Eng Ru
Отправить письмо

Воздушные выключатели. Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели. Воздушные высоковольтные выключатели


Высоковольтные воздушные выключатели

МегаПредмет 

Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

 
 
Рисунок 5.1 - Полюс высоковольтного выключателя ВНВ – 750

 

 

Выключатели типа ВНВ-750А-40/3150У1 предназначены для коммутации электрических сетей в нормальных и аварийных режимах в сетях трехфазного переменного тока частоты 50 Гц с номинальным напряжением 750 кВ.

Выключатель состоит из трех полюсов, механически не связанных друг с другом, и общего распределительного шкафа, обеспечивающего электрическую и пневматическую связь между полюсами.

Полюс выключателя состоит из трех одинаковых модулей, резервуара со шкафом управления и рам. Основные узлы модуля полюса: колонка опорных изоляторов с растяжками, дугогасительное устройство с конденсаторами и экранами (рисунок 5.1).

Рисунок 5.2 -. Пневмомеханическая схема полюса выключателя ВНВ-750

На основании модуля выключателя 750 кВ расположен бак со сжатым воздухом. Сжатый воздух по трубопроводу подается в верхний бак, образованный металлическим цилиндром 9 и стеклоэпоксидным цилиндром 11 и содержащий ДУ (рисунок 5.2. Главный контакт создается пальцами 19 неподвижного контакта и внешней поверхностью подвижного цилиндрического контакта 18. Пальцы дугогасительного контакта 20 расположены в прорезях дутьевого сопла неподвижного контакта и скользят по внутренней поверхности контакта 18. В показанном на рисунке 41.7 включенном положении контакт 18 прижат к седлу 25. Внутренняя полость контакта 18 соединяется с атмосферой через открытый выхлопной клапан 24, а его внешняя поверхность и пальцы 19 находятся в среде сжатого воздуха. Сопло 17 подвижное. Начальное расстояние между контактом 20 и соплом 17 - оптимальное для данного сечения сопла. После гашения дуги подвижное сопло перемещается под действием давления внутри ДУ вправо, садится на седло 26 и герметизирует камеру. Для уменьшения напряженности электрического поля между контактами в разведенном состоянии они окружены экранами 16. Это позволяет поднять электрическую прочность промежутка и номинальное напряжение модуля.

При отключении срабатывает отключающий электромагнит 3, открывающий клапан 6. После этого сжатый воздух подается на поршень 7, воздействующий на тягу 8. Через звенья 5, 4, 2 усилие передается на изоляционные 13, которые перемещаются вниз. Звенья 15 и 37 соединяются с тягой 13 трубкой 14 и перемещают горизонтальную тягу 36, которая связана с подвижным контактом 18. Контакт 18 сначала размыкается с пальцами 19, а затем с пальцами 20. Между последними и внутренней поверхностью контакта 18 загорается дуга, которая быстро перемещается воздушным потоком, вытекающим в атмосферу через дутьевое сопло неподвижного контакта и подвижное сопло 17. Гашение дуги происходит за счет двустороннего дутья. Шток 31 связан с тягой 13. При движении тяги 13 вниз связанный с ней шток 31 действует на рычаг 30 и открывает клапан 34. При этом сжатый воздух, находящийся над поршнем 35, через змеевик 29 выходит в атмосферу. Поршень 35 освобождает рычаги 27 и 28 и с помощью тяг 22, 23 и коромысла 21 закрывает клапан 24. Одновременно подвижное сопло 17 вместе с ограничивающим электродом 41 перемещается вправо, пока не сядет на седло 26. Таким образом, внутренний объем ДУ герметизируется и от­деляется от атмосферы. Электрод 41 ограничивает длину дуги, горя­щей между ним и неподвижным дугогасительным контактом 20, что уменьшает энергию, выделяемую дугой.

При токах отключения до 40 кА выключатель не имеет шунтирую­щих резисторов. При токах 63 кА или тяжелых условиях восстановления напряжения используются низкоомный шунтирующий резистор и вспо­могательный контактный блок для отключения резистора (рис. 18.20, поз. 5). Контейнер с этим блоком и резистором располагается рядом с ДУ. Управление вспомогательным блоком осуществляется от клапана 34 (стрелка А).

При включении срабатывает электромагнит 12. Клапан 10 открыва­ется и соединяет полость над поршнем 7 с атмосферой. Одновременно подается сжатый воздух на поршень 38, который отделяет полость бака от поршня 7. Под действием заранее заведенной пружины 33 шток 32 опускается и клапан 34 закрывается. Сжатый воздух подается к порш­ню 35, и он опускается, воздействуя на рычаги 28, 27. Клапан 24 открывается, а подвижное сопло 17 устанавливается в положение, указанное на рисунке. При этом внутренняя полость контакта 18 и сопла 17 соединяется с атмосферой. При закрытии клапана 34 сжатый воздух подается в контейнер со вспомогательным контактным блоком, который включает резистор. При движении тяги 13 вверх подвижный контакт 18 замыкается с неподвижным, одновременно поршень 7 переходит в положение, указанное на рисунке. После выхода воздуха из полости над поршнем 7 закрываются клапаны 10, 6 и поршень 38 устанавливается в исходное положение соответствующими пружинами.

В выключателе на напряжение 1150 кВ при включении вначале замыкаются вспомогательные контакты и в цепь вводится резистор, сопротивление которого равно волновому сопротивлению коммутируемой линии. Затем примерно через 10 мс включается контакт 18, который шунтирует этот резистор. Это ограничивает перенапряжения при включении холостых линий электропередачи.

Выключатель имеет следующие конструктивные особенности:

1. ДУ расположены внутри прочных стеклоэпоксидных труб, являющихся баком сжатого воздуха выключателя. Такая конструкция позволяет снять с фарфора воздействие высокого давления воздуха. Фарфоровая рубашка защищает стеклоэпоксидную трубу от воздействия атмосферы.

2. Давление сжатого воздуха в ДУ достигает 4 МПа, что наряду с другими мероприятиями обеспечивает ток отключения до 63 кА при напряжении на разрыве 125 кВ.

3. ДУ имеет два разрыва. После гашения дуги дугогасительный контакт отходит на расстояние, обеспечивающее необходимую электрическую прочность промежутка, и в своем крайнем положении воздействует на выхлопной клапан ДУ, камера ДУ герметизируется, и разведенные контакты находятся при давлении 4 МПа.

4. Привод контактов расположен на заземленном баке выключателя. Передача силы от привода к механизму контактов осуществляется механически через легкую изоляционную стеклопластиковую тягу. Это позволяет получать полное время отключения 0,04 с.

5. При тяжелых условиях восстановления напряжения параллельно каждому разрыву включается низкоомный шунтирующий резистор (40 Ом). Из конструктивных соображений резистор разбит на две части два контейнера). Ток резистора отключается двухступенчатой контактной системой, расположенной в одном из контейнеров.

Дугогасительное устройство (рисунок 5.3) предназначено для пропускания тока во включенном положении выключателя, гашения электрической дуги при размыкании контактов и создания изоляционного промежутка в отключенном положении выключателя.

Дугогасительное устройство состоит из корпуса, внутри которого расположены: подвижные контакты, неподвижные контакты, механизм управления подвижными контактами, привод сопел, фильтр для очистки воздуха. В его состав входят так же оперативный клапан с включающей пружиной, вводы, выхлопные клапана, трубки, запитывающие привод сопел, обеспечивающие вентиляцию внутренних полостей, выхлопные.

Конденсаторы предназначены для равномерного распределения напряжения по разрывам дугогасительного устройства при расхождении главных контактов в процессе отключения и в отключенном положении.

Экраны предназначены для выравнивания напряжения по изоляторам колонки, выравнивания электрического поля вводов, защиты персонала от действия электрического поля в зоне обслуживания шкафов управления и распределительного шкафа.

 

 

megapredmet.ru

Тема 10. Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели. Воздушные выключатели.(1/1/1;1/1/1)

План лекции

1 Конструктивные схемы воздушных выключателей

2 Устройство выключателя ВВБ-110

3 Устройство воздушного выключателя ВНВ-220

В воздушных выключателях гашение дуги происходит сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами.

Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство.

В выключателях на большие номинальные токи (рисунок 1, а, б) имеются главный и дугогасительный контуры, как и в маломасляных выключателях МГ и ВГМ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара 1, создается мощное дутье, гасящее лугу. Дутье может быть продольным (рисунок 1, а) или поперечным (рисунок 1, б). Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов на достаточное расстояние (рисунок 1, б) или специальным отделителем 5, расположенным открыто (рисунок 1, а). После отключения отделителя 5 прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются. Выключатели, выполненные по такой конструктивной схеме, изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВП, а также на 35 кВ (ВВЭ-35-20/1600УЗ).

 

 

Рисунок 1 - Конструктивные схемы воздушных выключателей

 

В выключателях для открытой установки дугогасительная камера расположена внутри фарфорового изолятора, причем на напряжение 35 кВ достаточно иметь один разрыв на фазу (рисунок 1, б), на 110 кВ — два разрыва на фазу (рисунок 1, г). Различие между этими конструкциями состоит в том, что в выключателе 35 кВ изоляционный промежуток создается в дугогасительной камере 2, а в выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5, и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения, при этом в дутогасительную камеру сжатый воздух не подается и контакты в ней замыкаются. По конструктивной схеме (рисунок 1,г) созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше разрывов необходимо иметь в дугогасительной камере и в отделителе (на 330 кВ - восемь; на 500 кВ - десять).

В рассмотренных конструкциях воздух подается в дугогасительные камеры из резервуара, расположенного около основания выключателя. Если контактную систему поместить в резервуар сжатого воздуха, изолированный от земли, то скорость гашения дуги значительно увеличится. Такой принцип заложен в основу серии выключателей ВВБ (рисунок 1, д). В этих выключателях нет отделителя. При отключении выключателя дугогасительная камера 2, являющаяся одновременно резервуаром сжатого воздуха, сообщается с атмосферой через дутьевые клапаны, благодаря чему создается дутье, гасящее дугу. В отключенном положении контакты находятся в среде сжатого воздуха. По такой конструктивной схеме созданы выключатели до 750 кВ. Количество дугогасительных камер (модулей) зависит от напряжения: 110 кВ — одна: 220, 330 кВ — две; 500 кВ — четыре;750кВ - шесть (в серии ВВБК).

Для равномерного распределения напряжения по разрывам используют омические 3 и емкостные 6 делители напряжения. Рассмотрим более подробно конструкции некоторых воздушных выключателей.

В цепях генераторов находят применение специальные выключатели нагрузки (ВНСГ) Uном=15 кВ, рассчитанные на включение генераторов при самосинхронизации (iвкл=115 кА) и выдерживающие большие сквозные токи КЗ (iпр,с=480 кА). Таким выключателем можно включать и отключать генератор под нагрузкой (Iном=12000 А), а также отключать токи КЗ до 31,5 кА. Выключатель ВНСГ компактно встраивается в комплектный токопровод. Гашение дуги осуществляется сжатым воздухом, имеющим давление 0,6 МПа.

В последнее время на энергоблоках 800, 1000 МВт АЭС применяется комплектный аппарат КАГ-24, основной частью которого является выключатель нагрузки, рассчитанный на напряжение 24 кВ, ток 30 кА. Выключатель нагрузки при номинальном давлении воздуха 2 МПа может отключать ток 30 кА и включать ток 75 кА (амплитудное значение). Возможна одна операция включения аварийного тока не более 310 кА (амплитудное значение). При такой операции допускается частичное сваривание контактов. Выключатель нагрузки не предназначен для АПВ и выполнения полного цикла отключение — включение О—180—ВО—1 80-ВО.

Устройство КАГ-24 встраивается в комплектный токопровод генераторного напряжения.

В состав каждого полюса входят выключатель нагрузки QW, разъединитель QS с одним встроенным заземлителем главной цепи QSG, четыре трансформатора напряжения TV.

Комплектное устройство КАГ-24 предназначено для оперативных коммутаций и измерений напряжения в цепи главных выводов генераторов 800 и 1000 МВт при нормальном режиме, а также для создания необходимого изоляционного промежутка в отключенном положении и заземления отсоединенного участка. Комплектное устройство имеет блокировки, запрещающие отключение и включение разъединителя QS при включенном выключателе нагрузки QW, отключение и включение заземляющего разъединителя QSG при включенном выключателе QW или разъединителе QS. КАГ-24-30/30000 УЗ имеет принудительный обдув.

Выключатели нагрузки генераторные значительно увеличивают гибкость и надежность схем блочных ТЭС и АЭС.

Воздушные выключатели ВВ нашли широкое применение в установках 110—500 кВ. Их конструкция соответствует схеме 1 и отличается при разном напряжении количеством дугогасительных камер и камер воздухонаполненного отделителя. Для отключения и гашения дуги в них используется воздух давлением 2 МПа.

В настоящее время выключатели этой серии постепенно вытесняются более совершенными и быстродействующими выключателями.

Во всех рассмотренных выключателях сжатый воздух из заземленного резервуара подается в дугогасительную камеру по изолированному воздухопроводу или внутренней полости изолятора, длина которых зависит от номинального напряжения выключателя. Время заполнения камеры сжатым воздухом зависит от давления воздуха в резервуаре и от длины воздухопровода. В выключателях 35 и 110 кВ это время составляет 0,003-0,005 с, в выключателях 150-220 кВ - 0,007 - 0,01 с, в выключателях 330—500 кВ — 0,013 — 0,014 с. Увеличение времени заполнения камеры увеличивает собственное время отключения выключателя, при этом ухудшается основной показатель воздушного выключателя — быстродействие.

Выключатели серии ВВБ (см. рисунок 1, д) имеют изолированный от земли резервуар сжатого воздуха, внутри которого находится контактная система. Поэтому собственное время отключения этих выключателей сверхвысокого напряжения меньше, чем у выключателей серии ВВ. Давление воздуха в гасительной камере в выключателях ВВ из-за постепенной его подачи к моменту гашения дуги равно примерно половине номинального. В выключателях ВВБ давление воздуха к моменту гашения равно номинальному, поэтому эти выключатели имеют большую мощность отключения.

