными энергетическими ресурсами в мире являются уголь (40%), нефть (27%) и газ (21%) и по некоторым оценкам, при нынешних темпах потребления мировых запасов хватит на 270, 50 и 70 лет соответственно.

ГЭС – «укрощенная» стихия

Укрощать водную стихию начали еще в конце 19 века, а масштабная стройка ГЭС по всей стране совпала с развитием промышленности и освоением новых территорий. Строительство ГЭС не только решало вопрос обеспечения электроэнергией новых производств, но и улучшало условия судоходства и мелиорации.

Маневренные возможности ГЭС помогают оптимизировать работу энергосистемы, позволяя тепловым электростанциям работать в оптимальном режиме с минимальными затратами топлива и минимальными выбросами на каждый произведенный киловатт-час электроэнергии.

Источник фото: russianlook.com

Одно из главных преимуществ гидроэнергетики в том, что она наносит меньший ущерб окружающий среде по сравнению с другими электростанциями. ГЭС не используют топливо, значит, вырабатываемая ими электроэнергия стоит значительно дешевле, ее стоимость не зависит от колебаний цен на нефть или уголь, а производство энергии не сопровождается загрязнением атмосферы и вод. Выработка электроэнергии на ГЭС обеспечивает ежегодную экономию 50 млн. тонн условного топлива. Потенциал экономии составляет 250 млн. тонн.

Вода – это возобновляемый источник электроэнергии и в отличие от ископаемого топлива, ее можно использовать несчитанное количество раз. Гидроэнергетика – самый развитый вид возобновляемых источников энергии, она способна обеспечивать энергией целые регионы. Еще один плюс, так как ГЭС не сжигают топливо, нет дополнительных затрат по утилизации и захоронению отходов.

В то же время ГЭС имеет и ряд недостатков с точки зрения экологии. При строительстве ГЭС на равнинных реках приходится затапливать большие территории пахотных земель. Создание водохранилищ существенно меняет экосистему, что отражается не только на ихтиофауне, но и на животном мире. Правда, как отмечают некоторые экологи, при реализации комплекса природоохранных мероприятий через несколько десятилетий возможно восстановление экосистемы.

АЭС – энергия будущего?

Ядерная энергия была открыта сравнительно недавно, а первая в мире атомная станция заработала в 1954 году в Обнинске. Сегодня атомная промышленность развивается активными темпами, однако трагедия на Фукусиме заставила многие страны пересмотреть свои взгляды на будущее АЭС.

В отечественной энергосистеме на долю АЭС приходится небольшая часть производимой энергии. В 2011 году на АЭС страны произвели 172,9 млрд. кВт*ч, что составляет всего 16,9%. Тем не менее у госкорпорации «Росатом» серьезные планы по развитию атомной промышленности в России и за ее пределами.

Атомные станции, несмотря на высокую стоимость строительства, экономически выгодны: производимая ими электроэнергия относительно дешевая. Да и с точки экологии у АЭС есть ряд преимуществ.

Источник фото: russianlook.com

АЭС не выбрасывают в атмосферу золу и другие опасные вещества, образующиеся в результате сжигания топлива. Основная доля выбросов загрязняющих веществ в атмосферу приходится на пускорезервные котельные, котельные профилакториев и периодически включаемые резервные дизельгенераторные станции. По данным госдоклада, в 2010 году все атомные станции страны выбросили в атмосферу всего 1559 тонн загрязняющих веществ (для сравнения, приведенные выше 4 ГРЭС выбросили 410 360 тонн). Доля АЭС в общем объеме выбросов загрязняющих веществ в атмосферный воздух всеми предприятиями страны уже на протяжении многих лет – менее 0,012%.

Запасов ядерного топлива – урана – значительно больше, чем других видов топлива. Россия обладает 8,9% от разведанных резервов урана в мире, находясь в общем списке на четвёртом месте.

Но, несмотря на очевидные плюсы, такие страны как Германия, Швейцария, Италия, Япония и ряд других отказались от атомной энергетики. В Германии доля АЭС в энергосистеме – 32%, но к 2022 году будет отключена последняя станция в стране. Главная причина – это безопасность АЭС для окружающей среды и населения. Мирный атом в одно мгновение может стать виновником гибели и тяжелых болезней миллионов людей и животных, и нанести непоправимый ущерб окружающей среде. Катастрофические последствия аварий на АЭС сразу перечеркивают все указанные преимущества.

Более того, при эксплуатации ядерных реакторов образуются радиоактивные отходы, которые необходимо хранить сотни тысяч лет, пока они не станут более-менее безопасными для окружающей среды. И в мире еще не найдено решение, как сделать их хранение безопасным. Часть ядерных отходов направляется на переработку (регенерацию) с частичным извлечением урана и плутония для последующего использования (но в результате переработки образуются новые отходы, по объему превышающие изначальное количество отходов в тысячи раз), или на захоронение в земле. Небезупречен с экологической точки зрения и процесс добычи урана, а также его превращения в ядерное топливо.

Стоит отметить, что даже на исправно работающих АЭС часть радиоактивного материала попадает в воздух и воду. И пусть это небольшие дозы, но какое влияние они окажут на окружающую среду в долгосрочной перспективе, предугадать сложно.

Прогресс не стоит на месте и сложно точно сказать, какой будет энергетика будущего. Но надо понимать, что энергетика, равно как и любая другая деятельность человека, оказывает в определенной мере негативное влияние на окружающую среду. И избежать его полностью, к сожалению, невозможно. Но вполне реально приложить все усилия, чтобы минимизировать ущерб, наносимый природе. Например, выбирать те технологии (пусть и дорогостоящие), которые наиболее безопасны для окружающей среды. Так, гидроэнергетика, которая единственная в таких масштабах использует возобновляемый источник энергии – воду – несмотря на ряд недостатков с точки зрения экологии, приносит все же минимальный ущерб окружающей среде по сравнению с другими электроэнергетическими объектами.

Смотрите также:

www.aif.ru

Ядерная (Атомная) энергия – Применение и использование энергии атомного ядра, ядерной реакции, источников энергии; Проблемы безопасности, развития и получения ядерной энергии, значение открытия и взрыв атомной бомбы. Плюсы и минусы, польза и вред ядерной энергетики на greensource.ru

20 11 2016      greenman       Пока нет комментариев  

Ядерная (Атомная) энергия

Применение атомной энергии

Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников ядерной энергии составляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия. И если две последние страны еще в состоянии заместить ядерные источники энергии на тепловые станции, то для Франции, или Японии это попросту невозможно.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

Плюсы и минусы, польза и вред от использования ядерной энергии

Рассмотрим плюсы и минусы применения атомной-ядерной энергии, их пользу, вред и значение в жизни Человечества. Очевидно, что атомная энергия сегодня нужна лишь промышленно развитым странам. То есть, основное применение мирная ядерная энергия находит в основном, на таких объектах, как заводы, перерабатывающие предприятия, и т.п. Именно энергоемкие производства, удаленные от источников дешевой электроэнергии (вроде гидроэлектростанций) задействуют ядерные станции для обеспечения и развития своих внутренних процессов.

Аграрные регионы и города не слишком нуждаются в атомной энергии. Ее вполне можно заместить тепловыми и другими станциями. Получается, что овладение, получение, развитие, производство и использование ядерной энергии по большей части направлено на удовлетворение наших потребностей в промышленной продукции. Посмотрим, что это за производства: автомобильная промышленность, военные производства, металлургия, химическая промышленность, нефтегазовый комплекс, и т.д.

Современный человек хочет ездить на новой машине? Хочет одеваться в модную синтетику, кушать синтетику и упаковывать все в синтетику? Хочет ярких товаров разных форм и размеров? Хочет все новых телефонов, телевизоров, компьютеров? Хочет много покупать, часто менять оборудование вокруг себя? Хочет вкусно питаться химической едой из цветных упаковок? Хочет жить спокойно? Хочет слышать сладкие речи с телеэкрана? Хочет, чтобы танков было много, а также ракет и крейсеров, а еще снарядов и пушек?

Хочет?

И он все это получает. Неважно, что в конце расхождение между словом и делом приводит к войне. Неважно, что для его утилизации также нужна энергия. Пока что человек спокоен. Он ест, пьет, ходит на работу, продает и покупает.

А для всего этого нужна энергия. А еще для этого нужно очень много нефти, газа, металла и т.п. И все эти промышленные процессы нуждаются в атомной энергии. Поэтому кто бы что ни говорил, до тех пор, пока не будет запущен в серию первый промышленный реактор термоядерного синтеза, атомная энергетика будет только развиваться.

В плюсы ядерной энергии мы можем смело записать все то, к чему мы привыкли. К минусам – печальную перспективу скорой смерти в коллапсе исчерпания ресурсов, проблемах ядерных отходов, росте численности населения и деградации пахотных площадей. Иначе говоря, атомная энергетика позволила человеку еще сильнее начать овладевать природой, насилуя ее сверх меры настолько, что он за несколько десятилетий преодолел порог воспроизводства основных ресурсов, запустив между 2000 и 2010 годами процесс схлопывания потребления. Этот процесс объективно уже не зависит от человека.

Всем придется меньше есть, меньше жить и меньше радоваться окружающей природе. Здесь кроется еще один плюс-минус атомной энергии, который заключается в том, что страны, овладевшие атомом, смогут эффективнее перераспределять под себя скудеющие ресурсы тех, кто атомом не овладел. Более того, только развитие программы термоядерного синтеза позволит человечеству элементарно выжить. Теперь поясним на пальцах, что же это за «зверь» — атомная (ядерная) энергия и с чем ее едят.

Масса, материя и атомная (ядерная) энергия

Часто приходится слышать утверждение, что «масса и энергия одно и то же», или же такие суждения, будто выражение Е=mс2 объясняет взрыв атомной (ядерной) бомбы. Сейчас, когда вы получили первое представление о ядерной энергии и ее применении, было бы поистине неразумно сбивать вас с толку такими утверждениями, как «масса равна энергии». Во всяком случае, такой способ трактовки великого открытия не из лучших. По-видимому, это всего лишь острословие молодых реформистов, «Галилеев нового времени». На деле же предсказание теории, которое проверено многими экспери-ментами, говорит лишь о том, что энергия имеет массу.

Сейчас мы разъясним современную точку зрения и дадим небольшой обзор истории ее развития.Когда энергия любого материального тела возрастает, его масса увеличивается, и мы приписываем эту дополнительную массу приросту энергии. Например, при поглощении излучения поглотитель становится горячее и его масса возрастает. Однако возрастание настолько мало, что остается за пределами точности измерений в обычных опытах. Напротив, если вещество испускает излучение, то оно теряет капельку своей массы, которая уносится излучением. Возникает более широкий вопрос: не обусловлена ли вся масса вещества энергией, т. е. не заключен ли во всем веществе громадный запас энергии? Много лет назад радиоактивные превращения на это ответили положительно. При распаде радиоактивного атома выделяется огромное количество энергии (в основном в виде кинетической энергии), а малая часть массы атома исчезает. Об этом ясно говорят измерения. Таким образом, энергия уносит с собой массу, уменьшая тем самым массу вещества.

Следовательно, часть массы вещества взаимозаменяема массой излучения, кинетической энергией и т. п. Вот почему мы говорим: «энергия и вещество способны частично к взаимным превращениям». Более того, мы теперь можем создавать частицы вещества, которые обладают массой и способны полностью превращаться в излучение, также имеющее массу. Энергия этого излучения может перейти в другие формы, передав им свою массу. И наоборот, излучение способно превращаться в частицы вещества. Так что вместо «энергия обладает массой» мы можем сказать «частицы вещества и излучение — взаимопревращаемы, а потому способны к взаимным превращениям с другими формами энергии». В этом и состоит создание и уничтожение вещества. Такие разрушительные события не могут происходить в царстве обычной физики, химии и техники, их следует искать либо в микроскопических, но активных процессах, изучаемых ядерной физикой, либо в высокотемпературном горниле атомных бомб, на Солнце и звездах. Однако было бы неразумно утверждать, что «энергия — это масса». Мы говорим: «энергия, как и вещество, имеет массу».

Масса обычного вещества

Мы говорим, что масса обычного вещества таит в себе огромный запас внутренней энергии, равной произведению массы на (скорость света)2. Но эта энергия заключена в массе и не может быть высвобождена без исчезновения хотя бы части ее. Как возникла столь удивительная идея и почему она не была открыта раньше? Ее предлагали и раньше — эксперимент и теория в разных видах,— но вплоть до двадцатого века изменение энергии не наблюдали, ибо в обычных экспериментах оно соответствует невероятно малому изменению массы. Однако сейчас мы уверены, что летящая пуля благодаря своей кинетической энергии имеет дополнительную массу. Даже при скорости 5000 м/сек пуля, которая в покое весила ровно 1 г, будет иметь полную массу 1,00000000001 г. Раскаленная добела платина массой 1 кг всего прибавит 0,000000000004 кг и практически ни одно взвешивание не сможет зарегистрировать эти изменения. Только когда из атомного ядра высвобождаются огромные запасы энергии или когда атомные «снаряды» разгоняются до скорости, близкой к скорости света, масса энергии становится заметной.

 

С другой стороны, даже едва уловимая разница масс знаменует возможность выделения огромного количества энергии. Так, атомы водорода и гелия имеют относительные массы 1,008 и 4,004. Если бы четыре ядра водорода смогли объединиться в одно ядро гелия, то масса 4,032 изменилась бы до 4,004. Разница невелика, всего 0,028, или 0,7%. Но она означала бы гигантское выделение энергии (преимущественно в виде излучения). 4,032 кг водорода дали бы 0,028 кг излучения, которое имело бы энергию около 600000000000 Кал.

Сравните это с 140 000 Кал, выделяющимися при соединении того же количества водорода с кислородом в химическом взрыве.Обычная кинетическая энергия дает заметный вклад в массу очень быстрых протонов, получаемых на циклотронах, и это создает трудности при работе с такими машинами.

Почему мы все же верим, что Е=mс2

Сейчас мы воспринимаем это как прямое следствие теории относительности, но первые подозрения возникли уже ближе к концу 19 века, в связи со свойствами излучения. Тогда казалось вероятным, что излучение обладает массой. А поскольку излучение переносит, как на крыльях, со скоростью с энергию, точнее, само есть энергия, то появился пример массы, принадлежащей чему-то «невещественному». Экспериментальные законы электромагнетизма предсказывали, что электромагнитные волны должны обладать «массой». Но до создания теории относительности только необузданная фантазия могла распространить соотношение m=Е/с2 на другие формы энергии.

Всем сортам электромагнитного излучения (радиоволнам, инфракрасному, видимому и ультрафиолетовому свету и т. д.) свойственны некоторые общие черты: все они распространяются в пустоте с одинаковой скоростью и все переносят энергию и импульс. Мы представляем себе свет и другое излучение в виде волн, распространяющихся с большой, но определенной скоростью с=3*108 м/сек. Когда свет падает на поглощающую поверхность, возникает теплота, показывающая, что поток света несет энергию. Эта энергия должна распространяться вместе с потоком с той же скоростью света. На деле скорость света именно так и измеряется: по времени пролета порцией световой энергии большого расстояния.

Когда свет падает на поверхность некоторых металлов, он выбивает электроны, вылетающие точно так же, как если бы их ударил компактный шарик. Энергия света, по всей видимости, распространяется концентрированными порциями, которые мы называем «квантами». В этом и заключается квантовый характер излучения, несмотря на то, что эти порции, по-видимому, создаются волнами. Каждая порция света с одной и той же длиной волны обладает единой и той же энергией, определенным «квантом» энергии. Такие порции мчатся со скоростью света (собственно, они-то и есть свет), перенося энергию и количество движения (импульс). Все это позволяет приписать излучению некую массу — каждой порции приписывается определенная масса.

При отражении света от зеркала теплота не выделяется, ибо отраженный луч уносит всю энергию, но на зеркало действует давление, подобное давлению упругих шариков или молекул. Если же вместо зеркала свет попадает на черную поглощающую поверхность, давление становится вдвое меньше. Это свидетельствует о том, что луч несет количество движения, поворачиваемое зеркалом. Следовательно, свет ведет себя так, как если бы у него была масса. Но можно ли откуда-то еще узнать, что нечто обладает массой? Существует ли масса по своему собственному праву, как, например, длина, зеленый цвет или вода? Или это искусственное понятие, определяемое поведением наподобие Скромности? Масса, на самом деле, известна нам в трех проявлениях:

  • А. Туманное утверждение, характеризующее количество «вещества», (Масса с этой точки зрения присуща веществу — сущности, которую мы можем увидеть, потрогать, толкнуть).
  • Б. Определенные утверждения, увязывающие ее с иными физическими величинами.
  • В. Масса сохраняется.

Остается определить массу через количество движения и энергию. Тогда любая движущаяся вещь с количеством движения и энергией должна иметь «массу». Ее массой должно быть (количество движения)/(скорость).

Теория относительности

Стремление увязать воедино серию экспериментальных парадоксов, касающихся абсолютного пространства и времени, породило теорию относительности. Два сорта экспериментов со светом давали противоречивые результаты, а опыты с электричеством еще больше обострили этот конфликт. Тогда Эйнштейн предложил изменить простые геометрические правила сложения векторов. Это изменение и составляет сущность его «специальной теории относительности».

Для малых скоростей (от медлительной улитки до быстрейшей из ракет) новая теория согласуется со старой.При высоких скоростях, сравнимых со скоростью света, наше измерение длин или времени модифицируется движением тела относительно наблюдателя, в частности масса тела становится тем больше, чем быстрее оно движется.

Затем теория относительности провозгласила, что это увеличение массы носит совершенно общий характер. При обычных скоростях никаких изменений нет, и только при скорости 100 000 000 км/час масса возрастает на 1%. Однако для электронов и протонов, вылетающих из радиоактивных атомов или современных ускорителей, оно достигает 10, 100, 1000%…. Опыты с такими высокоэнергетическими частицами великолепно подтверждают соотношение между массой и скоростью.

На другом краю находится излучение, не имеющее массы покоя. Это не вещество и его нельзя удержать в покое; оно просто имеет массу, и движется со скоростью с, так что его энергия равна mс2. О квантах, мы говорим как о фотонах, когда хотим отметить поведение света как потока частиц. Каждый фотон имеет определенную массу m, определенную энергию Е=mс2 и количество движения (импульс).

Ядерные превращения

В некоторых экспериментах с ядрами массы атомов после бурных взрывов, складываясь, не дают ту же самую полную массу. Освобожденная энергия уносит с собой и какую-то часть массы; кажется, что недостающая часть атомного материала исчезла. Однако если мы припишем измеренной энергии массу Е/с2, то обнаружим, что масса сохраняется.

Аннигиляция вещества

Мы привыкли думать о массе как о неизбежном свойстве материи, поэтом переход массы из вещества в излучение — от лампы к улетающему лучу света выглядит почти как уничтожение вещества. Еще один шаг — и мы с удивлением обнаружим то, что происходит на самом деле: положительный и отрицательный электроны, частички вещества, соединившись вместе, полностью превращаются в излучение. Масса их вещества превращается в равную ей массу излучения. Это случай исчезновения вещества в самом буквальном смысле. Как в фокусе, во вспышке света.

Измерения показывают, что (энергия, излучения при аннигиляции)/ с2 равна полной массе обоих электронов — положительного и отрицательного. Антипротон, соединяясь с протоном, аннигилирует, обычно с выбросом более легких частиц с большой кинетической энергией.

Создание вещества

Сейчас, когда мы научились распоряжаться высокоэнергетическим излучением (сверхкоротковолновыми рентгеновскими лучами), мы можем приготовить из излучения частицы вещества. Если такими лучами бомбардировать мишень, они дают иногда пару частиц, например положительный и отрицательный электроны. И если снова воспользоваться формулой m=Е/с2 как для излучения, так и для кинетической энергии, то масса будет сохраняться.

Просто о сложном – Ядерная (Атомная) энергия

  • Галерея изображений, картинки, фотографии.
  • Ядерная энергия, энергия атома – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Ядерная энергия, энергия атома.
  • Ссылки на материалы и источники – Ядерная (Атомная) энергия.

greensource.ru

Здоровье и АЭС

АЭС карикатураСколько сломано копий на вопросах по развитию атомной энергетики. Стоит где-нибудь в мире начать строительство АЭС, как сразу партии и общественные объединения выступают за закрытие станций и прекращение строительства. Так, так ли уж опасны и не экологичны атомные электростанции?

Как известно, электроэнергия, это основной источник энергии для человечества. Получают ее на основных станциях – ГЭС, ТЭЦ, АЭС. Но больше всего страха вызывают АЭС.

Если разобраться, то самую дешевую электроэнергию получают на атомных электростанциях. Самая дорогая электроэнергия на тепловых, работающих на угле. Организации, которые борются с атомными станциями, как правило, прекращают свои выступления, когда речь заходит о том, что на данном месте будет строиться тепловая станция. Но вот в чем вопрос. ТЭЦ на угле, выбрасывает столько вредных выбросов, что о хорошей экологической ситуации рядом с ТЭЦ не может идти и речи. Никакие фильтры не спасают от угольной пыли. Одна станция сжигает за год сотни тысяч тон угля. А горы запасов угля возле нее, угольную пыль, прекрасно раздувают ветры по всей округе на многие километры. Станции на горючих сланцах тоже далеко не ушли. Даже станции на газу, также выбрасывают в атмосферу тонны СО. Но наибольший страх вызывает именно атомная электростанция. Причина тут естественно в Чернобыльской аварии и аварии в США. Правда там утечка была не значительна, по сравнению с Чернобыльской катастрофой. На станции произошел так называемый Китайский синдром. В принципе такая же авария, как и на Чернобыльской АЭС. Но с той лишь разницей, что в США, персоналу удалось взять реактор под контроль. Тем не менее, в 70-х годах, эта авария наделала много шума. Но так ли опасна АЭС? Как утверждают физики, АЭС вообще, на сегодняшний день наиболее экологически чистая станция. Конечно, есть альтернативные электростанции. Солнечные, волновые, ветровые. Но их процент в доли получения электроэнергии так не велик, что их до сих пор всерьез не берут в расчет.

А как же гидроэлектростанции? Оказалось, что они наносят вред не столько самому человеку, в плане выбросов, а наносят вред природе и рекам. Примером может служить станция в штате Пенджаб, построенная с помощью России. Как ни странно, но именно эти сооружения стали причиной ряда землетрясений в Индии. Так утверждают сейсмологи. Да и Асуанская плотина нанесла непоправимый вред огромным территориям в Египте и не только. Правда, это все выяснилось гораздо позже, после строительства.

А что же атомные электростанции?АЭС фото

Современные реакторы весьма надежны. Второго Чернобыля наверняка от новых реакторов ждать не приходиться. Чего не скажешь о старых станциях. Но вот куда девать отработанное топливо? Это вопрос. Те хранилища и технологии по утилизации, скорее это «Привет от прадедов», для наших правнуков. Пока человечество их прячет в могильниках, сваливая проблему решения на будущие поколения. Но это, пожалуй, единственный отрицательный вопрос в полемике «За» и «Против» об АЭС. Если смотреть на вопрос шире, выбирать, между ТЭЦ и АЭС, то конечно по экологичности, АЭС даст фору любой ТЭЦ, с самыми надежными фильтрами. Но, тем не менее, из-за фобии, вызванной Чернобылем, граждане многих стран готовы вдыхать и наслаждаться выбросами ТЭЦ и котельных, умирать от заболеваний легких, онкологии вызванной канцерогенными веществами, содержащиеся в продуктах горения, чем разрешить строительство АЭС, с ее «страшной» радиацией.

Все, что не делается, значит кому-то это надо. Значит кому-то выгодно, что бы строились все новые ТЭЦ. Кому-то надо, что бы на них сжигались миллионами тон и кубометров ежегодно газ, уголь, сланцы, мазут. И кто-то кровно заинтересован, что бы не было отказа от этих станций в пользу АЭС. А уж как запугать население перспективой строительства АЭС, известно многим.

А вот интересный факт. Наиболее пострадало от Чернобыльской катастрофы Гомельская область Беларуси. За ней идет Брестская, Минска. Но, что интересно. Первое место по заболеваемости онкологическими заболеваниями держит уверенно Витебская область. Но ведь она менее всего пострадала от аварии на АЭС. Выступа Главврач Витебской области заявил, что пока установить причину такого высокого взлета заболеваемости не удается. А ведь совсем недавно, увеличение заболеваемости раком, напрямую увязывали с Чернобыльской катастрофой. Выходит не все так просто. В нашей жизни присутствуют еще столько отрицательных факторов, что искать причину своих болезней в только построенной АЭС просто глупо. Об этом говорит и статистика. А о вреде ТЭЦ давно говорят ученые. Но их, как правило, слушают в последнюю очередь.

Обсудить на форуме

vsezdorovo.com

Польза и вред атома | НОУ Колледж Мосэнерго

24-04-2015

Польза и вред атомаЯдерная энергия с ее возможностями выступает как атрибут современного цивилизованного общества, демонстрирует развитие общественной культуры и выступает одной из важнейших сфер в международных отношениях. Ядерная энергия влияет непосредственно на жизнедеятельность людей и ее основные компоненты в частности, а именно несомненна ее востребованность в науке и технике, политике, экономике, здравоохранении и защите окружающей среды, а также благополучия социума.

Прослеживается техногенный риск применения энергии атома во влиянии на общие данные показателей качества жизни, а именно среднюю продолжительность жизни, «цену жизни», качество жизни и экологическую ситуацию. В этой связи ведется работа по управлению теми факторами, которые связаны с использованием атома, направленная на снижение ее негативных воздействий.

Использование атома, бесспорно, имеет и свои положительные стороны, предоставляющие возможности для улучшения показателей жизни в целом. По политическим и экономическим причинам возникают споры, вызванные конфликтами заинтересованности имеющих влияние организаций международного уровня. Всплески радиофобии среди простого населения также сопровождают периодически случающиеся ядерные аварии.

В какой период обозначилось влияние радиации на жизнедеятельность людей?

В 1895 году Рентген открыл рентгеновское излучение, а чуть позже Беккерель обозначил существование естественной активности излучения. Изначально данные явления применялись в целях научных исследований и повышали знания и образованность, в том числе и в медицине. Так, Марией Складовской был создан аппарат для срочного рентгенологического исследования людей, получивших травмы. Ею создано не менее двухста рентгенологических установок, что привнесло большую пользу в медицину и лечение раненых.

Что случилось впоследствии?

Изначально ядерная энергия использовалась сугубо для науки, однако весьма скоро в прерогативе обозначилось ядерное оружие. Величайшие открытия и колоссальный скачок научно-технического прогресса благодаря открытиям в этой области вывели человечество на принципиально новый уровень качества жизни.

college-mosenergo.ru

Устройство атомных электростанций

www.shkolageo.ru 1

Устройство атомных электростанций. Вред и польза ( Балаковская АЭС)

Работа выполнена учащимися 11 класа Селиверстовым В., Руденко Н.

Необходимость атомной энергетики.

  • Мы научились получать электрическую энергию из невосполняемых ресурсов — нефти и газа, из восполняемых — воды, ветра, солнца. Но энергии солнца или ветра недостаточно, чтобы обеспечить активную жизнедеятельность нашей цивилизации. А гидроэлектростанции и ТЭЦ не так чисты и экономны, как того требует современный ритм жизни

Физические основы атомной энергетки.

  • Ядра некоторых тяжелых элементов — например, некоторых изотопов плутония и урана — при определенных условиях распадаются, выделяя колоссальное количество энергии и превращаясь в ядра других изотопов. Этот процесс и называется расщеплением ядер. Каждое ядро, расщепляясь, «по цепочке» вовлекает в расщепление и своих соседей, поэтому процесс называется цепной реакцией. Ход ее непрерывно контролируется с помощью специальных технологий, так что он еще и контролируемый. Все это и происходит в реакторе, сопровождаясь выбросом огромной энергии. Эта энергия разогревает воду, которая вращает могучие турбины, которые вырабатывают электричество

Принцип работы аЭС

Мировая атомная энергетика.

  • Ведущие производители атомной энергии в мире — почти все самые технически развитые страны: США, Япония, Великобритания, Франция и, конечно, Россия. Сейчас во всем мире действует около 450 атомных реакторов.

  • Отказались от атомных электростанций: Германия, Швеция, Австрия, Италия.

Российские АЭС.

  • Балаковская

  • Белоярская

  • Волгодонская

  • Калининская

  • Кольская

  • Курская

  • Ленинградская

  • Нововоронежская

  • Смоленская

Российская атомная энергетика.

  • История атомной энергетики в России началась 20 августа 1945 года, когда был создан «Специальный комитет по управлению работами с ураном», а спустя 9 лет уже была построена первая АЭС — Обнинская. Впервые в мире атомная энергия была приручена и поставлена на службу мирным целям. Безупречно проработав 50 лет, Обнинская АЭС стала легендой, а выработав свой ресурс, была отключена.

  • Сейчас в России работает 31 атомный энергоблок на 10 АЭС, которые питают четверть всех электрических лампочек в стране.

Балаковская Атомная.

Балаковская Атомная.

  • Балаковская АЭС — крупнейший в России производитель электроэнергии. Ежегодно она вырабатывает более 30 миллиардов кВт. час электроэнергии (больше, чем любая другая атомная, тепловая и гидроэлектростанция страны). Балаковская АЭС обеспечивает четверть производства электроэнергии в Приволжском федеральном округе и пятую часть выработки всех атомных станций страны. Ее электроэнергией надежно обеспечиваются потребители Поволжья (76 % поставляемой ею электроэнергии), Центра (13 %), Урала (8 %) и Сибири (3 %). Электроэнергия Балаковской АЭС — самая дешевая среди всех АЭС и тепловых электростанций России. Коэффициент использования установленной мощности (КИУМ) на Балаковской АЭС составляет более 80 процентов.

технические характеристики.

  • Реактор типа ВВЭР-1000 (В-320)

  • Турбоустановка типа К-1000-60/1500-2 с номинальной мощностью 1000 МВт и частотой вращения 1500 об./мин.;

  • Генераторы типа ТВВ-1000-4 мощностью 1000 МВт и напряжением 24 кВ.

  • Ежегодная выработка электроэнергии составляет свыше 30—32 млрд кВт(2009 — 31,299 млрд кВт·ч.

  • Коэффициент использования установленной мощности  — 89,3 %.

История Балаковской атомной.

  • 28 октября 1977 г – закладка первого камня.

  • 12 декабря 1985 г – пуск 1 энергоблока.

  • 24 декабря 1985 г – первый ток.

  • 10 октября 1987 г – 2 энергоблок.

  • 28 декабря 1988 г – 3 энергоблок.

  • 12 мая 1993 г – 4 энергоблок.

Достоинства атомных станций:

  • Небольшой объём используемого топлива и возможность его повторного использования после переработки.

  • Высокая единичная мощность: 1000—1600 МВт на энергоблок;

  • Относительно низкая себестоимость энергии, особенно тепловой;

  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики;

  • Хотя при работе АЭС в атмосферу и выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит ещё большее количество радиационных выбросов из-за естественного содержания радиоактивных элементов в каменном угле.

Недостатки атомных станций:

  • Облученное топливо опасно: требует сложных, дорогих, длительных мер переработки и хранения;

  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

  • С точки зрения статистики крупные аварии весьма маловероятны, однако последствия такого инцидента крайне тяжёлы, что делает трудноприменимым страхование, обычно применяемое для экономической защиты от аварий;

  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также для последующей ликвидации отслуживших блоков;

  • Так как для АЭС необходимо предусматривать особо тщательно процедуры ликвидации (из-за радиоактивности облученных конструкций) и особо длительное наблюдение отходов — по времени заметно большем, чем период самой эксплуатации АЭС — то это делает неоднозначным экономический эффект от АЭС, сложным его корректный расчет.

Используемые ресурсы:

  • Буклет Балаковская АЭС

www.shkolageo.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта