Ветроэнергетические
ВА 200 (0,2 кВт)
ВЭУ 500-1 (0,5 кВт)
ЛМВ 500 (0,8/1,2 кВт)
ВА 500 (0,5 кВт)
WE 1000 (2,5 кВт)
ЛМВ 1003 (1,5 кВт)
ЛМВ 2500 (2,7 кВт)
ЛМВ 3600 (4,3 кВт)
ЛМВ 10000 (10 кВт)
WE 10000 (11 кВт)
АОС 15/50 (50кВт)
Блоки автономного резервного питания:
PS2500
|
|
БАШНЯ ИЗ ВЕТРОЭНЕРГЕТИЧЕСКИХ МОДУЛЕЙ | Наука и жизнь
Наука и жизнь // Иллюстрации
Ветродвигатель «Модуль» с усовершенствованной аэродинамической схемой и улучшенной компоновкой. Оснащен кольцевым обтекателем и профилированными лопатками, создающими закрутку ветрового потока на входе в ветроколесо.
Многомодульная ветроэнергетическая установка «Венец» предназначена для снабжения электроэнергией индивидуальных домов.
Многомодульная ветроэнергетическая установка «Башня» может менять высоту и мощность в зависимости от количества монтируемых на центральном теле «Модулей».
Испытание ветродвигателя «Модуль» в аэродинамической трубе ЦАГИ.
Наука и жизнь // Иллюстрации
Наука и жизнь // Иллюстрации
‹
›
Открыть в полном размере
Среди альтернативных (возобновляемых) источников энергии наиболее перспективными специалисты считают солнечную (см. «Наука и жизнь» № 12, 2002 г.) и ветроэнергетику. Первое место в мире по использованию энергии ветра прочно занимает Германия. В начале 2003 года на ее просторах работало около 14 тысяч ветроэнергетических установок (ВЭУ). В России же ветроэнергетика развивается крайне медленно. Связано это с тем, что производимые у нас установки никак не могут избавиться от двух серьезных недостатков: высокой стоимости (впрочем, цена зарубежных моделей тоже высока, но они обладают большей энергетической эффективностью и другими достоинствами) и наносимого ими экологического вреда. Работа ВЭУ сопровождается шумом, вибрациями, таит в себе опасность для птиц, которые гибнут, попадая под лопасти ветроколеса. И все же привлекательные стороны ветроэнергетики — ее неистощимость, безотходность, возможность быстрого развертывания ветроэлектростанций практически в любых, даже удаленных и труднодоступных местах — заставляют проектировщиков биться над усовершенствованием конструкций ВЭУ.
Немецкие разработчики, стремясь поднять мощность ВЭУ, пошли по пути увеличения размеров традиционных пропеллерных установок (их последние модели, оснащенные многотонным трехлопастным ротором диаметром 66 м, дают мощность до 2 МВт). В России же одним из возможных направлений развития ветроэнергетики может стать создание многомодульных ветроэнергетических установок (МВЭУ), состоящих из одного-двух десятков небольших ветроколес диаметром до 2 м.
В программе МВЭУ участвуют несколько предприятий. Среди них Центральный аэрогидродинамический институт — ЦАГИ, занимающийся вопросами аэродинамики, испытанием моделей и изготовлением опытных образцов; НИИ электрификации сельского хозяйства (испытания на полигоне) и Московский государственный открытый университет, где на кафедре электроприводов разрабатывают и изготавливают электрическую часть МВЭУ. Производством наиболее сложных элементов конструкций — легких и прочных углепластиковых профилированных лопаток и кольцевого обтекателя на стадии изготовления опытных образцов занимается ЗАО «Мельников».
Совместными усилиями они разработали и приступили к созданию модульной ветроэнергетической установки оригинальной конструкции, в которой недостатки ВЭУ сведены к минимуму. Этого удалось добиться путем усовершенствования традиционной схемы пропеллерной ВЭУ с горизонтальной осью и использования новых компоновочных решений.
Причина большинства недостатков пропеллерных ВЭУ, приводящих к потере мощности, кроется в особом характере обтекания концов лопастей ротора ветровым потоком. Чтобы изменить его, разработчики решили поместить ветроколесо в кольцевой обтекатель и закрепить на центральном теле с помощью профилированных лопаток. Лопатки (или направляющий аппарат) сконструированы так, что создают предварительную закрутку ветрового потока на подходе к ветроколесу. Таким образом устраняются закрутка на выходе из него и связанные с этим явлением потери мощности, достигающие в обычных ВЭУ 5-10%. Кольцевой обтекатель существенно снижает шум работающего ветроколеса. На входе он закрыт сеткой, обеспечивающей 100-процентную защиту птиц.
Усовершенствованная конструкция ветродвигателя получила название «Модуль». Несмотря на то что потери мощности в нем по сравнению с ВЭУ традиционной схемы возрастают за счет трения с 7 до 20% (пропорционально увеличению площади обтекаемых поверхностей), суммарные потери мощности снижаются примерно в два раза. Этого удалось достичь благодаря применению более совершенной аэродинамической схемы.
Конструктивно «Модуль» сложнее традиционных ВЭУ, но обладает большей энергетической эффективностью. Результаты первых испытаний в аэродинамической трубе ЦАГИ показали, что он обеспечивает более высокий коэффициент использования энергии ветра, чем другие современные ВЭУ. Еще одно преимущество «Модуля» — большая эффективность отбора мощности в момент запуска, благодаря чему ему нужна значительно меньшая стартовая скорость.
На данном этапе проектируются модули с кольцевым обтекателем диаметром 1 м («Мини-модуль») и 2 м («Макси-модуль»). При скорости ветра 10 м/с мощность первого составляет 0,25 кВт, а второго — 1 кВт. Естественно, большую мощность и наибольший экономический эффект дают многомодульные установки.
МВЭУ представляет собой объемное центральное тело со смонтированными на нем ветроколесами — модулями. Их располагают вдоль боковых поверхностей и сверху в зоне повышенных скоростей воздушного потока, которая возникает благодаря тому, что центральное тело имеет в сечении обтекаемую каплевидную форму. В результате стартовая скорость ветра снижается почти вдвое, а годовая выработка электроэнергии увеличивается на 5-10%.
Разработчики предлагают МВЭУ в двух компоновках. Первая из них — «Венец» — предназначена для обеспечения электроэнергией в основном индивидуальных домов. Установка представляет собой усеченное осесимметричное центральное тело, вокруг которого по окружности смонтировано несколько ветроэнергетических модулей. «Венец» устанавливают на крышах зданий.
Вторая компоновка -МВЭУ «Башня» — может вырабатывать электроэнергию для небольших поселков. Она состоит из цилиндрического центрального тела, имеющего в поперечном сечении не круглую, а каплевидную форму, по бокам и сверху которого установлены до нескольких десятков модулей. Высота «Башни» определяется количеством модулей, монтируемых на центральном теле. Его собирают из отдельных секций по принципу детской пирамидки.
По расчетам, стоимость «Башни» будет существенно ниже стоимости ВЭУ традиционной схемы той же мощности. Дело в том, что дорогостоящие модули занимают лишь часть рабочей площади МВЭУ, а другая ее часть приходится на центральное тело, затраты на которое намного ниже. В свою очередь, модули планируется выпускать серийно, а это также заметно сократит их стоимость. Невысокая цена МВЭУ обусловлена еще и тем, что им не нужны ни мультипликатор (редуктор), ни устройство ориентации на ветер. Эти механизмы, применяемые в традиционных ВЭУ большой мощности, достаточно сложны, на их работу тратится до 10% мощности. А в конструкции МВЭУ высокие обороты вала (до 2000 об/мин) обеспечивают ветроэнергетические модули небольшого диаметра. Кроме того, модульные установки сами поворачиваются на ветер, если вертикальная ось вращения у них расположена впереди точки приложения боковой аэродинами ческой силы. Это свойство всех модульных компоновок.
Модульные ветроэнергетические установки не только дешевле, экологичнее и экономичнее пропеллерных ВЭУ, но и удобнее в эксплуатации. Подбором количества модулей мощность МВЭУ можно изменять в несколько раз. Привлекательно и то, что неисправные модули отключаются и ремонтируются без остановки остальных.
Программа создания МВЭУ включает шесть проектов, которые выполняются в несколько
этапов. Ее предполагаемая стоимость — 700 тысяч долларов. Это несколько меньше,
чем сумма затрат на все проекты, если выполнять их по отдельности.
(Экспериментальный машиностроительный завод им. В. М. Мясищева).
ЛИТЕРАТУРА
«Наука и жизнь» о ветродвигателях:
Ветродвигатель . — 1979, № 3.
Ветер включается в сеть. — 1980, № 10.
Ветроэлектростанция для дома. — 1984, № 8.
Ветроэлектростанция на воде. — 1985, № 3.
Ветродвигатель поднимает паруса. — 1991, № 2.
Ляхтер В. Второе пришествие ветряка. — 1991, № 5.
Иванов Н. Ветродвигатель с машущим ротором. — 2001, № 1.
Ветряные мельницы XXI века. — 2003, № 8.
Как работает ветряная турбина
Министерство энергетики
20 июня 2014 г.
От крупных ветряных электростанций до небольших турбин, питающих один дом, ветряные турбины по всему миру вырабатывают чистую электроэнергию для различных нужд.
В Соединенных Штатах ветряные турбины становятся обычным явлением. С начала века общая мощность ветроэнергетики в США увеличилась более чем в 24 раза. В настоящее время в США достаточно мощностей ветровой энергетики, чтобы генерировать достаточно электроэнергии для питания более 15 миллионов домов, что помогает проложить путь к будущему экологически чистой энергии.
Что такое ветряная турбина?
Концепция использования энергии ветра для производства механической энергии насчитывает тысячелетия. Еще в 5000 году до нашей эры египтяне использовали энергию ветра для движения лодок по реке Нил. Американские колонисты полагались на ветряные мельницы для измельчения зерна, перекачки воды и рубки древесины на лесопилках. Сегодняшние ветряные турбины — это современный эквивалент ветряной мельницы, преобразующий кинетическую энергию ветра в чистую, возобновляемую электроэнергию.
Как работает ветряная турбина?
Большинство ветряных турбин состоят из трех лопастей, закрепленных на башне из трубчатой стали. Реже встречаются разновидности с двумя лопастями, с бетонными или стальными решетчатыми башнями. На высоте 100 футов или более над землей башня позволяет турбине использовать более высокие скорости ветра, характерные для больших высот.
Турбины улавливают энергию ветра своими пропеллерными лопастями, которые действуют так же, как крыло самолета. Когда дует ветер, на одной стороне лопасти образуется карман воздуха низкого давления. Затем воздушный карман низкого давления притягивает лопасть к себе, заставляя ротор вращаться. Это называется лифт. Подъемная сила намного больше, чем сила ветра, действующая на переднюю сторону лопасти, что называется сопротивлением. Сочетание подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.
Ряд шестерен увеличивает скорость вращения ротора примерно с 18 оборотов в минуту до примерно 1800 оборотов в минуту — скорость, которая позволяет генератору турбины производить электричество переменного тока.
Корпус обтекаемой формы, называемый гондолой, содержит ключевые компоненты турбины, обычно включая шестерни, ротор и генератор, которые находятся внутри корпуса, называемого гондолой. Некоторые гондолы, расположенные на вершине башни турбины, достаточно велики, чтобы на них мог приземлиться вертолет.
Другим ключевым компонентом является контроллер турбины, который удерживает скорость ротора от превышения 80 км/ч, чтобы избежать повреждений от сильного ветра. Анемометр непрерывно измеряет скорость ветра и передает данные контроллеру. Тормоз, также расположенный в гондоле, останавливает ротор механически, электрически или гидравлически в аварийных ситуациях. Изучите интерактивную графику выше, чтобы узнать больше о механике ветряных турбин.
Типы ветряных турбин
Существует два основных типа ветряных турбин: с горизонтальной осью и с вертикальной осью.
Большинство ветряных турбин имеют горизонтальную ось: конструкция в виде пропеллера с лопастями, вращающимися вокруг горизонтальной оси. Турбины с горизонтальной осью расположены либо против ветра (ветер бьет по лопастям раньше, чем башню), либо по ветру (ветер бьет по башне раньше, чем лопасти). Ветряные турбины также включают в себя привод рыскания и двигатель — компоненты, которые поворачивают гондолу, чтобы удерживать ротор по направлению к ветру, когда его направление меняется.
Хотя существует несколько производителей ветряных турбин с вертикальной осью, они не проникли на рынок коммунальных услуг (мощностью 100 кВт и выше) в той же степени, что и ветряные турбины с горизонтальным доступом. Турбины с вертикальной осью подразделяются на две основные конструкции:
- Турбины с тяговым усилием или турбины Савониуса обычно имеют роторы со сплошными лопастями, которые вращаются вокруг вертикальной оси.
- Лифтовые турбины, или турбины Дарье, имеют высокий вертикальный аэродинамический профиль (некоторые из них имеют форму взбивалки). Windspire — это турбина на подъемной силе, которая проходит независимые испытания в Национальном центре ветровых технологий Национальной лаборатории возобновляемых источников энергии.
Применение ветряных турбин
Ветряные турбины используются в самых разных целях — от использования прибрежных ветровых ресурсов до выработки электроэнергии для одного дома:
- Крупные ветряные турбины, чаще всего используемые коммунальными службами для подачи электроэнергии в сеть, от 100 киловатт до нескольких мегаватт. Эти турбины коммунального масштаба часто группируются вместе в ветряных электростанциях для производства большого количества электроэнергии. Ветряные электростанции могут состоять из нескольких или сотен турбин, обеспечивая достаточно энергии для десятков тысяч домов.
- Небольшие ветряные турбины мощностью до 100 киловатт обычно находятся рядом с местами, где будет использоваться вырабатываемая электроэнергия, например, рядом с домами, телекоммуникационными антеннами или водонасосными станциями. Небольшие турбины иногда подключают к дизельным генераторам, батареям и фотогальваническим системам. Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах, где подключение к коммунальной сети недоступно.
- Оффшорные ветряные турбины используются во многих странах для использования энергии сильных, устойчивых ветров, возникающих у береговых линий. Технический ресурсный потенциал ветров над прибрежными водами США достаточен для производства более 4000 гигаватт электроэнергии, что примерно в четыре раза превышает генерирующую мощность нынешней электроэнергетической системы США. Хотя не все эти ресурсы будут освоены, это открывает большие возможности для обеспечения электроэнергией густонаселенных прибрежных городов. Чтобы воспользоваться огромными оффшорными ветроэнергетическими ресурсами Америки, Департамент инвестирует в три демонстрационных проекта офшорных ветроэнергетики, предназначенных для развертывания офшорных ветровых систем в федеральных водах и водах штата к 2017 году9.0042
Будущее ветряных турбин
Чтобы обеспечить будущий рост ветровой промышленности США, Программа Министерства энергетики США по ветру работает с отраслевыми партнерами над повышением надежности и эффективности технологии ветряных турбин, а также снижением затрат. Исследовательские усилия программы помогли увеличить средний коэффициент мощности (показатель производительности электростанции) с 22 процентов для ветряных турбин, установленных до 1998 года, до более чем 32 процентов для турбин, установленных в период с 2006 по 2012 год. Затраты на энергию ветра были снижены с более чем 55 центов за киловатт-час (кВтч) в 19От 80 до менее 6 центов/кВтч сегодня в районах с хорошими ветровыми ресурсами.
Ветряные турбины дают уникальную возможность использовать энергию там, где она больше всего нужна населению нашей страны. Это включает в себя потенциал морского ветра для обеспечения электроэнергией населенных пунктов вблизи береговой линии, а также способность наземного ветра поставлять электроэнергию в сельские общины с несколькими другими местными источниками энергии с низким уровнем выбросов углерода.
Департамент энергетики продолжает работу по развертыванию ветровой энергии в новых районах на суше и на море и обеспечению стабильной и надежной интеграции этой энергии в электрическую сеть нашей страны.
Присоединяйтесь к нам сегодня для нашей ветряной турбины Twitter Часы работы в 14:00. ЕТ.
Чтобы принять участие в обсуждении, заранее отправьте свои вопросы в социальных сетях с помощью #HowEnergyWorks или по электронной почте [email protected].
ПРОГОЛОСУЙТЕ СЕЙЧАС, чтобы решить, какую тему «Как работает энергия» мы рассмотрим дальше!
Дэниел Вуд
еще этого автора
Для запросов СМИ:
(202) 586-4940 или DOENews@hq. doe.gov
Подробнее читайте на странице новостей
energy.gov
Проект ветряной турбины для системы ветряных турбин
В основе любой системы производства возобновляемой энергии ветра лежит ветровая турбина . Конструкция ветряной турбины обычно состоит из ротора, генератора постоянного тока (DC) или генератора переменного тока (AC), который установлен на башне высоко над землей.
Итак, как ветряные турбины предназначены для производства электроэнергии. Проще говоря, ветряная турбина — это противоположность домашнему или настольному вентилятору. Вентилятор использует электричество из сети для вращения и циркуляции воздуха, создавая ветер.
С другой стороны, конструкции ветряных турбин используют силу ветра для выработки электроэнергии. Движение ветра вращает лопасти турбины, которые улавливают кинетическую энергию ветра и преобразуют эту энергию во вращательное движение через вал для привода электрического генератора и выработки электроэнергии, как показано на рисунке.
Типовая конструкция генератора ветровой турбины
На изображении выше показаны основные компоненты, из которых состоит типовая конструкция ветряной турбины . Ветряная турбина извлекает кинетическую энергию из ветра, замедляя его и передавая эту энергию вращающемуся валу, поэтому важно иметь хорошую конструкцию. Доступная мощность ветра, доступная для сбора урожая, зависит как от скорости ветра, так и от площади, охватываемой вращающимися лопастями турбины.
Таким образом, чем выше скорость ветра или больше лопасти ротора, тем больше энергии можно извлечь из ветра. Таким образом, мы можем сказать, что производство энергии ветровой турбиной зависит от взаимодействия между лопастями ротора и ветром, и именно это взаимодействие важно для конструкции ветряной турбины .
Чтобы помочь улучшить это взаимодействие и, следовательно, повысить эффективность, доступны два типа конструкции ветряной турбины. Общая горизонтальная ось и конструкция ветряной турбины с вертикальной осью. Конструкция ветряной турбины с горизонтальной осью улавливает больше ветра, поэтому выходная мощность выше, чем у конструкции ветряной турбины с вертикальной осью. Недостатком конструкции с горизонтальной осью является то, что башня, необходимая для поддержки ветряной турбины, намного выше, а конструкция лопастей ротора должна быть намного лучше.
Типовая конструкция ветряной турбины
Турбина с вертикальной осью или VAWT проще в проектировании и обслуживании, но обеспечивает более низкую производительность, чем типы с горизонтальной осью, из-за высокого сопротивления простой конструкции лопастей ротора. Большинство ветряных турбин, вырабатывающих электроэнергию сегодня, как в коммерческих, так и в домашних условиях, представляют собой машины с горизонтальной осью, поэтому именно эти типы конструкции ветряной турбины мы рассмотрим в этом учебном пособии по ветряным турбинам.
Ротор — это основная часть конструкции современной ветровой турбины, которая собирает энергию ветра и преобразует ее в механическую энергию в форме вращения. Ротор состоит из двух или более лопастей из ламинированного дерева, стекловолокна или металла и защитной втулки, которая вращается (отсюда и название) вокруг центральной оси.
Подобно крылу самолета, лопасти ветряной турбины благодаря своей изогнутой форме создают подъемную силу. Лопасти несущего винта извлекают часть кинетической энергии из движущихся воздушных масс по принципу подъемной силы со скоростью, определяемой скоростью ветра и формой лопастей. Конечным результатом является подъемная сила, перпендикулярная направлению потока воздуха. Затем хитрость заключается в том, чтобы спроектировать лопасть несущего винта так, чтобы она создавала необходимую подъемную силу и тягу лопасти несущего винта, обеспечивая оптимальное замедление воздуха и не более того.
К сожалению, лопасти ротора турбины не улавливают на 100% всю мощность ветра, так как это означало бы, что воздух за лопастями турбины был бы совершенно неподвижным и, следовательно, не позволял бы ветру проходить через лопасти. Теоретический максимальный КПД, который лопасти ротора турбины могут извлекать из энергии ветра, составляет от 30 до 45% и зависит от следующих переменных лопастей ротора: Конструкция лопасти , Номер лопасти , Длина отвала , Шаг/угол отвала , Форма отвала и Материалы и вес отвала и многие другие.
Конструкция лопастей – Конструкции лопастей ротора работают либо по принципу подъемной силы, либо по принципу сопротивления для извлечения энергии из движущихся воздушных масс. В конструкции подъемных лопастей используется тот же принцип, который позволяет самолетам, воздушным змеям и птицам летать, создавая подъемную силу, перпендикулярную направлению движения. Лопасть несущего винта представляет собой аэродинамическое крыло или крыло, по форме похожее на крыло самолета. Когда лопасть рассекает воздух, между верхней и нижней поверхностями лопасти создается перепад скорости ветра и давления.
Давление на нижнюю поверхность больше и, таким образом, «поднимает» лезвие вверх, поэтому мы хотим сделать эту силу как можно большей. Когда лопасти прикреплены к центральной оси вращения, как ротор ветряной турбины, эта подъемная сила преобразуется во вращательное движение.
Этой подъемной силе противодействует сила сопротивления, параллельная направлению движения и вызывающая турбулентность вокруг задней кромки лопасти, когда она рассекает воздух. Эта турбулентность тормозит лопасть, поэтому мы хотим сделать эту силу сопротивления как можно меньше. Сочетание подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.
Конструкции сопротивления больше используются для вертикальных конструкций ветряных турбин, которые имеют большие чашеобразные или изогнутые лопасти. Ветер буквально расталкивает лопасти, прикрепленные к центральному валу. Преимущества лопастей несущего винта с тормозной конструкцией заключаются в более низких скоростях вращения и высоком крутящем моменте, что делает их полезными для перекачки воды и мощности сельскохозяйственной техники. Ветряные турбины с подъемным двигателем имеют гораздо более высокую скорость вращения, чем тяговые, и поэтому хорошо подходят для выработки электроэнергии.
Количество лопастей. Количество лопастей ротора в конструкции ветряной турбины обычно определяется аэродинамической эффективностью и стоимостью. Идеальная конструкция ветряной турбины должна иметь много тонких лопастей ротора, но большинство генераторов ветряных турбин с горизонтальной осью имеют только одну, две или три лопасти ротора.
Увеличение количества лопастей ротора выше трех дает лишь небольшое увеличение эффективности ротора, но увеличивает его стоимость, поэтому обычно не требуется более трех лопастей, но для домашнего использования доступны небольшие многолопастные турбогенераторы с высокой скоростью вращения. Как правило, чем меньше количество лопастей, тем меньше материала требуется при изготовлении, что снижает их общую стоимость и сложность.
Однолопастные роторы имеют противовес на противоположной стороне ротора, но страдают от высокого напряжения материала и вибрации из-за их неплавного вращательного движения одиночной лопасти, которая должна двигаться быстрее, чтобы улавливать такое же количество энергии ветра.
Также с однолопастными или даже двухлопастными роторами большая часть доступного движения воздуха и, следовательно, ветровой энергии проходит через непроходимую площадь поперечного сечения турбины, не взаимодействуя с ротором, что снижает их эффективность.
С другой стороны, многолопастные роторы обеспечивают более плавное вращение и более низкий уровень шума. Более низкие скорости вращения и крутящий момент возможны с многолопастными конструкциями, что снижает нагрузку на трансмиссию, что приводит к снижению затрат на редуктор и генератор. Однако конструкции ветряных турбин с большим количеством лопастей или очень широкими лопастями будут подвергаться воздействию очень больших сил при очень сильном ветре, поэтому в большинстве конструкций ветряных турбин используются три лопасти ротора.
Нечетное или четное количество лопастей ротора — конструкция ветряной турбины с «ЧЕТНЫМ» количеством лопастей ротора, 2, 4 или 6 и т. д., может страдать от проблем со стабильностью при вращении. Это связано с тем, что каждая лопасть ротора имеет точно противоположную лопасть, расположенную под углом 180 9 .0152 или в обратном направлении.
Когда ротор вращается, в тот самый момент, когда самая верхняя лопасть направлена вертикально вверх (положение на 12 часов), самая нижняя лопасть направлена прямо вниз перед опорной башней турбины. В результате самая верхняя лопасть изгибается назад, потому что она получает максимальную силу от ветра, называемую «распорной нагрузкой», а нижняя лопасть проходит в свободную от ветра зону непосредственно перед опорной башней.
Уже в продаже
Технология ветряных турбин: принципы и конструкция
Этот неравномерный изгиб лопастей ротора турбины (самая верхняя изогнута на ветру, а самая нижняя прямая) при каждом вертикальном выравнивании создает нежелательные силы на лопасти ротора и вал ротора, когда две лопасти изгибаются вперед и назад. как они вращаются. Для небольшой турбины с жесткими алюминиевыми или стальными лопастями это может не быть проблемой, в отличие от более длинных лопастей из пластика, армированного стекловолокном.
Конструкция ветряной турбины с нечетным числом лопастей ротора (не менее трех лопастей) вращается более плавно, поскольку гироскопические и изгибающие силы более равномерно распределяются между лопастями, что повышает устойчивость турбины.
Наиболее распространенная конструкция ветряной турбины с нечетными лопастями – это трехлопастная турбина. Энергетическая эффективность трехлопастного ротора немного выше, чем у двухлопастного ротора аналогичного размера, а благодаря дополнительной лопасти они могут вращаться медленнее, что снижает износ и шум.
Кроме того, чтобы избежать турбулентности и взаимодействия между соседними лопастями, расстояние между каждой лопастью многолопастной конструкции и скорость ее вращения должны быть достаточно большими, чтобы одна лопасть не встречала возмущенный, более слабый воздушный поток, вызванный предыдущей лезвие проходит ту же точку непосредственно перед ним. Из-за этого ограничения большинство ветряных турбин нечетного типа имеют максимум три лопасти на роторе и обычно вращаются с более низкой скоростью.
Как правило, трехлопастные ветряные турбины лучше вписываются в ландшафт, более эстетичны и более аэродинамически эффективны, чем конструкции с двумя лопастями, что способствует тому, что трехлопастные ветряные турбины доминируют на рынке ветроэнергетики. Хотя отдельные производители выпускают двух- и шестилопастные турбины (для парусных лодок).
Другие преимущества роторов с нечетными (тремя) лопастями включают более плавную работу, меньший уровень шума и меньшее количество столкновений с птицами, что компенсирует недостаток более высоких материальных затрат. Количество лопастей существенно не влияет на уровень шума.
Длина лопасти ротора. Три фактора определяют, сколько кинетической энергии может быть извлечено из ветра ветряной турбиной: «плотность воздуха», «скорость ветра» и «площадь ротора». Плотность воздуха зависит от того, насколько вы находитесь над уровнем моря, а скорость ветра зависит от погоды. Однако мы можем контролировать площадь вращения, охватываемую лопастями ротора, увеличивая их длину, поскольку размер ротора определяет количество кинетической энергии, которую ветряная турбина может получить от ветра.
Лопасти ротора вращаются вокруг центрального подшипника, образуя идеальный круг 360 o , когда он вращается, и, как мы знаем из школы, площадь круга определяется как: π.r 2 . Таким образом, по мере увеличения охватываемой площади ротора площадь, которую он покрывает, также увеличивается пропорционально квадрату радиуса. Так, удвоение длины лопастей турбины приводит к увеличению ее площади в четыре раза, что позволяет получать в четыре раза больше энергии ветра. Однако это значительно увеличивает размер, вес и, в конечном счете, стоимость конструкции ветряной турбины.
Одним из важных аспектов длины лопасти является вращательная конечная скорость ротора, являющаяся результатом угловой скорости. Чем больше длина лопасти турбины, тем быстрее вращение наконечника при данной скорости ветра. Точно так же для данной длины лопасти ротора чем выше скорость ветра, тем быстрее вращение.
Тогда почему бы нам не разработать конструкцию ветряной турбины с очень длинными лопастями ротора, работающую в ветреную среду и производящую много бесплатной электроэнергии из ветра. Ответ заключается в том, что возникает точка, в которой длина лопастей ротора и скорость ветра фактически снижают выходную эффективность турбины. Вот почему многие более крупные конструкции ветряных турбин вращаются с гораздо меньшей скоростью.
Эффективность зависит от того, насколько быстро вращается наконечник ротора при заданной скорости ветра, создавая постоянное отношение скорости ветра к скорости вращения наконечника, называемое «отношением скорости вращения наконечника» ( λ ), которое представляет собой безразмерную единицу, используемую для максимизации эффективности ротора. Другими словами, «отношение скорости кончика лопасти» (TSR) — это отношение скорости конца вращающейся лопасти в об/мин к скорости ветра в километрах в час (км/ч) или милях в час (миль в час). ).
Хорошая конструкция ветряной турбины определяет мощность ротора при любом сочетании ветра и скорости вращения ротора. Чем больше этот коэффициент TSR, тем быстрее вращение ротора ветродвигателя при заданной скорости ветра. Скорость вращения вала, на которой закреплен ротор, также указывается в оборотах в минуту (об/мин) и зависит от скорости вращения наконечника и диаметра лопастей турбины.
Скорость вращения турбины определяется как: об/мин = скорость ветра x передаточное число x 60 / (диаметр x π).
Если ротор турбины вращается слишком медленно, он позволяет беспрепятственно проходить слишком большому количеству ветра и, таким образом, не извлекает столько энергии, сколько мог бы. С другой стороны, если лопасть ротора вращается слишком быстро, она кажется ветру одним большим плоским вращающимся круглым диском, который создает большое сопротивление и потери на острие, замедляющие ротор. Поэтому важно согласовать скорость вращения ротора турбины с конкретной скоростью ветра, чтобы получить оптимальный КПД.
Роторы турбины с меньшим количеством лопастей достигают максимальной эффективности при более высоком соотношении скоростей вращения лопастей, и, как правило, трехлопастные ветряные турбины для выработки электроэнергии имеют отношение скоростей лопастей от 6 до 8, но они будут работать более плавно, поскольку у них три лопасти. С другой стороны, турбины, используемые для перекачивания воды, имеют более низкое передаточное число от 1,5 до 2, поскольку они специально разработаны для создания высокого крутящего момента на низких скоростях.
Шаг/угол лопасти ротора — лопасти ротора ветряной турбины фиксированной конструкции, как правило, не являются прямыми или плоскими, как крылья аэродинамического профиля самолета, а вместо этого имеют небольшой изгиб и сужение по длине от кончика до основания, чтобы обеспечить различные скорости вращения вдоль лезвие. Этот поворот позволяет лопасти поглощать энергию ветра, когда ветер дует на нее с разных тангенциальных углов, а не только прямо. Прямая или плоская лопасть перестанет создавать подъемную силу и может даже остановиться (заглохнуть), если лопасть обдувается ветром под разными углами, называемыми «углом атаки», особенно если этот угол атаки слишком крутой.
Таким образом, чтобы лопасть ротора имела оптимальный угол атаки, увеличивающий подъемную силу и эффективность, лопасти конструкции ветряной турбины обычно скручены по всей длине лопасти. Кроме того, этот поворот в конструкции ветряной турбины предотвращает слишком быстрое вращение лопастей ротора при высоких скоростях ветра.
Однако для очень крупномасштабных конструкций ветряных турбин, используемых для выработки электроэнергии, такое скручивание лопастей может сделать их конструкцию очень сложной и дорогой, поэтому используется другая форма аэродинамического контроля, чтобы удерживать угол атаки лопастей идеально выровненным. с направлением ветра.
Аэродинамическую мощность, создаваемую ветровой турбиной, можно контролировать, регулируя угол наклона ветряной турбины в зависимости от угла атаки ветра при вращении каждой лопасти вокруг своей продольной оси. Затем лопасти несущего винта с регулируемым шагом могут быть более плоскими и более прямыми, но, как правило, эти большие лопасти имеют аналогичную крутку по своей геометрии, но намного меньше, чтобы оптимизировать тангенциальную нагрузку на лопасть несущего винта.
Каждая лопасть ротора имеет вращательный механизм кручения, пассивный или динамический, встроенный в основание лопасти, обеспечивающий равномерное увеличение шага по ее длине (постоянное кручение). Требуемый шаг составляет всего несколько градусов, так как небольшие изменения угла наклона могут иметь существенное влияние на выходную мощность, поскольку мы знаем из предыдущего урока, что энергия, содержащаяся в ветре, пропорциональна кубу скорости ветра.
Одним из основных преимуществ управления шагом лопастей винта является увеличение окна скорости ветра. Положительный угол наклона создает большой пусковой момент, когда ротор начинает вращаться, уменьшая скорость ветра при включении. Точно так же при высоких скоростях ветра, когда достигается предел максимальной скорости несущих винтов, можно управлять шагом, чтобы не допустить превышения предела скорости вращения несущих винтов за счет снижения их эффективности и угла атаки.
Регулирование мощности ветряной турбины может быть достигнуто за счет управления шагом лопастей ротора для уменьшения или увеличения подъемной силы на лопастях путем управления углом атаки. Меньшие лопасти ротора достигают этого за счет небольшого поворота в своей конструкции.
Крупные коммерческие ветряные турбины используют либо пассивное регулирование шага с помощью центробежных пружин и рычагов (аналогично винтам вертолета), либо активное использование небольших электродвигателей, встроенных в ступицу лопастей, для ее поворота на требуемые несколько градусов. Основными недостатками управления шагом являются надежность и стоимость.
Уже в продаже
Power from the Wind — 2nd Edition: A Practice…
Конструкция лопастей – кинетическая энергия, извлекаемая из ветра, зависит от геометрии лопастей несущего винта, поэтому важно определить аэродинамически оптимальную форму и конструкцию лопастей.
Но наряду с аэродинамическим дизайном лопасти несущего винта не менее важен конструктивный дизайн. Конструктивный дизайн состоит из выбора материала лопастей и прочности, поскольку лопасти изгибаются и изгибаются под действием энергии ветра во время их вращения.
Очевидно, что идеальный конструкционный материал для лопасти несущего винта должен сочетать в себе необходимые конструкционные свойства, такие как высокое отношение прочности к массе, высокую усталостную долговечность, жесткость, частоту собственных колебаний и сопротивление усталости, а также низкую стоимость и способность легко формоваться. в желаемую аэродинамическую форму.
Лопасти ротора небольших турбин, используемых в жилых помещениях мощностью от 100 Вт и выше, обычно изготавливаются из массива резного дерева, древесных ламинатов или композитов с деревянным шпоном, а также из алюминия или стали. Деревянные лопасти ротора прочны, легки, дешевы, гибки и популярны в большинстве самодельных конструкций ветряных турбин, поскольку их легко изготовить. Однако низкая прочность древесных ламинатов по сравнению с другими древесными материалами делает их непригодными для лопастей тонкой конструкции, работающих при высоких скоростях острия.
Алюминиевые лезвия также легкие, прочные и с ними легко работать, но они дороже, легко гнутся и подвержены усталости металла. Точно так же стальные лопасти используют самый дешевый материал и могут быть сформированы в виде изогнутых панелей в соответствии с требуемым профилем аэродинамического профиля. Однако в стальные панели гораздо труднее придать изгиб, а в сочетании с плохими усталостными свойствами, означающими, что они ржавеют, сталь используется редко.
Лопасти несущего винта, используемые для очень большой горизонтальной оси 9Ветряная турбина 0015 конструкции изготовлена из армированных пластиковых композитов, наиболее распространенными из которых являются композиты из стекловолокна/полиэфирной смолы, стекловолокна/эпоксидной смолы, стекловолокна/полиэфира и углеродного волокна. Композиты из стекловолокна и углеродного волокна имеют значительно более высокое отношение прочности на сжатие к весу по сравнению с другими материалами. Кроме того, стекловолокно легкое, прочное, недорогое, обладает хорошими усталостными характеристиками и может использоваться в различных производственных процессах.
Размер, тип и конструкция ветряной турбины, которая может вам понадобиться, зависят от вашего конкретного применения и требований к мощности. Конструкции малых ветряных турбин варьируются в размерах от 20 Вт до 50 киловатт (кВт), а меньшие или «микро» (от 20 до 500 Вт) турбины используются в жилых районах для различных применений, таких как производство электроэнергии для зарядки аккумуляторов и питания. огни.
Энергия ветра является одним из самых быстрорастущих источников возобновляемой энергии в мире, поскольку это чистый, широко распространенный энергетический ресурс, который имеется в изобилии, имеет нулевую стоимость топлива и технологию производства электроэнергии без выбросов.
Добавить комментарий