Основным элементом выключателей серии ВВБ является дугогасительный модуль с двумя разрывами в металлическом резервуаре со сжатым воздухом (2 МПа). При номинальном напряжении 110 кВ на каждый полюс имеется один модуль (рисунок 2). Основанием выключателя служит вертикальный резервуар 1 со сжатым воздухом, на котором сбоку закреплен шкаф управления с элементами электрического и пневматического управления. Запаса воздуха, содержащегося в дугогасительном модуле объемом 1500 л. достаточно для двух отключений. Дополнительный вертикальный резервуар вместимостью 2300 л, предусмотренный в последних конструкциях ВВБ-110, обеспечивает цикл О - Гдт - ВО без подпитки сжатым воздухом из магистрали.

Дугогасительная камера связана с дополнительным резервуаром трубой из изолирующего материала, по которой происходит постоянная подпитка воздухом. Кроме того, в изоляторе проходит вторая труба меньшего диаметра, по которой подается или сбрасывается воздух в процессе включения и отключения. Эта труба называется импульсной.

На электропневматической схеме выключателя ВВБ-110 (рисунок 2) условно показан горизонтальный разрез (кроме вспомогательных контактов). Расположение емкостного делителя 17 также показано условно. На опорном изоляторе 3 укреплен металлический резервуар — дугогасительный модуль, внутри которого находятся подвижные контакты в виде ножей 14, закрепленных на траверсе, и неподвижные контакты 15 внутри металлических стаканов с прорезями для входа ножей. Неподвижные контакты находятся внутри металлических конфузоров 20, экранирующих ножи в отключенном положении и создающих направленный поток воздуха при отключении.

На вводах 18, изолированных эпоксидными втулками 19 и фарфоровой рубашкой, внутри камеры расположены шунтирующие резисторы 16 и вспомогательные контакты 21.

На рисунке 2 выключатель показан в отключенном положении. Для включения подается командный импульс на электромагнит включения YAC. который открывает пусковой клапан 25. Воздух из полости обратного клапана 25 и объема а промежуточного клапана 27 сбрасывается в атмосферу. Промежуточный клапан перемещается вверх и обеспечивает сброс воздуха из объема б клапана управления, который перекрывает доступ сжатому воздуху из резервуара 1 и обеспечивает сброс воздуха из объема в под поршнем дутьевого клапана и из полости г через полый шток 8. При этом за счет разности давлений под поршнем 10 и над ним контактная система идет на включение. Ролики фиксатора 12 переходят через выступ на штоке 13. Контактные ножи 14 входят в пальцевый неподвижный контакт 15. Одновременно через золотники 6 сжатый воздух сбрасывается из полости д и запирающая шайба 7 под действием своей пружины перемещается к поршню 5. При закрытии клапана 2 обеспечивается сброс воздуха из-под поршня привода 23 вспомогательных контактов SQ, которые переводятся в положение «включено».

Вспомогательные контакты 21 включаются с некоторым запаздыванием но отношению к главным с помощью клапана 22.

Во включенном положении ток проходит по токоведущему стержню ввода через неподвижный контакт 18, нож 14, траверсу, нож и контакт второю разрыва во второй ввод.

Для отключения выключателя подается командный импульс на электромагнит отключения YAT, который открывает пусковой клапан 24.Сжатый воздух из резервуара через обратный клапан 26 заполняет объем а. Клапан 27 открывается, обеспечивая доступ сжатому воздуху в объем б, при этом клапан 2 соединяет импульсную трубу с резервуаром 1. Сжатый воздух поступает в полость в, поршень 5 вместе с шайбой 7 перемещаются вверх. Движение поршня через полый шток 8 передается тарелке дутьевого клапана, поршню механической траверсы 10 и через шток 13 траверсе с контактными ножами. Открывается дутьевой клапан, контакты размыкаются и возникает дуга. Мощным потоком воздуха дуга с рабочих контактов перебрасывается на противоэлектрод 11 и концы стаканов неподвижного контакта 12. Время гашения дуги не превышает 0,02 с.

В конце хода поршня 5 шайба 7 закрывает выход в атмосферу из полости д. Начинается переток воздуха из полости в в полость д через регулируемое отверстие в поршне, закрытое иглой 4. Когда давление в полости д увеличится, поршень под действием своей пружины возвратится в исходное положение, а шайба останется прижатой в верхнем положении. Вместе с поршнем опускается тарелка 9, и дутьевой клапан закрывается.

 

 

Рисунок 2 - Электропневматическая и электрическая функциональная схема выключателя ВВБ-110.

 

Отключение вспомогательных контактов, разрывающих ток через шунтирующие сопротивления, происходит с запаздыванием по отношению к главным за счет подачи воздуха в клапан 22 после того как шайба 7 перекроет выход в атмосферу. Возникшая между контактами дуга гасится потоком воздуха, проходящего через полый подвижный контакт.

При подаче воздуха в импульсную трубу в процессе отключения часть воздуха попадает под поршень привода 23 и вспомогательные контакты переводятся в положение, соответствующее отключенному положению выключателя.

В настоящее время выключатели серии ВВБ модернизированы. Новые выключатели ВВБК (кpупномодульные) работают при давлении воздуха 4 МПа, а в камере гашения дуги кроме основною дутья, как и в серии ВВБ, имеется дополнительное дутье через неподвижные контакты с продувкой продуктов горения через полые токоведущие стержни вводов. Это позволило увеличить отключаемый ток до 50—56 кА, а количество модулей в полюсе снизить: на 330 кВ вместо четырех модулей (ВВБ) в серии ВВБК — два модуля, на 500 кВ вместо шести модулей — четыре, на 750 кВ вместо восьми — шесть.

На напряжение выше 750 кВ находят применение воздушные выключатели в подвесном исполнении.

Выключатели серии ВНВ имеют укрупненный двухразрывный дугогасительный модуль на напряжение 220—250 кВ. Все выключатели этой серии на 110—1150 кВ компонуются из резервуара со шкафом управления и опорной изоляционной колонки, на которой смонтирован дугогасительный модуль. Полюс выключателя на 220 кВ имеет одну опорную колонку с одним двухразрывным модулем (рисунок 3), на 500 кВ — две опорные колонки и два модуля, на 750 кВ — три колонки и три модуля, на 1150 кВ — пять колонок и пять модулей. Полюс выключателя на 110 кВимеет одноразрывный модуль.

 

 

Рисунок 3 - Полюс воздушного выключателя ВНВ-220: 1 – резервуар; 2 – изолятор; 3 – механизм привода; 4 – блок шунтирующих реакторов

 

Дугогасительный модуль — это двухразрывная дугогасительная камера, контактная система которой находится постоянно в среде сжатого воздуха (4 МПа) как во включенном, так и в отключенном положении. Контакты смонтированы в металлическом резервуаре, на котором установлены контейнеры с шунтирующими резисторами и коммутирующими их механизмами, также заполненные сжатым воздухом. Токоведущие части присоединены к контактной системе с помощью изолирующих вводов. Гашение дуги в камере осуществляется двусторонним дутьем, сжатым воздухом, выбрасываемым через внутренние полости контактов и выхлопные клапаны в атмосферу. Контакты имеют двухтактное движение: при гашении дуги разрыв между контактами имеет минимальное значение, чем обеспечивается интенсивное дутье, после окончания гашения дуги подвижный контакт перемещается па максимальное расстояние, обеспечивая необходимую электрическую прочность.

На рисунке 4 схематически показано устройство одного разрыва дугогасительного модуля выключателя ВНВ на 500 кВ во включенном положении.

 

 

Рисунок 4 - Дугогасительный модуль выключателя ВНВ, пневмомеханическая схема

 

Отключение происходит при срабатывании электромагнита отключения, который, воздействуя на клапан пневматической системы, связанной с резервуаром 1, создает движение изолированной тяги 2 и рычагов 3, в результате чего подвижный контакт б перемещается вправо.

Вначале размыкаются главные рабочие контакты 7, а затем дугогасительные 8. Дуга возникает между внутренней дугостойкой поверхностью подвижного контакта б и ламелями дугогасительного контакта и потоком сжатого воздуха из камеры сдувается на подвижное сопло 5. Так как внутренние полости контактов связаны с выхлопной полостью 11 и через нее с атмосферой, создается мощное дутье и дуга гаснет. После окончания гашения дуги подвижный контакт перемещается на максимальное расстояние и прячется за электростатический экран 4. Одновременно при движении тяги 2 вниз перемещается шток 12 и, воздействуя выступом на рычаг, открывает оперативный клапан 14. Воздух над поршнем 15 выбрасывается в атмосферу, сам поршень перемещается, и подвижное сопло 5 движется вправо до упора, прекращая выхлоп воздуха в атмосферу. Истечение воздуха из неподвижного контакта также прекращается, так как выхлопной клапан 9, приводимый тягой 10, перекрывает отверстие контакта 8.

При включении срабатывает электромагнит включения, он открывает пусковой клапан, и шток 12 под действием включающей пружины 13 перемещается вверх. Со штоком 12 связана тяга 2 (на рисунке 3.13, а не видно), которая через рычаги 3 передает движение подвижному контакту 6. Он перемещается влево и замыкает цепь.

Пневмомеханическсе устройство, примененное в выключателе ВНВ, уменьшает собственное время отключения до 0.02-0,025 с.

Распределение напряжения между дугогаситсльными разрывами осуществляется с помощью параллельно включенных конденсаторов. При необходимости (большие скорости восстанавливающегося напряжения) выключатели могут оснащаться шунтирующими резисторами 1. В этом случае после гашения дуги в главной цепи на контактах 2 отключаются вспомогательные контакты 4 в среде сжатого воздуха разрывая небольшой ток.

Все фарфоровые покрышки разгружены от воздействия сжатого воздуха и динамических нагрузок стеклоэпоксидными цилиндрами.

Кроме выключателей на опорных изоляторах разработаны конструкции подвесных выключателей с модулями серии ВНВ на 1150 кВ, которые обеспечивают значительную экономию площади ОРУ.

Выключатели серии ВНВ рассчитаны на ток отключения 40—63 кА. По сравнению с выключателями ВВБ эти выключатели имеют меньшую массу и меньшие габариты.

Воздушные выключатели имеют следующие достоинства: взрыво- и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.

Недостатками воздушных выключателей являются необходимость компрессорной установка, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформаторов тока.

Рекомендуемая литература:

Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1987. – 648 с.: ил.

Чунихин А.А. Электрические аппараты: Общий курс. Учебник для вузов. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1988. – 720 с.: ил.

Самостоятельная работа студентов:

1. Изучение конструкции воздушных выключателей

 

cyberpedia.su

Высоковольтный воздушный выключатель

 

ВЫСОКОВОЛЬТНЫЙ ВОЗДУШНЫЙ ВЬПСЛЮЧАТЕЛЬ линии электропередачи или Трансформатора, оборудованных блоком напряжения, содержащий электромагниты включения и отключения, обмотки каждого из которых через соответствующие блок-контакты и кнопки соединены с источником оперативного напряжения, а их штоки связаны с пневматическими блоками включения и отключения соответственно, дугогасительную камеру с подключенными к ее контактам резистором и связанную с отделителем пневматическим тру Вопроводом , в котором размещен обратный клапан, а между выводами обмоток электромагнитов включения и отключения включен управляемый ключ с блоком временной задержки в цепи управления , отличающийся тем, что, с целью повышения надежности путем предотвращения включения при наличии короткого замыкания, обратный клапан выполнен в виде дифференциального электромагнитного клапана, обмотка которого через дополнительно введенный диод включена параллельно обмотке электромагнита отключения § и через дополнительно введенные вто ((Л рой yпpaвляe tый. ключ и кнопку включения соединена с источником опера .-I тивного напряжения, а в цепь управ .ления второго управляемого ключа вве ден второй блок временной задержки Ъ через выходную цепь порогового элемента, вход которого предназначен для подключения к выходу блока напряжения . 00

СОЮЗ СОВЕТСКИХ

СОЦИАЛИСтИЧЕСНИХ

РЕСПУБЛИН за Н 01 Н 33/91

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

М ABTOPCHGMV СВИДЕТЕЛЬСТВУ

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР

IlO ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЬП ИЙ

1 (21) 3479323/24-07 (22) 12.08.82 (46) 30.07.83 Бюл. Р 28 (72) В.Н.Борисов и Е.С.Федоров (71) Всесоюзный научно-исследовательский ииститут электроэнергетики (53) 621 . 316. 524(088. 8) (56) 1. Цейров E.M. Воздушные выключатели высокого напряжения. ГЭП, 1957.

2. Выключатели серии ВВШ. Техническое описание и инструкция по эксплуатации. ВДО 412.158. 1958.

3. Авторское свидетельство СССР

Р 838809, кл. Н 01 Н 33/91 „ 1981. (54) (57) ВЫСОКОВОЛЬТН61Й ВОЗЦу(11НЫЙ

ВЫКЛЮЧАТЕЛЬ линии электропередачи или трансформатора, оборудованных блоком напряжения, содержащий электромагниты включения и отключения, обмотки каждого из которых через соответствующие блок-контакты и кнопки соединены с источником оперативного напряжения, а их штоки связаны с пневматическими блоками включения и отключения соответственно, дугога„„SU„„1032491 А сительную камеру с подключенными к ее контактам резистором и связанную с отделителем пневматическим трубопроводом, B котором размещен обратный клапан, а между выводами обмоток электромагнитов включения и отключения включен управляемый ключ с блоком временной задержки в цепи управления, отличающийся тем, что, с целью повышения надежности путем прецотвращения включения при наличии короткого замыкания, обратный клапан выполнен в виде дифференциального электромагнитного клапана, обмотка которого через дополнительно введенный диод включена параллельно обмотке электромагнита отключения Я и через дополнительно введенные второй управляемый ключ и кнопку включения соединена с источником оперативного напряжения, а в цепь управ,ления второго управляемого ключа введен второй блок временной задержки через выходную цепь порогового элемента, вход которого предназначен для подключения к выходу блока напряжения.

1032491

Изобретение относится к электротехнике, н частности к высоковольтным аппаратам.

Известны высоковольтные воздушные выключатели, каждый полюс которого состоит из двух раздельных, но элект- рически связанных между собой колонн.

На одной из них установлена гасительная камера, на другой — отделитель 1 .

Недостатком таких выключателей является их пониженная отключающая 10 способность, вызванная воздействием высоких скоростей восстановления .на- пряжения на межконтактный промежуток гасительной камеры при отключениях.

Известны также выключатели, в которых параллельно контактам дугогасительной камеры включены низкоомные резисторы, вводимые в главную электрическую цепь при операций отключения, резко снижающие скорость восстановления напряжения и тем самым повышающие отключающую способность выключателя $2).

Цедостатком этих выключателей ян- 25 ляется то, что включение производится подачей полного напряжения на коммутируемый объект без какого-либо ограничения при этом бросков тока и перенапряжений, что является причиной тяжелых повреждений коммутируемых установок, вызываемых короткими замыканиями на линиях электропередачи и в циклах неуспешных АПВ. Нри этом помимо перерывов электропередачи, большие величины .токов к.з. при0 водят к разрушениям обмоток силовых трансформаторон, выгоранию электродов отделителей выключателей и другим повреждениям, Известен также выключатель, повы- 40 шающий надежность работы коммутируемых установок путем выполнения операций включения н дна этапа и тем самым снижающий броски тока и перенапряжения; Данный высоковольтный воздушный 4$ выключатель линии электропередач или трансформатора содержит электромагниты включения и отключения, обмотки каждого из которых через соответствующие блок-контакты и кнопки соеди- О нены с источником оперативного напряжения, а штоки связаны с пневматическими блоками включения и отключения обмотки соответственно, дугогасительную камеру с подключенным к ее контак- 5 там резистором и связанную с отделителем пневматическим трубопроводом, н котором размещен обратный клапан, а между выводами обмоток электромагнитов включения и отключения включен управляемый ключ с блоком временной задержки в цепи управления(3).

Несмотря на ряд достоинств таких выключателей недостатком их является то, что в них не предусмотрена блокировка с . включения на неустранившееся 6 к.з. Это приводит к серьезным понреждениям оборудонания.

Цель изобретения — повышение надежности выключателя и коммутируемого оборудования путем предотвращения включения при наличии к.з.

Указанная цель достигается тем, что н высоковольтном воздушном выключателе линии электропередачи или трансформатора, оборудованных блоком напряжения, содержащем электромагниты включения и отключения, обмотки каж дого из которых через соотнетстнующие блок-контакты и кнопки соединены с источником оператинного напряжения, а их штоки связаны с пневматическими блоками включения и отключения соответственно, дугогасительную .камеру с подключенным к ее контактам резистором и связанную с отделителем пневматическим трубопроводом, в котором размещен обратный клапан, а между выводами обмоток электромагнитов включения и отключения вклю,чен управляемый ключ с блоком временной задержки в цепи управления, обратный клапан выполнен в виде дифференциального электромагнитного клапана, обмотка которого через дополнительно введенный диод включена параллельно обмотке электромагнита отключения и;через дополнительно введенные второй управляемый ключ и кнопку включения соединена с источником оперативного напряжения, а в цепь управления второго управляемого ключа введен второй блок временной задержки,через блок напряжения подключей пороговый блок, выход которого включен н цепь управления второго управляемого ключа через нторой блок временной задержки.

На фиг.1 показана общая схема выключателя; на фиг.2 — схема управления выключателем; на фиг.3. — схема включения порогового блока в сеть высокого напряжения.

Устройство (фиг.1 ) содержит дугогасительную камеру 1, отделитель 2, пневматический трубопровод 3, в котором расположен дифференциальный пневматический клапан 4, с обмоткой 5 электромагнита и связанные с ним дутьеной клапан 6 дугогасительной камеры и дутьевой клапан 7 .отделителя 2, резервуар 8 сжатого нозду" ха, пневматические блоки отключения 9 и включения 10, резистор 11, подключенный к контактам 12 дугогасительной камеры 1, электромагниты отключения 13 и включения 14, кнопку 15 отключения, кнопку 16 включения контакта 17 отделителя, выхлопные клапаны 18 и 19 отделителя и дугогасительной камеры. Обмотки 20 и 21 (фиг.2 } электромагнитов отключения 13 и включения 14 подключены соответственно через блок-контак1032491 ты 22 и 23 и кнопки 15 и 16 к источнику оперативного напряжения, обмотка 5 электромагнита дифференциального пневматического клапана включена через диод 24 и блок-контакты 22 параллельно обмотке 20 электромагHH- 5 та 13 отключения, при этом выводы обмоток 20 и 21 электромагнитов отключения и включения, связанные с положительным полюсом источника оперативного напряжения, соединены с пер- 10 вым управляемым ключом 25, в цепь управления к.торого включен блок 26 временной задержки, содержащий, например, RC-цепочку. В цепь обмотки 5 электромагнита управления дифференциальным пневмоклапаном, через кнопку 16 включения со стороны положи,тельного полюса оперативного напря>кения включен второй управляемый ключ 27 со своим блоком 28 временной задержки, содержащим RC-цепочку. Блок 29 напряжения, реагирующий на наличие или отсутствие напряжения в коммутируемой сети после выключателя, соединен своим выходом с входом порогового блока 30, выполненного, например, в виде электромагнитного реле, а выход 31 блока 30 ((контакты электромагнитного реле> включен в цепь управления второго управляемого ключа 27 через блок 28 временной задержки. Зд, Особенность констр;кции дифферен.циального пневматического клапана

В качестве блока 29 напряжения могут быть использованы трансформаторы напряжения, конденсаторы связи, обкладки вводов трансформаторов тока или другие элементы, присоединенные к сети, а при их отсутствии специально подвешиваемые емкостные дели-4 тели напря>кения.

Устройство работает следующим образом.

Перед операцией двухступенчатого включения контакты 12 дугогасительной gg камеры 1 замкнуты, а контакты 17 отделителя разомкнуты (фиг. 1 ) . При включении выклю ателя с помощью кнопки 16 (фиг. 2) подается электрический импульс в обмотку 21 электромагнита 14 включения и на тиристорь1 25 и 27 с соответствукщими блоками 26

Ы 28 временной задержки. Штрек электромагиита 14 включения действует на блок 10 включения, с помощью . которого открывается выхлопной кла- Й

nàí 18 и сжатый воздух из отделителя 2 сбрасывается в атмосферу. Через время, определяемое блоком 26 задержки после включения кнопки 16, срабатывает электромагнит 13 отклю 65 чения с обмоткой 20 и сжатый воздух через блок 9 отключения и дутьевой клапан 6 поступает в дугогаситель ную камеру 1, размыкает ее контакты 12 и тем самым вводит резистор 11 н основную цепь выключателя. После этого заканчивается сброс воздуха из отделителя 2 и его контакты 17 замыкаются, т.е. происходит включение выключателя с введенным в er î основную цепь резистором 11.

К этому моменту блоком 28 регулируется порог срабатывания временной задержки открытия управляемого ключа 27.

Если после включения отделителя оборудование за выключателем или сеть будут находиться в исправном состоянии, то появившееся на них напряжение вызовет срабатывание реле 30, размыкание его контактов 31 (фиг.2 и 3) и прекращение заряда кон-. денсатора RC-цепочки блока 28 задержки до открытия управляемого ключа 27, т.е. нормальное включение выключателя. Если же в сети имеется короткое замыкание, то произойдет почти полное падение напряжения в резисторе

11. выключателя и контакты 31 реле 30 останутся замкнутыми до полного открытия управляемого ключа 27. При этом произойдет открытие дифференциального пневматического клапана с последующим отключением сети отделителем 2

Отключение выключателя производится включением кнопки 15. При этом электрический импульс поступает в-обмотку 20 электромагнита 13 отключения, что приводит в действие блок 9 отключения и поступление воздуха в гасительную камеру, и

Через диод 24 в обмотку 5 электромагнита дифференциального пневмоклапана 4, который открывается для нормального поступления воздуха к дутьевому клапану 7 и завершению нормальной операции отключения выключателя.

Необходимость использования блока задержки открытия управляемого ключа 25 вызвана .тем, что собственное время отключения контактов гасительной камеры выключателя значительно меньше времени включения отделителя. При .несоблюдении соответствующей синхронизации моментов срабатывания гасительной камеры и отделите-. ля будет нарушена последовательность их действия и тем самым отказ в операции двухступенчатого включения.

Использование аналогичного блока для управляемого ключа 27 вызвано необходимостью создания выдержки времени для осуществления операций введения резистора 11 в коммутируемую сеть и включения отделителя, после которых решается исход всего цикла

1032491 включения выключателя произойдет ли полное включение выключателя или его отключение при наличии к.э.

Предлагаемое устройство исключает включение выключателя при наличии к.з. в цепи и тем самым устраняет тязелые термические и электродинамические воздействия на присоединенное оборудование приводя@не к их разрушениям, и, следовательно, использование изобретения даст суцест венный эффект.

1032491

Фиг,2

Составитель В.Попова

Техреду .Бабинец Корректор И.Демчик

Редактор Ю.Середа

Филиал ППП "Патент", r.Óæãîðîä, ул. Проектная, 4

Закаэ 5410/54 Тираж 703 Подписное

ВНИИПИ Государственного комитета СССР по делам иэобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Высоковольтный воздушный выключатель Высоковольтный воздушный выключатель Высоковольтный воздушный выключатель Высоковольтный воздушный выключатель Высоковольтный воздушный выключатель 

www.findpatent.ru

Воздушные выключатели. Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели

Работа добавлена: 2017-11-19

Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели. Воздушные выключатели

План лекции

1 Конструктивные схемы воздушных выключателей

2 Устройство выключателя ВВБ-110

3 Устройство воздушного выключателя ВНВ-220

В воздушных выключателях гашение дуги происходит сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами.

Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство.

В выключателях на большие номинальные токи (рисунок 1, а, б) имеются главный и дугогасительный контуры, как и в маломасляных выключателях МГ и ВГМ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара 1, создается мощное дутье, гасящее лугу. Дутье может быть продольным (рисунок 1, а) или поперечным (рисунок 1, б). Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов на достаточное расстояние (рисунок 1, б) или специальным отделителем 5, расположенным открыто (рисунок 1, а). После отключения отделителя 5 прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются. Выключатели, выполненные по такой конструктивной схеме, изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВП, а также на 35 кВ (ВВЭ-35-20/1600УЗ).

Рисунок 1 - Конструктивные схемы воздушных выключателей

В выключателях для открытой установки дугогасительная камера расположена внутри фарфорового изолятора, причем на напряжение 35 кВ достаточно иметь один разрыв на фазу (рисунок 1, б), на 110 кВ — два разрыва на фазу (рисунок 1, г). Различие между этими конструкциями состоит в том, что в выключателе 35 кВ изоляционный промежуток создается в дугогасительной камере 2, а в выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5, и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения, при этом в дутогасительную камеру сжатый воздух не подается и контакты в ней замыкаются. По конструктивной схеме (рисунок 1,г) созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше разрывов необходимо иметь в дугогасительной камере и в отделителе (на 330 кВ - восемь; на 500 кВ - десять).

В рассмотренных конструкциях воздух подается в дугогасительные камеры из резервуара, расположенного около основания выключателя. Если контактную систему поместить в резервуар сжатого воздуха, изолированный от земли, то скорость гашения дуги значительно увеличится. Такой принцип заложен в основу серии выключателей ВВБ (рисунок 1, д). В этих выключателях нет отделителя. При отключении выключателя дугогасительная камера 2, являющаяся одновременно резервуаром сжатого воздуха, сообщается с атмосферой через дутьевые клапаны, благодаря чему создается дутье, гасящее дугу. В отключенном положении контакты находятся в среде сжатого воздуха. По такой конструктивной схеме созданы выключатели до 750 кВ. Количество дугогасительных камер (модулей) зависит от напряжения: 110 кВ — одна: 220, 330 кВ — две; 500 кВ — четыре;750 кВ - шесть (в серии ВВБК).

Для равномерного распределения напряжения по разрывам используют омические 3 и емкостные 6 делители напряжения. Рассмотрим более подробно конструкции некоторых воздушных выключателей.

В цепях генераторов находят применение специальные выключатели нагрузки (ВНСГ) Uном=15 кВ, рассчитанные на включение генераторов при самосинхронизации (iвкл=115 кА) и выдерживающие большие сквозные токи КЗ (iпр,с=480 кА). Таким выключателем можно включать и отключать генератор под нагрузкой (Iном=12000 А), а также отключать токи КЗ до 31,5 кА. Выключатель ВНСГ компактно встраивается в комплектный токопровод. Гашение дуги осуществляется сжатым воздухом, имеющим давление 0,6 МПа.

В последнее время на энергоблоках 800, 1000 МВт АЭС применяется комплектный аппарат КАГ-24, основной частью которого является выключатель нагрузки, рассчитанный на напряжение 24 кВ, ток 30 кА. Выключатель нагрузки при номинальном давлении воздуха 2 МПа может отключать ток 30 кА и включать ток 75 кА (амплитудное значение). Возможна одна операция включения аварийного тока не более 310 кА (амплитудное значение). При такой операции допускается частичное сваривание контактов. Выключатель нагрузки не предназначен для АПВ и выполнения полного цикла отключение — включение О—180—ВО—1 80-ВО.

Устройство КАГ-24 встраивается в комплектный токопровод генераторного напряжения.

В состав каждого полюса входят выключатель нагрузки QW, разъединитель QS с одним встроенным заземлителем главной цепи QSG, четыре трансформатора напряжения TV.

Комплектное устройство КАГ-24 предназначено для оперативных коммутаций и измерений напряжения в цепи главных выводов генераторов 800 и 1000 МВт при нормальном режиме, а также для создания необходимого изоляционного промежутка в отключенном положении и заземления отсоединенного участка. Комплектное устройство имеет блокировки, запрещающие отключение и включение разъединителя QS при включенном выключателе нагрузки QW, отключение и включение заземляющего разъединителя QSG при включенном выключателе QW или разъединителе QS. КАГ-24-30/30000 УЗ имеет принудительный обдув.

Выключатели нагрузки генераторные значительно увеличивают гибкость и надежность схем блочных ТЭС и АЭС.

Воздушные выключатели ВВ нашли широкое применение в установках 110—500 кВ. Их конструкция соответствует схеме 1 и отличается при разном напряжении количеством дугогасительных камер и камер воздухонаполненного отделителя. Для отключения и гашения дуги в них используется воздух давлением 2 МПа.

В настоящее время выключатели этой серии постепенно вытесняются более совершенными и быстродействующими выключателями.

Во всех рассмотренных выключателях сжатый воздух из заземленного резервуара подается в дугогасительную камеру по изолированному воздухопроводу или внутренней полости изолятора, длина которых зависит от номинального напряжения выключателя. Время заполнения камеры сжатым воздухом зависит от давления воздуха в резервуаре и от длины воздухопровода. В выключателях 35 и 110 кВ это время составляет 0,003-0,005 с, в выключателях 150-220 кВ - 0,007 - 0,01 с, в выключателях 330—500 кВ — 0,013 — 0,014 с. Увеличение времени заполнения камеры увеличивает собственное время отключения выключателя, при этом ухудшается основной показатель воздушного выключателя — быстродействие.

Выключатели серии ВВБ (см. рисунок 1, д) имеют изолированный от земли резервуар сжатого воздуха, внутри которого находится контактная система. Поэтому собственное время отключения этих выключателей сверхвысокого напряжения меньше, чем у выключателей серии ВВ. Давление воздуха в гасительной камере в выключателях ВВ из-за постепенной его подачи к моменту гашения дуги равно примерно половине номинального. В выключателях ВВБ давление воздуха к моменту гашения равно номинальному, поэтому эти выключатели имеют большую мощность отключения.

Основным элементом выключателей серии ВВБ является дугогасительный модуль с двумя разрывами в металлическом резервуаре со сжатым воздухом (2 МПа). При номинальном напряжении 110 кВ на каждый полюс имеется один модуль (рисунок 2). Основанием выключателя служит вертикальный резервуар 1 со сжатым воздухом, на котором сбоку закреплен шкаф управления с элементами электрического и пневматического управления. Запаса воздуха, содержащегося в дугогасительном модуле объемом 1500 л. достаточно для двух отключений. Дополнительный вертикальный резервуар вместимостью 2300 л, предусмотренный в последних конструкциях ВВБ-110, обеспечивает цикл О - Гдт - ВО без подпитки сжатым воздухом из магистрали.

Дугогасительная камера связана с дополнительным резервуаром трубой из изолирующего материала, по которой происходит постоянная подпитка воздухом. Кроме того, в изоляторе проходит вторая труба меньшего диаметра, по которой подается или сбрасывается воздух в процессе включения и отключения. Эта труба называется импульсной.

На электропневматической схеме выключателя ВВБ-110 (рисунок 2) условно показан горизонтальный разрез (кроме вспомогательных контактов). Расположение емкостного делителя 17 также показано условно. На опорном изоляторе 3 укреплен металлический резервуар — дугогасительный модуль, внутри которого находятся подвижные контакты в виде ножей 14, закрепленных на траверсе, и неподвижные контакты 15 внутри металлических стаканов с прорезями для входа ножей. Неподвижные контакты находятся внутри металлических конфузоров 20, экранирующих ножи в отключенном положении и создающих направленный поток воздуха при отключении.

На вводах 18, изолированных эпоксидными втулками 19 и фарфоровой рубашкой, внутри камеры расположены шунтирующие резисторы 16 и вспомогательные контакты 21.

На рисунке 2 выключатель показан в отключенном положении. Для включения подается командный импульс на электромагнит включения YAC. который открывает пусковой клапан 25. Воздух из полости обратного клапана 25 и объема а промежуточного клапана 27 сбрасывается в атмосферу. Промежуточный клапан перемещается вверх и обеспечивает сброс воздуха из объема б клапана управления, который перекрывает доступ сжатому воздуху из резервуара 1 и обеспечивает сброс воздуха из объема в под поршнем дутьевого клапана и из полости г через полый шток 8. При этом за счет разности давлений под поршнем 10 и над ним контактная система идет на включение. Ролики фиксатора 12 переходят через выступ на штоке 13. Контактные ножи 14 входят в пальцевый неподвижный контакт 15. Одновременно через золотники 6 сжатый воздух сбрасывается из полости д и запирающая шайба 7 под действием своей пружины перемещается к поршню 5. При закрытии клапана 2 обеспечивается сброс воздуха из-под поршня привода 23 вспомогательных контактов SQ, которые переводятся в положение «включено».

Вспомогательные контакты 21 включаются с некоторым запаздыванием но отношению к главным с помощью клапана 22.

Во включенном положении ток проходит по токоведущему стержню ввода через неподвижный контакт 18, нож 14, траверсу, нож и контакт второю разрыва во второй ввод.

Для отключения выключателя подается командный импульс на электромагнит отключения YAT, который открывает пусковой клапан 24.Сжатый воздух из резервуара через обратный клапан 26 заполняет объем а. Клапан 27 открывается, обеспечивая доступ сжатому воздуху в объем б, при этом клапан 2 соединяет импульсную трубу с резервуаром 1. Сжатый воздух поступает в полость в, поршень 5 вместе с шайбой 7 перемещаются вверх. Движение поршня через полый шток 8 передается тарелке дутьевого клапана, поршню механической траверсы 10 и через шток 13 траверсе с контактными ножами. Открывается дутьевой клапан, контакты размыкаются и возникает дуга. Мощным потоком воздуха дуга с рабочих контактов перебрасывается на противоэлектрод 11 и концы стаканов неподвижного контакта 12. Время гашения дуги не превышает 0,02 с.

В конце хода поршня 5 шайба 7 закрывает выход в атмосферу из полости д. Начинается переток воздуха из полости в в полость д через регулируемое отверстие в поршне, закрытое иглой 4. Когда давление в полости д увеличится, поршень под действием своей пружины возвратится в исходное положение, а шайба останется прижатой в верхнем положении. Вместе с поршнем опускается тарелка 9, и дутьевой клапан закрывается.

Рисунок 2 - Электропневматическая и электрическая функциональная схема выключателя ВВБ-110.

Отключение вспомогательных контактов, разрывающих ток через шунтирующие сопротивления, происходит с запаздыванием по отношению к главным за счет подачи воздуха в клапан 22 после того как шайба 7 перекроет выход в атмосферу. Возникшая между контактами дуга гасится потоком воздуха, проходящего через полый подвижный контакт.

При подаче воздуха в импульсную трубу в процессе отключения часть воздуха попадает под поршень привода 23 и вспомогательные контакты переводятся в положение, соответствующее отключенному положению выключателя.

В настоящее время выключатели серии ВВБ модернизированы. Новые выключатели ВВБК (кpупномодульные) работают при давлении воздуха 4 МПа, а в камере гашения дуги кроме основною дутья, как и в серии ВВБ, имеется дополнительное дутье через неподвижные контакты с продувкой продуктов горения через полые токоведущие стержни вводов. Это позволило увеличить отключаемый ток до 50—56 кА, а количество модулей в полюсе снизить: на 330 кВ вместо четырех модулей (ВВБ) в серии ВВБК — два модуля, на 500 кВ вместо шести модулей — четыре, на 750 кВ вместо восьми — шесть.

На напряжение выше 750 кВ находят применение воздушные выключатели в подвесном исполнении.

Выключатели серии ВНВ имеют укрупненный двухразрывный дугогасительный модуль на напряжение 220—250 кВ. Все выключатели этой серии на 110—1150 кВ компонуются из резервуара со шкафом управления и опорной изоляционной колонки, на которой смонтирован дугогасительный модуль. Полюс выключателя на 220 кВ имеет одну опорную колонку с одним двухразрывным модулем (рисунок 3), на 500 кВ — две опорные колонки и два модуля, на 750 кВ — три колонки и три модуля, на 1150 кВ — пять колонок и пять модулей. Полюс выключателя на 110 кВ имеет одноразрывный модуль.

Рисунок 3 - Полюс воздушного выключателя ВНВ-220: 1 – резервуар; 2 – изолятор; 3 – механизм привода; 4 – блок шунтирующих реакторов

Дугогасительный модуль — это двухразрывная дугогасительная камера, контактная система которой находится постоянно в среде сжатого воздуха (4 МПа) как во включенном, так и в отключенном положении. Контакты смонтированы в металлическом резервуаре, на котором установлены контейнеры с шунтирующими резисторами и коммутирующими их механизмами, также заполненные сжатым воздухом. Токоведущие части присоединены к контактной системе с помощью изолирующих вводов. Гашение дуги в камере осуществляется двусторонним дутьем, сжатым воздухом, выбрасываемым через внутренние полости контактов и выхлопные клапаны в атмосферу. Контакты имеют двухтактное движение: при гашении дуги разрыв между контактами имеет минимальное значение, чем обеспечивается интенсивное дутье, после окончания гашения дуги подвижный контакт перемещается па максимальное расстояние, обеспечивая необходимую электрическую прочность.

На рисунке 4 схематически показано устройство одного разрыва дугогасительного модуля выключателя ВНВ на 500 кВ во включенном положении.

Рисунок 4 - Дугогасительный модуль выключателя ВНВ, пневмомеханическая схема

Отключение происходит при срабатывании электромагнита отключения, который, воздействуя на клапан пневматической системы, связанной с резервуаром 1, создает движение изолированной тяги 2 и рычагов 3, в результате чего подвижный контакт б перемещается вправо.

Вначале размыкаются главные рабочие контакты 7, а затем дугогасительные 8. Дуга возникает между внутренней дугостойкой поверхностью подвижного контакта б и ламелями дугогасительного контакта и потоком сжатого воздуха из камеры сдувается на подвижное сопло 5. Так как внутренние полости контактов связаны с выхлопной полостью 11 и через нее с атмосферой, создается мощное дутье и дуга гаснет. После окончания гашения дуги подвижный контакт перемещается на максимальное расстояние и прячется за электростатический экран 4. Одновременно при движении тяги 2 вниз перемещается шток 12 и, воздействуя выступом на рычаг, открывает оперативный клапан 14. Воздух над поршнем 15 выбрасывается в атмосферу, сам поршень перемещается, и подвижное сопло 5 движется вправо до упора, прекращая выхлоп воздуха в атмосферу. Истечение воздуха из неподвижного контакта также прекращается, так как выхлопной клапан 9, приводимый тягой 10, перекрывает отверстие контакта 8.

При включении срабатывает электромагнит включения, он открывает пусковой клапан, и шток 12 под действием включающей пружины 13 перемещается вверх. Со штоком 12 связана тяга 2 (на рисунке 3.13, а не видно), которая через рычаги 3 передает движение подвижному контакту 6. Он перемещается влево и замыкает цепь.

Пневмомеханическсе устройство, примененное в выключателе ВНВ, уменьшает собственное время отключения до 0.02-0,025 с.

Распределение напряжения между дугогаситсльными разрывами осуществляется с помощью параллельно включенных конденсаторов. При необходимости (большие скорости восстанавливающегося напряжения) выключатели могут оснащаться шунтирующими резисторами 1. В этом случае после гашения дуги в главной цепи на контактах 2 отключаются вспомогательные контакты 4 в среде сжатого воздуха разрывая небольшой ток.

Все фарфоровые покрышки разгружены от воздействия сжатого воздуха и динамических нагрузок стеклоэпоксидными цилиндрами.

Кроме выключателей на опорных изоляторах разработаны конструкции подвесных выключателей с модулями серии ВНВ на 1150 кВ, которые обеспечивают значительную экономию площади ОРУ.

Выключатели серии ВНВ рассчитаны на ток отключения 40—63 кА. По сравнению с выключателями ВВБ эти выключатели имеют меньшую массу и меньшие габариты.

Воздушные выключатели имеют следующие достоинства: взрыво- и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.

Недостатками воздушных выключателей являются необходимость компрессорной установка, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформаторов тока.

Рекомендуемая литература:

Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1987. – 648 с.: ил.

Чунихин А.А. Электрические аппараты: Общий курс. Учебник для вузов. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1988. – 720 с.: ил.

Самостоятельная работа студентов:

1. Изучение конструкции воздушных выключателей

Возможно эти работы будут Вам интересны.

1. Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели. Масляные баковые выключатели

2. Высоковольтные выключатели. Элегазовые выключатели. Коммутационная аппаратура высокого напряжения

3. Вакуумные выключатели. Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели

4. Маломасляные выключатели. Коммутационная аппаратура высокого напряжения. Высоковольтные выключатели

5. Короткозамыкатели и отделители. Коммутационная аппаратура высокого напряжения

6. Защитные аппараты: плавкие предохранители, автоматические выключатели, разрядники, ограничители напряжения, варисторы - назначение, характеристики, принцип работы

7. БЫСТРОДЕЙСТВУЮЩИЕ ВЫКЛЮЧАТЕЛИ ЭЛЕКТРОВОЗОВ ПЕРЕМЕННОГО ТОКА

8. Коммутационные аппараты низкого и высокого напряжения: рубильники, переключатели, разъединители, отделители, короткозамыкатели - назначение, кинематические схемы, принцип работы

9. Пускорегулирующие аппараты низкого и высокого напряжения:контроллеры, командоаппараты, реостаты, реакторы, электрические муфты управления (электромагнитные, фрикционные, гистерезисные) - назначение, характеристики, принцип работы

10. АППАРАТУРА ПЕРЕДАЧИ ДАННЫХ

heref.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта