Eng Ru
Отправить письмо

Современная ветроэнергетика: кто есть кто. Ветряная энергия


кто есть кто. Энергетика. Статьи

Использование энергии ветра – одно из перспективных направлений современной энергетики. Последние годы наблюдается массовое увеличение размеров и количества ветропарков во всех прогрессивных странах мира. «Ветряки» становятся выше, а их лопасти длиннее и легче, что позволяет им работать даже при небольшой силе ветра. Сооружения устанавливаются повсеместно: в лесах, полях, на побережьях, в прибрежных водах морей и океанов (оффшорные парки). Даже в густонаселенных мегаполисах архитекторы умудряются внедрить ветрогенераторы в конструкции небоскребов, переведя их на частичное самообеспечение.

Для координации усилий и быстрого реагирования на изменения запросов рынка ветровой энергии создана международная некоммерческая организация WWEA (World Wind Energy Association) со штаб-квартирой в Германии. Сегодня ассоциация объединяет интересы более чем сотни стран-участниц. Задачей WWEA является постоянный мониторинг потребностей и предложений в области возобновляемой энергетики, проведение исследований и предоставление консультаций заинтересованному сообществу.

Ассоциация отслеживает развитие ветроэнергетической отрасли во всех странах и составляет рейтинг ведущих потребителей и поставщиков соответствующего оборудования. В соответствии с информацией, опубликованной на сайте организации 10 февраля 2016 года, лидерами  в использовании альтернативной энергетики является следующая десятка стран.

Десять стран с самой развитой ветроэнергетикой в 2015 году

Китай. Суммарная выработка электроэнергии в ветропарках Китая в конце 2015 года приблизилась к 150 ГВт. При этом страна является относительно новым игроком на рынке ветроэнергетики. Но темпы роста промышленности диктуют свои условия, поэтому в ближайшие годы планируется дальнейшее наращивание ветроэнергетического потенциала страны. Заявленная страной цифра потребления ветровой энергии к 2020 году составляет 200 ГВт, однако, судя по ежегодному приросту 25-28%, этот срок наступит раньше.

США. Развитие альтернативной энергетики, в том числе – ветровой, в Соединенных Штатах – постоянный, планомерный процесс. К началу 2016 года суммарная мощность американских ветропарков оценена в 74,35 ГВт. В силу довольно жесткой регуляторной политики, проводимой властями в энергетической области, в стране не наблюдается ярко выраженного бума строительства «ветряков», однако страна продолжает уверенно удерживать второе место.

Германия является традиционным лидером в производстве ветровых турбин. Все самое инновационное оборудование в этой отрасли  производится здесь. Общая мощность собственных ветроэлектростанций Германии – на текущий момент - 45,2 ГВт, что составляет около трети суммарной производительности ветропарков всего Евросоюза. Прирост доли энергии, вырабатываемой «ветряками» в стране в 2015 году составил почти 10%.

Испания занимает 4-е место в рейтинге стран с самой развитой ветроэнергетикой. В условиях угнетенного состояния экономики и нехватки собственных природных ресурсов альтернативные виды энергии являются стратегическим направлением развития страны. Суммарная мощность ветроэлектростанций страны составляет порядка 23 ГВт. В соответствии с данными WWEA за 2015 год в стране не наблюдалось существенного прироста доли энергии, вырабатываемой «ветряками».

Индия, переживающая бурный рост промышленности, одновременно с этим испытает острую нехватку энергетических ресурсов. Жесткий дефицит традиционных источников в значительной степени сформировал взгляды государства на альтернативные виды получения энергии. Сегодня индийские ветропарки находятся на 5-м месте в мире по суммарной мощности с показателем, приближающимся к 25 ГВт. За 2015 год прирост доли ветровой энергии в стране составил около 10%.

Развитие ветроэнергетики в таких странах ЕС, как Великобритания, Италия, Франция связано, в первую очередь, с постепенным отказом от использования атомной энергии. Страны не только занимаются активным строительством ветропарков, но также являются ведущими разработчиками и производителями турбинного оборудования, наряду с Германией. По состоянию на конец 2015 года мощности ветропарков составляют: Британия – 13,6 ГВт, Франция – 10,3 ГВт, Италия – 8,95 ГВт.

 

Власти Канады способствуют внедрению альтернативных источников энергии путем предоставления льгот на установку и модернизацию соответствующего оборудования. Одни из передовых в этом отношении – штаты Онтарио и Новая Шотландия. На сегодняшний день суммарная мощность ветрогенерационных парков Канады составляет 11,2 ГВт, а прирост мощности в сравнении с 2014 годом составил 15,6%.

В Бразилии ветропарки уже несколько лет являются неотъемлемой частью энергетической системы, наряду с солнечными станциями. Закупка электроэнергии государством производится путем проведения открытых аукционов, результаты которых подтверждают конкурентоспособность энергии, вырабатываемой «ветряками». Средняя стоимость киловатт-часа электричества для потребителя в Бразилии составляет порядка 0,05 доллара. В течение 2015 года страна показала абсолютный мировой рекорд по приросту ветроэнергетических мощностей, который составил 46,2%! Сегодня суммарная мощность ветроэлектростанций Бразилии составляет 8,7 ГВт.

Дания. В силу своих небольших размеров страна не может конкурировать по общему количеству производимой «ветряками» энергии с такими гигантами как Китай и  США. Общая мощность ветропарков Дании составляет 5 ГВт,  поэтому в первую десятку рейтинга она не входит. Однако при пересчете количества киловатт ветровой энергии на душу населения, Дания является несомненным мировым лидером. Сегодня доля ветроэнергетики в общем энергетическом «котле» страны приближается к 30%, а к 2020 году планируется довести этот показатель до 50%. Также власти страны обнародовали программу, в соответствии с которой к 2050 году страна откажется от использования традиционных энергоресурсов полностью.

 

Самые мощные ветропарки в мире

Приведенные выше цифры показывают, что сегодня ветровая энергетика уже занимает значительную часть энергетической отрасли во всем мире. При этом в перспективе доля электроэнергии, вырабатываемой «ветряками» будет постоянно расти. В настоящее время крупнейшими поставщиками электроэнергии являются следующие ветропарки:

 

  • Ветропарк Alta Wind, Калифорния, США, производящий 1,55 ГВт чистой электроэнергии. Комплекс продолжает развиваться и уже к 2040 году планируется прирост его мощности до 4,0 ГВт;
  • ветроэнергетический комплекс Ganzu, расположенный на западе Китая и состоящий из нескольких крупных ветропарков, суммарная производительность которых составляет более 5 ГВт. В соответствии с планом развития, к 2020 году планируется наращивание мощностей до 20,0 ГВт;
  • Британский оффшорный массив London Array, расположенный дельте Темзы, - крупнейший проект такого рода. В настоящее время ветропарк на воде генерирует 0,63 ГВт электроэнергии. Суммарное количество электроэнергии, вырабатываемое всеми оффшорными ветроэлектростанциями Британии, составляет 3,6 ГВт. Предполагается, что к 2020 году этот показатель будет составлять 18,0 ГВт;
  •  крупнейший ветропарк Индии, Jaisalmer, генерирующий более 1 ГВт электроэнергии. Владелец ветропарка, компания Suzlon Energy, также является и производителем оборудования, занимающая на мировом рынке ветровых турбин около 7%.

Основные игроки на рынке ветрогенерационного оборудования в 2015 году

До недавнего времени лидерами в производстве «ветряков» считались европейские страны Германия и Дания, а также Соединенные Штаты Америки. Наиболее востребованные ветрогенерационные установки выпускались под марками Vestas (Дания) и Enercon (Германия). Эти компании занимаются выпуском турбин мощностью от 0,8 до 7,5 МВт. Американские ветрогенераторы General Electric имеют максимальную мощность 3,6 МВт.

В последний год рекордную прибыль показали китайские производители. В частности, чистая прибыль компании Goldwind за 2015 год выросла почти на 56%, достигнув показателя 436 млн. USD. Общая мощность реализованных за год ветрогенераторов Goldwind составляет 7,8 ГВт. Однако утверждать, что традиционному доминированию Vestas и GE на мировом рынке положен конец нельзя, так как своим блестящим результатам Goldwind обязан, прежде всего, внутреннему рынку Китая.

Общая мощность установленных турбин Vestas в 2015 году составила 7,3 ГВт. Для американцев GE этот показатель равен 5,9 ГВт. Немецкий производитель Enercon занимает в рейтинге четвертое место. Помимо Goldwind в десятку крупнейших производителей «ветряков» в 2015 году вошли еще 4 компании из Китая.

Ветроэнергетика России

Возможности России в генерации ветровой энергии (которые в настоящее время практически не используются) оцениваются в 30% от общего электроэнергетического потенциала страны. Суммарный показатель мощности ветропарков России, который планируется достигнуть к 2020 году составляет 3 ГВт.

В настоящее время крупнейшие ветропарки России расположены в Крыму (общей мощностью около 60 МВт), в Калининградской области (5 МВт), на Чукотке и в Башкортостане (по 2,2 МВт). В различной степени готовности находятся проекты ветроэлектростанций мощностью от 30 до 70 МВт в Ленинградской, Калининградской областях, в Краснодарском крае, в Карелии, на Алтае и Камчатке.

В самом ближайшем будущем планируется строительство ветропарка мощностью 35 МВт в Ульяновске. В июне 2016 года Российская ассоциация ветроиндустрии планирует провести конкурс проектов ветропарков суммарной мощностью 1,6 ГВт.

Отрицательные стороны ветроэнергетики

Сегодня никто не сомневается, что ветроэнергетика – один из наиболее перспективных видов получения «чистой», «зеленой» энергии. Помимо сокращения выбросов углекислого газа, который является обязательным атрибутом «традиционных» ТЭС и ТЭЦ, использование «ветряков» позволяет добиться значительного снижения электроэнергии для потребителя, а период окупаемости оборудования составляет 7-8 лет.

Однако у ветровой энергетики есть и отрицательные стороны. В первую очередь – это зависимость от силы ветра, в результате чего поступления сгенерированного электричества в общую сеть происходят неравномерно. Поэтому полностью отказаться от использования традиционных ГЭС и ТЭС на данном этапе развития альтернативной энергетики не представляется возможным, так как они необходимы для стабилизации работы сетей.

Вторым отрицательным фактором является то, что география возможного расположения «ветряков» очень часто не совпадает с географией потребителей. Данная проблема решается путем реконструкции или полного перекроя энергосистемы, что, в свою очередь связано со значительными временными и финансовыми затратами.

Кроме этого необходимо сказать и о том, что мощные ветропарки также оказывают воздействие на окружающую среду: нагревают почву и влияют на микроклимат. Исследования, проведенные в США, показали, что прирост среднесуточной температуры на территории крупной ветрогенерационной станции за 9 лет составил 0,72 градуса Цельсия. При этом ученые связывают такой температурный скачок с тем, что в период проведения исследований с 2003 по 2011 годы, количество «ветряков» на станции возросло с 111 до 2358 штук.  По их мнению, при стабильном количестве установок прирост температуры также должен замедлится.

 

maistro.ru

Ветряные электростанции: факты и заблуждения

Ветряные электростанции: факты и заблуждения

Распространенные ложные суждения о ветровой энергии отпугивают людей от использования этого энергоресурса. Но ветровые турбины – весьма перспективный способ получать энергию из экологически чистых источников. Особенно в условиях удорожания нефти, газа и угля, а также учитывая исчерпываемость полезных ископаемых.

Сегодня использование ветра подразумевает, прежде всего, получение электроэнергии. Попытаемся разобраться, насколько это просто, дешево и удобно. Для тех, кто хочет сразу услышать итог, вывод: ветряная электроэнергия никогда не станет дешевле энергии, полученной из других источников: тепловых, атомных или гидроэлектростанций.

Поэтому заниматься ветряными электростанциями для дома имеет смысл только тем, у кого руки чешутся приспособить доставшийся «по случаю» готовый генератор, или энтузиастам экологически чистой энергии, фанатично желающим спасти планету от экологической катастрофы. Других причин использовать ветряную энергию при подведенном питании от внешних электрических сетей просто не придумаешь.

1. Ветровая энергия дорогая. Ветровая энергия конкурентоспособна в регионах со скоростью ветра от умеренной до высокой. Учитывая тот факт, что в процессе производства ветровой энергии нет топлива, она не растет в цене вместе с ним. Нет затрат на закупку и доставку сырья, на уменьшение загрязнения окружающей среды. Кроме того, стоимость ветровой энергии с каждым годом уменьшается благодаря новым технологиям, в отличие от энергии, которую вырабатывают электростанции, работающие на угле и уране.

2. Источники энергии ветра ненадежны и должны «перестраховываться» традиционными источниками. Количество энергии ветра, которую производят ветряные электростанции, меняется в зависимости от погодных условий. Однако это не значит, что ветровые станции ненадежны. В отличие от современных электростанций, ветряная ферма может работать бесперебойно даже в случае поломки на одной из ветряных турбин – ведь остальные турбины будут продолжать работу.

3. Ветровые турбины работают в течение непродолжительного времени. На полную мощность ветряная ферма может работать лишь 10% своего времени, хотя их и строят в районах, где погода обычно ветреная. Но ветровые турбины производят электрическую энергию большинство времени своей работы (65-80%), хотя количество получаемой энергии может варьироваться. Ни одна из электростанций не вырабатывает энергию на 100% заявленной мощности 100% своего времени. К тому же, электростанции часто закрывают на ремонт и техническое переоснащение.

4. Ветер дает мало энергии.

Одна стандартная двухмегаваттная турбина производит электрическую энергию для 600-800 домов. А с использованием новых технологий эта цифра может возрасти.

5. Ветровые турбины неэффективны. Ветровые турбины эффективны, и чтобы это доказать, можно подсчитать «энергетическую окупаемость» этой технологии – промежуток времени, за который производится определенное количество энергии. Ветряные станции, согласно исследованиям американских ученых из университета Уилсон-Мэдисон, производят в 17-40 раз больше энергии, чем потребляют за то же время. Обычные атомные электростанции – лишь в 16 раз.

6. Ветровые станции ужасно выглядят. О вкусах, конечно, не спорят, но многочисленные фотографии ветровых станций доказывают, что турбины могут гармонично вписываться в пейзаж. Благодаря усилиям промышленных дизайнеров современные турбины элегантны и эстетичны.

7. Ветровые турбины очень шумные. Если верить этому мифу, то человек не может долго находиться вблизи ветровых двигателей. На самом деле двигатели работают достаточно тихо. Шум от ветроэлектростанции на удалении в 250-300 метров не превышает громкость работающего домашнего холодильника. Работающие турбины создают звук, похожий на легкий свист, поэтому звук, производимый самим ветром, слышен сильнее. Только старые агрегаты, работающие уже более 20 лет, в настоящее время являются наиболее шумными. Современные турбины спроектированы таким образом, чтобы их механические компоненты создавали как можно меньше шума.

8. Ветровые электростанции существенно уменьшают стоимость соседствующей с ними недвижимости. На стоимость недвижимости влияют многие факторы, и наличие ветровой станции поблизости не является решающим в этом вопросе. К тому же в будущем, при дефиците традиционных источников энергии, такое соседство может только повысить цену имущества или земли.

9. Работа турбин генерирует помехи для работы телевизионных станций и других видов связи.

Создавать помехи для средств связи, работающие турбины могут лишь в редких случаях. Обычно это происходит на открытой местности, в случаях, когда ветровые установки расположены в пределах прямой видимости. Для решения этой проблемы необходимо усовершенствовать приемо-передающее устройство или же установить ретранслятор, передающий сигнал, минуя зону расположения ветроэлектростанции.

10. Ветровые турбины опасны для людей и животных. Энергия ветра не связана с выбросами вредных газов в атмосферу, загрязнением воды или земли отходами. За 25 лет существования не было зафиксировано ни одного несчастного случая, связанного с работой ветровых турбин.Также бытует мнение о возникновении вредного для человеческих ушей инфразвука при работе турбин. Однако ученые уверяют, что уровень инфразвука очень незначителен и не представляет никакой опасности.

11. Мелькание ветровых турбин негативно сказывается на здоровье человека. Проблему с тенью, которую отбрасывают турбины, и ее миганием можно легко решить, правильно рассчитав положение ветровой станции относительно населенных пунктов.

12. Ветряные электростанции наносят вред туризму.

На самом деле таких свидетельств зафиксировано не было. Нередко ветровые турбины даже способствуют привлечению в эту местность гостей. На подъезде к необычной станции или на близлежащих дорогах устанавливаются специальные указатели и информационные доски. Так, в Калифорнии в Палм Спрингз, работают тысячи турбин. Местные власти организовали сюда специальные автобусные туры для ознакомления с работой ветряной электростанции.

13. С лопастей ветровой турбины может сорваться лед, представляющий опасность для жизни человека.

В действительности иногда падение льда может случиться, но это не представляет никакой опасности. Это связано с удаленностью ветровых станций от мест проживания людей. К тому же образование большого количества льда на лопастях просто невозможно. Образование льда уменьшает скорость вращения лопастей. В этом случае система контроля сама автоматически отключит турбину.

14. Ветровые турбины небезопасны: случается, что с турбин срываются лопасти, а станция разрушается.

На сегодняшний день ветровые турбины не представляют никакой опасности. Они проходят сертификацию в соответствии с международными стандартами. Это позволяет их ставить даже около сельских и городских детских заведений, а также в густонаселенных местах. Тысячи ветровых турбин, установленных по всей Европе и Америке, отвечают самым высоким стандартам безопасности. А это гарантия их надежной работы.

 

Отзывы владельцев ветрогенераторов. У меня стоит солнечная панелька мощностью 65 Вт. Самодельный ветрячок с генератором 750 Вт от Мосвича. Два аккумулятора мощностью 62 А.ч. каждый. И бесперебойник от компа который мне отдали по случаю его не пригодности (аки перестали брать зарядку от времени). На протяжении 2 лет, я пользуюсь именно этой энергией. К Чубайсовской сети подключена у меня стиральная машинка и по надобности подключаю опять же к Чубайсу эл.сварку инверторную Ресанта 190 А. Все остальное потребление, у меня автономное. Хололдильник, телевизор, одновременно горит порою по 9 лампочек 95 Вт вечерами. Телек выключается когда лишь спим. Комп забываем всегда выключать. Так что делайте, дерзайте и не слушайте пропагандистов приобретать электроэнергию по завышенным надутым ценам у спекулянтов.

О КПД ветряков. Именно этот вопрос, точнее незнание этого вопроса и порождает кучу небылиц и реально препятствует использованию энергии ветра везде, где только можно. Коэффициент полезного действия ветряков пытаются считать так же, как и у автомобилей. У авто это в итоге – эффективность преобразования бензина в движение. И чем больше движения при сжигании единицы объёма бензина, тем лучше. И КПД выше. Это понятно: бензин дорог и постоянно дорожает. И зря жечь его никому не охота. С ветром – другая система: ветер абсолютно бесплатный! Весь, сколько его дует! И сколько бы Вы ни преобразовали его в тепло или в электроэнергию – он весь Ваш! В виде чистой прибыли. Можно высчитать только затраты на постройку и материалы и узнать момент, когда он окупится. А считают его чисто математически – как коэффициент преобразования ветра в электроэнергию. Самые дешёвые генераторы – со списанной техники. Высокооборотные. Значит, скорость вращения ветряка должна быть максимальной по всем расчётам. А самые скоростные ветряки – пропеллерного типа. И шумные, и ломаются и с прочими своими недостатками. Но большинство фирм делают только их. Потому, что считают ветер бензином, на котором работают их установки. На самом деле – это заблуждение. Просто беда! По их расчётам низкооборотные ветряки делать невыгодно, потому что нужно делать мультипликатор для ускорения вращения вала ветряка и достижения высоких оборотов, нужных генератору на выработку тока. Вот и делают гудящие и ломающиеся пропеллеры. Купил у меня один знакомый такой ветряк аж с одной лопастью! Всё для скорости вращения. Гудел он жутко! Но не долго. Через три дня работы его скоростная лопасть отлетела, а за ней и хвост! Не рассчитана оказалась машинка на сибирские порывистые ветры. А это ещё над лесом было! Зато пока работал – тока много было! Если же исходить из того, что ветер дармовой, и пусть не весь в ток пойдёт, то выгоднее тихоходный ветряк сделать. И шуметь не будет, и работать долго, и током снабжать по более плавной схеме. А скорость на выходе любую сделать можно. Ещё и многоскоростную передачу с гоночных велосипедов поставить. Полуавтомат: при большом ветре можно менять передаточные числа и регулировать скорость вращения и подачу тока. Все свежие идеи требуют и свежих мыслей. И нестандартного подхода.  

russian-mifs.ru

Ветрогенераторы — энергия ветра на службе человечеству

Источники энергии — это предмет постоянных поисков человека. Нам постоянно необходимо электричество, работающая на нас тепловая и механическая энергия. И за все время своего существования человечество научилось использовать полезные ископаемые, энергию воды, Солнца и атома. Не удивительно, что ветер тоже поставили на учет.

Потолочные обогреватели встраиваемые и подвесные для потолков всех типов

Подвесные потолочные обогреватели (П профиль)

Встраиваемые потолочные нагреватели для подвесных потолков Армстронг

Существенным преимуществом энергии ветра перед всеми остальными является то, что она возобновляема, так как является одним из следствий работы Солнца. Изучением данного направления занимается ветроэнергетика. Специалисты ищут наиболее практичные и удобные способы преобразования кинетической энергии ветра (точнее, атмосферных воздушных масс) в тепловую, электрическую, механическую для использования в народном хозяйстве.

История обуздания ветра в разных странах

История сражения с ветром началась еще в античные времена. Уже в 200 году на нашей эры персы научились строить ветряные мельницы для перемола муки. Эта технология перебралась в Европу в XIII веке.

В XVI веке в Европе совместили ветряную мельницу с гидродвигателем, что позволяло осушать территории, отвоевывая их у моря, а также снабжать водой засушливые земли.

Но самым важным стал 1890 год, когда в Дании изобрели ветроэлектростанцию. Так человечество научилось получать необходимую электроэнергию практически из воздуха. Она стала предшественницей ветроэлектростанций с горизонтальной осью, производимых в 30-х годах.2Но первоначально люди слабо оценили потенциал изобретения, массовое использование началось только в 80-х. Зато сегодня масштабы использования энергии ветра впечатляют.

Первыми оценили мощь ветроэлектростанций в США, но локально — в Калифорнии. Именно здесь находятся самые большие по площади ветряные фермы, которые нередко попадают в кадры фильмов. Зрелище действительно масштабное и завораживающее — гигантские ветряки мерно крутятся в пустыне. Но эта техногенная красота еще и невероятно полезна, одной такой ВЭС достаточно для полного снабжения электроэнергией небольшого населенного пункта.

Только в XXI веке Европа начала перегонять США по количеству используемых ВЭС и объемам вырабатываемой с их помощью энергии. Лидером производства считается Дания, здесь около 30% всей электроэнергии производится с помощью современных ветряков. На втором месте Португалия — 19%, немного отстала от нее Испания — 16%, затем идет Ирландия — 14% и Германия — 8%.

В России все еще мало применяются ВЭС, так как большая часть энергии вырабатывается АЭС и ГЭС. Но доля ветрогенераторов постепенно возрастает. Медленные темпы роста связаны с недостатком финансирования.

Принцип действия и структура ветрогенератора

Ветрогенератор, который также называют ветряком или ветротурбиной — это устройство на штанге, снабженное вращающимися лопастями. Распространение получили ветряки с вертикальной и горизонтальной осями вращения. Первые бывают роторными и лопастными, вторые — крыльчатыми.

Любой ветряк состоит из таких элементов:

  • Ветротурбина на мачте, раскручиваемая лопастями или ротором.
  • Электрогенератор.
  • Аккумулятор.
  • Котроллер заряда аккумулятора.
  • Инвертор.

При этом промышленная установка намного более масштабна, имеет еще массу дополнительных элементов.

Принцип действия достаточно прост: энергия ветра раскручивает лопасти, передается сначала электрическому мотору, а следом за ним — генератору. Вращение генератора способствует выработке электрического тока, который, в свою очередь, скапливается в аккумуляторах. Преобразователь включается в цикл последним, создавая необходимый уровень напряжения.

Отопление ветром

3Хотя выработка электроэнергии с помощью ветряков выгодна только в больших масштабах, приближенных промышленным, из-за высокой стоимости оборудования. Одного ветрогенератора вполне достаточно для обогрева одного дома. Эта технология постепенно приобретает все большую популярность.

К аккумуляторам, которые заряжаются за счет энергии ветра, подключаются ТЭНы системы отопления и горячего водоснабжения. При этом владелец может выбирать любой тип отопительной системы, которая запитывается от электрической сети.

Эксперименты доказывают, что ветряк может поддерживать температуру теплоносителя на уровне 65-75 градусов, если его объем в системе составляет 200 литров, чего вполне достаточно для бытовых целей. Проблема отопления и водоснабжения дома площадью до 200 квадратных метров полностью решается.

Преимущества ветрогенераторов

4

  • Основным преимуществом ветроэнергетики является то, что ветер является восполняемым источником энергии.
  • В отличие от других видов электростанций, ВЭС являются экологически чистыми, они не делают никаких выбросов в атмосферу, что особенно актуально в разрезе борьбы за чистоту окружающей среды.
  • Стоимость электроэнергии, получаемая от больших ветряных ферм, является очень низкой, в Европе показатель держится на уровне 4-6 центов за киловатт. Только АЭС позволяют получать более дешевую энергию, но при этом они гораздо более опасны.
  • Известная интересная особенность: энергия, вырабатывая ТЭС, замещается энергией ветра, что уменьшает выбросы парниковых газов.
  • Энергия ветра снижает необходимость в энергии АЭС и продуктов нефтяных компаний, что в планетарном масштабе положительно влияет на состояние окружающей среды.
  • Ветряки можно устанавливать в местах, куда невозможно доставить электроэнергию.

Недостатки ветрогенераторов

5Несмотря на многочисленные достоинства ВЭС, недостатков у них также достаточно:

  • Быстрая окупаемость только в больших масштабах.
  • Необходимость в больших площадях для создания ветряных ферм.
  • Возможно работы только на территориях, где достаточно ветрено.
  • Необходимость внедрения интеллектуальных систем для борьбы с переменчивостью ветряных масс.
  • Высокая стоимость оборудования и его обслуживания.
  • Воздействие на силу, скорость и маршруты ветряных масс (еще мало изучено, но негативное влияние уже отмечено).
  • Негативное воздействие на птиц и летучих животных (в первую очередь, летучих мышей).
  • Высокий уровень шума (сравнимый с шумом работающего автомобиля).
  • Сильные радиопомехи.

Перспективы использования энергии ветра очень широки и еще не до конца изучены. Очевидно, что недостатки с лихвой перекрываются достоинствами, но высокая стоимость и необходимость сложного обслуживания не позволяет пока в полной мере использовать ВЭС на всей планете.

Большие встраиваемые потолочные нагреватели для подвесных потолков Армстронг

Инфракрасные потолочные обогреватели для потолков любого типа под заказ

blog.flexyheat.ru

Ветряная энергия

power-lЛюди с давних пор используют энергию ветра. Ветер много тысячелетий, отдавая свою силу парусам, помогал им странствовать по морям и океанам, осуществлять великие географические открытия. А ветряные мельницы долго были единственным инструментом для помола зерна. Где только не помогал людям ветер, Он работал на полях, подавая воду для орошения, и помогал откачивать ее при осушении болотистых территорий.

Решение задач получения из энергии ветра электрической энергии предложил в XVIII веке американец Чарльз Браш. Тепловые, атомные и гидроэлектростанции вытеснили ветряки. Их применение стало не целесообразным и не эффективным. Ренессанс ветроэнергетики спровоцировал рост цен и дефицит запасов ресурсов для выработки энергии. В ряде стран (Дания, Испания и др.) были введены программы, которые поддерживают и стимулируют использование нетрадиционных методов выработки энергии, и предоставляющие определенные экономические льготы. Пока нет такой программы на территории СНГ. Невзирая на отсутствие стимулирования, ветроэнергетику движет вперед самосознание людей, стремление к автономности, независимости от нестабильных сетей. Перемещение воздушных масс над поверхностью земли – это ветер. Ветрогенератор превращает кинетическую энергию воздуха в электрическую. Преимущество такой энергетики – отсутствие сырья и отходов. Бытовые ветроэнергетические установки (ВЭУ) обеспечивают электроэнергией частные дома. Для установки ВЭУ не превышающей мощности 75 квт с опорой до 30 м, разрешения не требуется. Монтаж осуществляется организацией-продавцом, но, имея определенные строительные навыки, установку можно смонтировать самостоятельно. Руководство по эксплуатации и монтажу содержит все необходимые сведения. Ветроустановка принесет наибольшую пользу при строительстве дома в районах, где еще нет сетей электро- и газоснабжения. Подсчитывая затраты на прокладку сетей, необходимую оплату за изготовление проектов и разрешения, Вы увидите преимущества и выгоды электроустановки. Помимо того, ВЭУ - это устройство, которое никак не вредит природе. Ваш участок и атмосфера никаким образом не будут страдать от загрязнений. Возводя ВЭУ для своего дома, вы решаете не только проблему обеспечения энергией, но и вносите свой посильный вклад в сохранение энергетической и экологической безопасности страны.

energy-source.ru

Ветряная энергетика | Возобновляемая энергия и ресурсы

Шельфовая ветряная электростанцияВетряная энергия способна в сравнительно недолгий срок значительно сократить зависимость мировой экономики от нефти, газа, урана и других видов ископаемого топлива, а также существенно снизить выброс в атмосферу парниковых газов, которые губительно сказываются на климате нашей планеты. По данным NREL, выработка 1 МВт ветряной энергии предотвращает выброс приблизительно 2 600 тонн углекислого газа.

Мировой рынок ветряной энергетики

По данным IRENA, установленная мощность ветряной энергетики в мире выросла с 92,5 ГВт в 2007 году до около 467 ГВт в 2016 году, включая 453 ГВт объектов наземной ветряной генерации. В этом же году в этой отрасли напрямую и косвенно было задействовано 1,2 млн человек, при этом половина этих рабочих мест находится в Азии.

По данным доклада МЭА по оценке успехов в области внедрения технологий возобновляемой энергетики в мире Tracking Clean Energy Progress, в 2017 году доля ветрогенерации от всей производимой в мире энергии из возобновляемых источников составила 16%.

В 2016 году глобальные инвестиции в развитие ветроэнергетики были на 9% меньше чем год назад и составили 112,5 млрд долларов США. При этом объём введенных мощностей ветроэнергетики снизился до 54 ГВт в сравнении с максимумом предыдущего года в 63 ГВт, по данным доклада «Глобальные тенденции инвестирования в развитие ВИЭ в 2017 году».

В настоящее время лидерами в области ветряной энергетики (в пересчете на душу населения) являются Дания, Испания, Португалия, Швеция и Германия.

Перспективы ветряной энергетики в мире

В соответствии с долгосрочным прогнозом New Energy Outlook 2016 (NEO 2016), до 2040 в мире будет совокупно инвестировано порядка 3,1 трлн долларов США в наземную и прибрежную ветряную генерацию, при этом цена на этот вид энергии снизится более, чем на 40%, сделав ветряную энергию одной из самых дешевых уже к 2030 году.

Технологии ветряной энергетики

При построении ветряной электростанции основные расходы идут на закупку оборудования и установку турбинных генераторов, после этого операционные затраты на поддержание ее работы минимальны. Ветряная турбина может работать при скорости ветра примерно в диапазоне 13-90 км/ч. Шум, производимый ветряным генератором, соответствует нормам ВОЗ (Всемирной организации здравоохранения) для жилых зон.

Турбинные технологии: наземные и прибрежные ветряные электростанции

Ветряные станции могут быть построены как на земле (наземные, onshore), так и на небольшой глубине в шельфовой зоне морей (прибрежные или шельфовые, offshore), где часто дуют достаточно сильные ветра. Помимо стандартных оффшорных ветряных турбин с жестким, вкопанным в морское дно, основанием, идет разработка нового типа надводных прибрежных ветряных турбин, размещенных на плавучих платформах, крепящихся к дну якорными тросами.

Воздушные ветряные электростанции

Кроме того, не прекращаются попытки усовершенствовать идею получения энергии из силы ветра и максимально снизить стоимость производства возобновляемой энергии. Над этим работает множество изобретателей и стартапов по всему миру.

Нидерландская Ampyx Power предлагает постепенный переход от строительства ветряных турбин к системам второго поколения ветряной энергетики — «воздушной ветряной энергетики» (Airborne Wind Energy System — AWES), состоящим из дрона, привязанного с генератору электричества на земле. Английская Kite Power Systems предлагает извлекать энергию ветра из воздушных систем на основе кайта, аналогичную систему разрабатывает и тестирует проект Google X Makani.

История ветряной энергетики

Идея вырабатывать электричество, используя силу ветра, приписывает немецкому физику Альберту Бетцу. Он же считается разработчиком технологии ветряной турбины. Первая ветряная турбина была построена в Вермонте в 1940-е гг. Первая ветряная электростанция водного типа (прибрежная) Vindeby была построена в 1991 году неподалеку от побережья Дании совместными усилиями датской компании DONG (сейчас DONG Energy) и немецкой Siemens.

    Последние новости рынка ветроэнергетики

  • Фортум Ульяновская — наземная ветряная электростанция — 35 МВт, Россия, 2018
  • Саудовская Аравия планирует вложить 7 млрд долл США в проекты возобновляемой энергетики в 2018 году
  • Южная Корея озвучила свой план перехода на новые виды энергетики
  • Hornsdale (Хорнсдейл) — наземная ветряная электростанция, 100 МВт, 2016 + хранилище энергии 100 МВт, 2017, Австралия
  • Caney River (Кейни Ривер) — наземная ветряная электростанция — 200 МВт, США, 2011
  • Red Dirt (Ред Дёрт) — наземная ветряная электростанция — 300 МВт, США, 2017
  • Dudgeon (Даджен) — прибрежная ветряная электростанция — 402 МВт, Великобритания, 2017
  • Азовская — наземная ветряная электростанция — 90 МВт, Россия, 2020
  • Rattlesnake Creek (Рэттлснейк Крик) — наземная ветряная электростанция — 320 МВт, США
  • Rock Creek (Рок Крик) — наземная ветряная электростанция — 300 МВт, США, 2017
  • Hywind Scotland (Хайвинд Скотланд) — плавающая прибрежная ветряная электростанция — 30 МВт, Великобритания, 2017
  • Čibuk (Чибук) — наземная ветряная электростанция — 158 МВт, Сербия, 2019
  • Salitrillos (Салитрийос) — наземная ветряная электростанция — 93 МВт, Мексика, 2019
  • Vientos del Altiplano (Вьентос дель Альтиплано) — наземная ветряная электростанция — 100 МВт, Мексика, 2016
  • Palo Alto (Пало Альто) — наземная ветряная электростанция — 129 МВт, Мексика, 2016

    Недавние и ближайшие мероприятия, связанные с темой ветроэнергетики

  • 25-27 окт 2017 — RENEXPO Poland 2017: Выставка возобновляемой энергетики, Варшава (Польша)
  • 11-12 окт 2017 — Vind 2017: Выставка ветряной энергетики, Стокгольм (Швеция)
  • 30-31 мая 2017 — Brazil Power and Energy Summit 2017: Конференция по энергетике, Сан-Паулу (Бразилия)
  • 23-25 мая 2017 — GreenPOWER 2017: Выставка возобновляемой энергетики, Познань (Польша)
  • 23-25 мая 2017 — EnerSolar+ Brasil 2017: Выставка возобновляемой энергетики, Сан-Паулу (Бразилия)
  • 17-19 мая 2017 — Power-Gen India and Central Asia 2017: Выставка возобновляемой энергетики, Дели (Индия)
  • 27-29 апреля 2017 — REAP 2017: Выставка возобновляемой энергетики, Исламабад (Пакистан)
  • 25-28 апреля 2017 — РМЭФ 2017: Форум по энергетике, Санкт-Петербург (Россия)
  • 25-27 апреля 2017 — Windergy India 2017: Выставка ветряной энергетики, Нью-Дели (Индия)
  • 24-25 апреля 2017 — Future of Energy Summit 2017: Конгресс по возобновляемой энергетике, Нью-Йорк (США)
  • 11-13 апреля 2017 — Power and Energy Africa 2017: Выставка возобновляемой энергетики, Найроби (Кения)
  • 11-12 апреля 2017 — InEnerg 2017: Выставка возобновляемой энергетике, Вроцлав (Польша)
  • 7-8 апреля 2017 — RenewX 2017: Выставка возобновляемой энергетики, Хайдарабад (Индия)
  • 5-7 апреля 2017 — Green Energy Expo 2017: Выставка возобновляемой энергетики, Тэгу (Южная Корея)
  • 4-5 апреля 2017 — Africa Renewable Energy Leaders’ Summit 2017: Форум по энергетике, Найроби (Кения)

    Проекты в сфере ветроэнергетики

  • Adelaide Wind (Аделаида Винд) — наземная ветряная электростанция — 102,4 МВт, Канада, 2014
  • Ajos (Айос) — наземно-прибрежная ветряная электростанция — 42,4 МВт, Финляндия, 2017
  • Amistad (Амистад) — наземная ветряная электростанция — 200 МВт, Мексика
  • Anholt (Анхольт) — прибрежная ветряная электростанция — 400 МВт, Дания, 2013
  • Ashtabula 1-3 (Аштабула) — наземная ветряная электростанция — 331 МВт, США, 2010
  • Baldwin Wind (Болдуин Винд) — наземная ветряная электростанция — 102,4 МВт, США, 2010
  • Barrow (Бэрроу) — прибрежная ветряная электростанция — 90 МВт, Великобритания, 2006
  • Belwind (Белвинд) — прибрежная ветряная электростанция — 165 МВт, Бельгия, 2010
  • Beringen Albertkanaal (Беринген Альбертканаал) — наземная ветряная электростанция — 4,6 МВт, Бельгия, 2012
  • Blackwell Wind (Блэкуэлл Винд) — наземная ветряная электростанция — 59,8 МВт, США, 2012
  • Block Island (Блок Айленд) — прибрежная ветряная электростанция — 30 МВт, США, 2016
  • Blue Summit (Блю Саммит) — наземная ветряная электростанция — 135,4 МВт, США, 2012
  • Bluewater Wind (Блюуотер Винд) — наземная ветряная электростанция — 60 МВт, Канада, 2014
  • Borkum Riffgrund 1 (Боркум Риффгрунд 1) — прибрежная ветряная электростанция — 312 МВт, Германия, 2015
  • Borkum Riffgrund 2 (Боркум Риффгрунд 2) — прибрежная ветряная электростанция — 450 МВт, Германия, 2019
  • Bornish (Борниш) — наземная ветряная электростанция — 73 МВт, Канада, 2014
  • Borssele 1 и 2 (Борселе 1 и 2) — наземные ветряные электростанции — 752 МВт, Нидерланды, 2020
  • Brady 1 и 2 (Брейди) — наземные ветряные электростанции — 300 МВт, США, 2016
  • Burbo Bank (Бурбо Бэнк) — прибрежная ветряная электростанция — 90 МВт, Великобритания, 2007
  • Burbo Bank Extension (Бурбо Бэнк Экстеншен) — прибрежная ветряная электростанция — 258 МВт, Великобритания, 2017
  • Caney River (Кейни Ривер) — наземная ветряная электростанция — 200 МВт, США, 2011
  • Chisholm View 1 и 2 (Чисхолм Вью 1 и 2) — наземные ветряные электростанции — 300 МВт, США, 2016
  • Čibuk (Чибук) — наземная ветряная электростанция — 158 МВт, Сербия, 2019
  • Cimarron Bend (Симаррон Бенд) — наземная ветряная электростанция — 400 МВт, США, 2017
  • Coastal Virginia (Коустал Вирджиния) — прибрежная ветряная электростанция — 12 МВт, США, 2020

renewnews.ru

Ветроэнергетика - это... Что такое Ветроэнергетика?

        отрасль науки и техники, разрабатывающая теоретические основы, методы и средства использования энергии ветра для получения механической, электрической и тепловой энергии и определяющая области и масштабы целесообразного использования ветровой энергии в народном хозяйстве. В. состоит из 2 основных частей: ветротехники, разрабатывающей теоретические основы и практические приёмы проектирования технических средств (агрегатов и установок), и ветроиспользования, включающего теоретические и практические вопросы оптимального использования энергии ветра, рациональной эксплуатации установок и их технико-экономических показателей, обобщение опыта применения установок в народном хозяйстве. В. также опирается на результаты аэрологических исследований, на базе которых разрабатывается Ветроэнергетический кадастр. По данным ветроэнергетического кадастра не только выявляют районы с благоприятным ветровым режимом, но и устанавливают виды работ, где применение ветровой энергии целесообразно и экономически выгодно по сравнению с другими энергоисточниками. Ветровую энергию, прежде всего, следует использовать в таких производственных процессах, которые допускают перерывы в подаче энергии, или в тех случаях, когда продукт переработки может быть заготовлен впрок (подъём воды, орошение, дренаж, помол зерна, кормоприготовление, зарядка электрохимических аккумуляторов и т.п.). Учитывая важность этой отрасли, В. И. Ленин в первый «Набросок плана научно-технических работ» (апрель 1918) включил работы по использованию энергии воды и ветра вообще и в земледелии в частности; в письме к А. П. Серебровскому (апрель 1921) В. И. Ленин подчёркивал важное значение использования в Бакинском районе ветряных двигателей для орошения земли и развития земледелия.

         Ветровая энергия, наряду с солнечной и водной, принадлежит к числу постоянно возобновляемых и, в этом смысле, вечных источников энергии, обязанных своим происхождением деятельности Солнца. Вследствие неравномерного нагрева солнечными лучами земной поверхности и нижних слоев земной атмосферы, в приземном слое, а также на высотах от 7 до 12 км возникают перемещения больших масс воздуха, то есть рождается ветер. Он несёт колоссальное количество энергии: 96-1021дж (26,6-1015квт-ч), что составляет почти 2% энергии всей солнечной радиации, попадающей на Землю. Сила ветра, зависящая от его скорости, изменяется в очень широких пределах — от лёгкого дуновения до урагана, скорость которого достигает 60—80 м/сек. Потенциальные ресурсы ветровой энергии на всей территории СССР определены в 10,7 Гвт (млрд. квт) с возможной годовой отдачей 65-1018дж (18-1012квт-ч). Используя даже несколько процентов этой энергии, можно удовлетворить значительную часть потребностей страны. Исходя из хозяйственных, ветровых и др. зональных условий, определяют тип применяемой ветроустановки и её экономические показатели.

         К достоинствам ветровой энергии, прежде всего, следует отнести доступность, повсеместное распространение и практически неисчерпаемость ресурсов. Источник энергии не нужно добывать и транспортировать к месту потребления: ветер сам поступает к установленному на его пути ветродвигателю (См. Ветродвигатель). Эта особенность ветра чрезвычайно важна для труднодоступных (арктических, степных, пустынных, горных и т.п.) районов, удалённых от источников централизованного энергоснабжения, и для относительно мелких (мощностью до 100 квт) потребителей энергии, рассредоточенных на обширных пространствах. Основное препятствие к использованию ветра как энергетического источника — непостоянство его скорости, а следовательно, и энергии во времени. Ветер обладает не только многолетней и сезонной изменчивостью (рис. 1), но также изменяет свою активность в течение суток (рис. 2) и за очень короткие промежутки времени (мгновенные пульсации скорости и порывы ветра) (рис. 3). Потенциал ветровой энергии зависит от значений среднегодовой или среднепериодной скорости и повторяемости различных скоростей ветра. Его оценивают количеством энергии, которую с помощью ветродвигателя можно получить в данной местности. В зонах с умеренным ветровым режимом (среднегодовая скорость ветра 5 м/сек) на 1 км2 можно получить годовую выработку электроэнергии около 3,6 Мдж (1 млн. квт-ч, или 1 Гвт-ч). Мощность ветрового потока пропорциональна кубу скорости ветра. Поэтому даже относительно небольшие его изменения приводят к значительным колебаниям мощности, развиваемой ветродвигателем, в диапазоне скоростей от минимальной рабочей, при которой ветродвигатель начинает вырабатывать полезную мощность, до расчётной, которой соответствует установленная мощность ветроэнергетической установки (См. Ветроэнергетическая установка). Конструкции и способы регулирования частоты вращения и мощности ветродвигателей обеспечивают их надёжную работу при буревых скоростях ветра (40—50 м/сек) и ограничение развиваемой мощности таким образом, что максимальная мощность превышает установленную обычно не более чем на 15—20%. Чтобы уменьшить колебания мощности или избежать их, ветровую энергию в периоды, когда имеется избыточная мощность, аккумулируют и затем используют в периоды безветрия или недостаточных скоростей ветра. Специфичностью аккумулирования в значительной мере объясняются трудности утилизации ветровой энергии и причины ещё недостаточного её практического использования.          Краткая история развития В. С древнейших времён человек использовал энергию ветра сначала в судоходстве, а затем для замены своей мускульной силы. Первые простейшие ветродвигатели применяли в глубокой древности в Египте и Китае. В Египте (около г. Александрии) сохранились остатки каменных ветряных мельниц барабанного типа, построенных ещё во 2—1 вв. до н. э. В 7 в. н. э. персы строили ветряные мельницы уже более совершенной конструкции — крыльчатые. Несколько позднее, по-видимому в 8—9 вв., ветряные мельницы появились на Руси и в Европе. Начиная с 13 в., ветродвигатели получили широкое распространение в Западной Европе, особенно в Голландии, Дании и Англии, для подъёма воды, размола зерна и приведения в движение различных станков. До Великой Октябрьской социалистической революции в крестьянских хозяйствах России насчитывалось около 250 тыс. ветряных мельниц, которые ежегодно перемалывали половину урожая (около 33 млн. т, или 2 млрд. пудов зерна). С изобретением паровых машин, а затем двигателей внутреннего сгорания и электродвигателей старые примитивные ветряные двигатели и мельницы были вытеснены из многих отраслей и остались, главным образом, в сельском хозяйстве. В начале 20 в. русский учёный Н. Е. Жуковский разработал теорию быстроходного ветродвигателя и заложил научные основы создания высокопроизводительных ветродвигателей, способных более эффективно использовать энергию ветра. Они были построены его учениками после организации в 1918 Центрального аэрогидродинамического института (ЦАГИ). Советские учёные и инженеры теоретически обосновали принципиально новые схемы и создали совершенные по конструкции ветроэнергетические установки и ветроэлектрические станции (См. Ветроэлектрическая станция) (ВЭС) различных типов мощностью до 100 квт для механизации и электрификации процессов с.-х. производства и др. целей. Большие заслуги в создании основ В. и ветроиспользования имеют советские учёные Н. В. Красовский, Г. Х. Сабинин, Е. М. Фатеев и др. Промышленный выпуск ветродвигателей для механического привода машин был налажен в начале 20 в., а электрических ветроагрегатов с генераторами небольшой мощности — примерно в 20-х гг. В 40—50-х гг. в СССР и за рубежом получило интенсивное развитие строительство ВЭС. Так, в Дании в период 2-й мировой войны работали несколько десятков ВЭС, выработка которых превысила 80 млн. квт-ч электроэнергии. За годы Советской власти налажено серийное производство специализированных и универсальных ветродвигателей мощностью от 0,7 до 11 квт (от 1 до 15 л. с.), главным образом, с механическими и электрическими трансмиссиями. В послевоенный период было выпущено более 40 тыс. ветродвигателей, в основном типов ТВ-8, ТВ-5, Д-12, ВЭ-2, которые с большой эффективностью применялись в колхозах и совхозах.

         Состояние В. к концу 60-х гг. 20 в. В СССР созданы новые типы более совершенных унифицированных быстроходных ветроэнергетических агрегатов (ВБЛ-3, ВПЛ-4, «Беркут», «Ветерок» и др.), в которых используются новые типы насосов и генераторов, пневматические, электрические и др. виды приводов, более совершенные системы регулирования. Большинство ветродвигателей применяют для механизации подъёма воды, особенно на пастбищах и отдалённых фермах в Поволжье, на Алтае и Чёрных землях, в Казахской, Туркменской, Узбекской ССР и др. зонах, где они работают 250—300 дней в году. Разработка теоретических основ и создание новых конструкций ветроэнергетических агрегатов различного назначения проводятся в Советском Союзе (Всесоюзный НИИ электрификации сельского хозяйства, Всесоюзный НИИ электромеханики, ЦАГИ и др.), ФРГ (Штутгартская школа ветроэнергетиков), США, Великобритании, Франции, Дании и др. странах. В тех странах мира, где широко развита В., используются (по неполным данным) более 600 тыс. ветроэнергетических установок (по материалам ЮНЕСКО за 1967). В 1968 в Австралии эксплуатировались более 250 тыс. ветроустановок, преимущественно насосных. В СССР число эксплуатируемых ветродвигателей (без самодельных) составляет 8—9 тыс.

         Перспективы развития. Роль В. в Советском Союзе возрастает при реализации большой программы по обводнению и мелиорации земель и решении важнейших задач развития механизации животноводства и электрификации сельского хозяйства. Ветроэнергетические установки с успехом могут быть применены для механизации водоснабжения потребителей, осушения заболоченных участков и мелко-оазисного орошения бахчевых, кормовых и огородных культур во вновь осваиваемых пустынных и полупустынных зонах, для энергоснабжения отдалённых объектов и др. Для этих целей предполагается применить десятки тыс. ветроустановок, что в несколько раз снизит затраты на водоподъём. Это явится, как писал ещё в 30-х гг. 20 в. известный русский учёный К. А. Тимирязев, идеальным решением вопроса борьбы с засухой. Первые опыты показали, что ветроэлектрические агрегаты также целесообразно применять для питания энергией установок по опреснению минерализованных грунтовых вод, для так называемой катодной защиты трубопроводов и морских сооружений от коррозии, а ветропневматические установки— для аэрации водоёмов в зимнее время закачкой воздуха под лёд. Изучается возможность создания более крупных ВЭС (в частности, на Филиппинах — до 5 Мвт) для энергоснабжения изолированных потребителей в труднодоступных районах (арктических, горных и др.) и на островах, куда доставка топлива сложна и дорога. Наиболее перспективно применение таких ВЭС для параллельной или совместной работы с др. электрическими станциями. В более отдалённой перспективе — применение высотных ВЭС мощностью до 3—5 Мвт, использующих энергию воздушных потоков в тропопаузе.

         Лит.: Вопросы ветроэнергетики, [Сб. ст.], М., 1959; Красовский Н. В., Сабинин Г. Х., Проблемы использования энергии ветра, М., 1923; Красовский Н. В., Как использовать энергию ветра, М. — Л., 1936; Шефтер Я. И., Ветроиспользование и его роль в энергетике сельского хозяйства, «Научные труды по электрификации сельского хозяйства», 1967, т. 20; Шефтер Я. И. [сост.]. Состояние, научно-технические и экономические основы развития ветроэнергетики и рекомендации по применению ветродвигателей, М., 1966; Сабинин Г. Х., Фатеев Е. М., Проблема использования энергии ветра в СССР, состояние и перспективы, «Изв. АН СССР. Отделение технических наук. Энергетика и автоматика», 1960, № 6; Колодин М. В., Ветер и ветротехника, Аш., 1957; Тажиев И. Т., Энергия ветра, как энергетическая база электрификации сельского хозяйства Казахстана, А.-А., 1949: Gliding Е. W., The generation of electricity by wind power, L., 1955.

         М. В. Колодин, Я. И. Шефтер.

        

        Рис. 1. Сезонная изменчивость скоростей ветра.

        

        Рис. 2. Суточное изменение скоростей ветра.

        

        Рис. 3. Характер изменений скорости ветра за короткий промежуток времени.

dic.academic.ru

Ветряная энергия опасна для человека?

Большинство экспертов считают ветряные электростанции перспективными источниками света и тепла. Однако не существует универсальных решений, и у каждой технологии есть обратная сторона. Японские медики изучили состояние здоровья людей, проживающих близ ветряков, и пришли к выводу – ветряная энергия опасна для человека. Того же мнения придерживает давший интервью «Правде.Ру» врач-профпатолог Леонид Мерзликин.

Ветряная энергия опасна для человека?

Ветряная энергия опасна для человека?

Казалось бы, что чистая и безопасная энергия ветряных станций должна стать лекарством от головной боли планеты – призрака грядущего энергетического кризиса. Однако у этой технологии тоже оказались побочные эффекты, да к тому же вредные для здоровья. Проблема кроется у инфразвуковых волнах, которые генерируются огромными лопастями ветряков.

После запуска в январе прошлого года сразу нескольких подобных установок в Японии обитающие рядом с ними люди начали испытывать различные проблемы со здоровьем. Головные боли, дрожание рук, бессонница – вот лишь часть симптомов, развивающихся у обитателей таких регионов. Чаще других страдают люди старше 50 лет.

Всего около 20 процентов обследованных пожаловались на различные виды недомоганий. И хотя прямая зависимость между звуком и состоянием здоровья еще до сих пор не доказана медицинской наукой, симптомы указывают на одно из двух заболеваний.

Читайте также " Ветряные мельницы - панацея для энергетики "

Первым является персональная непереносимость инфразвуковых волн, которая достаточно распространена среди населения земного шара. Вторым же недугом является психологический дискомфорт, как от нежелательных звуков, так и вызванный ожиданием от ветряков чего-то плохого. Это ведет к неврологическому расстройству и даже может развиться в боязнь звуков.

Звуковые волны, возникающие при вращении лопастей ветряков, имеют частоту 20 Герц – ниже порога восприятия человеческого уха. Именно их считают причиной возникающих недугов. Но энергетические компании, занимающиеся установкой ветряных электростанций, всячески отрицают возможность нанесения вреда здоровья людей. Их представители уверяют, что подобная частота звуковых колебаний естественна и наблюдается в живой природе.

Вместе с тем инфразвук является грозной разрушительной силой.

Ветряная энергия опасна для человека?

Ветряная энергия опасна для человека?

Постоянное воздействие на строения вибраций с частотой 20-200 Герц может привести к их постепенному разрушению. Тем не менее риск инфразвуковых излучений ветряков пока еще не может быть оценен, поскольку они издают колебания на частоте 20 Герц и меньше, которые изучены гораздо хуже.

За комментарием « Правда.Ру » обратилась к медицинским специалистам по заболеваниям, связанным с профессиональной деятельностью. Доцент, кандидат медицинских наук Леонид Александрович Мерзлики н рассказал нам следующее:

«Воздействие инфразвука на человеческий организм известно еще со средних веков. Широко известно, как соборные органы вызывали немотивированное чувство страха и собственной ничтожности прихожан.

Инфразвук может вызвать различные формы нервного тика, судороги, ощущение тревоги, чувство качки. Такие звуковые волны часто возникают при приближении ударной волны от землетрясения или урагана, поэтому более восприимчивые к низким частотам животные начинают демонстрировать признаки страха.

Смотрите фоторепортажи в разделе " Наука и история "

Однако, несмотря на многочисленные наблюдения, на статистику различных случаев недомогания, механизм этого воздействия еще не до конца изучен – нам только предстоит найти связь между инфразвуковыми волнами и физическим состоянием человека. Пока что можно говорить, что при персональной непереносимости инфразвука нет других эффективных способов лечения, кроме устранения источника раздражения».

Работа ветряных мельниц и ветряных электростанций не регламентирована по уровню шума ни в одном государстве. Министерство окружающей среды Японии, приступившее к детальному изучению этой проблемы, имеет все шансы стать инициатором первого в мире закона о влиянии ветряков на природу.

Вместе с тем конструкторы энергетических установок тоже не остаются в стороне от проблемы. Объединенная группа инженеров из нескольких крупных фирм приступила к собственному расследованию и ищет технические способы нейтрализовать вредный инфразвук.

Читайте также на " Правде.Ру "

www.pravda.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта