ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ. В какую сторону пропускает диодДиоды выпрямительные, принцип работы, характеристики, схемы подключенияПринцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1. Она имеет две ветви, соответствующие прямому и обратному включению диода. При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр. Этот ток называется прямым Iпр. Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:
Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:
Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр, которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя. Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных. Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы. СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВДля начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов. Iпр=Uн/Rн - все просто - это закон Ома. Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода. При включении диода в цепь переменного тока, помимо прочего, на нем периодически возникает обратное напряжение Uобр. Имейте в виду, следует учитывать его амплитудное значение (Для Uпр, кстати, тоже). Например, для бытовой электрической сети привычное всем напряжение 220В является действующим, а его амплитудное значение составляет 380В. Подробнее про это можно посмотреть на этой странице. Это самое основное, про что надо помнить. Теперь - несколько схем подключения диодов, часто встречающихся на практике. Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем. Далее несколько менее очевидных схем (для постоянного тока):
© 2012-2018 г. Все права защищены. Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов eltechbook.ru Как оно работает!?Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов. У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.Ток обычно обозначается буквой I и меряется Амперами Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение - как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.Напряжение обычно обозначается буквами U или V и меряется Вольтами. Электричество течёт в электронных схемах от плюса к минусу. Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие. ДиодДиод обычно предназначен пускать ток в одну сторону, и не пускать в другую. Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод - электронный клапан.У каждой лапки диода есть название - анод и катод. Катод - отрицательный электрод, поэтому в схемах обычно смотрит на минус. Анод - положительный электрод, и на него чаще всего подают плюс. Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, - в слове "катод" столько же букв, сколько в слове "минус". А в слове "анод" столько же букв, сколько в слове "плюс". Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.На схемах диод обозначается вот так: Диод Где у диода катод, а где анод - легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод). Диоды на вид бывают всякие разные: Важные характеристики диодов - максимальное напряжение и максимальные токи - постоянный и при коротком импульсе. Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А. Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится. Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как: Иногда с круглишками, иногда без них. У них точно так же есть катод и анод, как и у простых диодов.Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность. Переменный ток
В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.При переменном токе полярность меняется с какой-то частотой. В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду. Частота, - будь то смена полярности, или количество зажиганий светодиодика в секунду, - меряется в Герцах.
Как узнать переменный или постоянный ток в цепи ?Подключили диод, лампочка светится.Перевернули диод, лампочка всё равно светится.Если диод заведомо целый, значит ток в цепи переменный. Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения. Белые провода - переменное напряжение, на выходе постоянное: черный - минус, красный плюс. Если постоянный ток изобразить на графике, он будет выглядеть вот так. С течением времени на плюсе всегда остаётся плюс, на минусе минус. У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так: Каждая такая пупырышка называется полупериод.Если выше полоски - положительный, например который нам нужен.Если ниже полоски - отрицательный, который нам не нужен, и нам надо его перевернуть.Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.Пометим положительные полупериоды зеленым цветом, отрицательные красным. Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает: На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду. С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10): В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся. Конденсатор Конденсатор - электронная бочка.Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.Нам нужно чтоб вода всегда была.Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах. Конденсаторы бывают на переменный и на постоянный ток. У конденсаторов на постоянный ток важно не путать полярность - назначение выводов, какой из них подключить на плюс, а какой на минус. Конденсатор обозначается на схеме вот так: Слева на переменный ток, справа на постоянный. Конденсаторы бывают всякие разные:
Предыдущая схема у нас была с пульсирующим постоянным током: Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций. Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).Например 7 нанофарад = 0, 000 000 007 фарад.14 пикофарад = 0, 000 000 000 014 фарад.10 микрофарад = 0, 000 010 Фарад.
Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.
Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.
Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть. На деталь наносят 3, 4 или 5 цветных колец. Первые два кольца - тоже цифры, третье - множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая - допуск, серебряного цвета или золотого. Допуск - отклонение в процентах, от заявленной ёмкости, золотое кольцо - меньше или больше на 5%, серебряное - на 10%.Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца. Не менее важный параметр конденсатора - его допустимое напряжение.Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше. Резистор Резистор с латинского переводится как "сопротивляться".Говоря по русски, резистор - сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля. Резистор ограничивает ток в цепи.Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше "заткнут" и следовательно меньше пропускает. Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах. Чем больше ом резистор, тем больше в нём засунуто "поролона". Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.Резистор обозначается на схемах вот так или так: Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных. Резисторы бывают всякие разные: Узнать обозначение можно по маркировке, иногда её пишут буквами - М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах. 102 = 10 и 2 нолика = 1000 ом = 1 килоом.754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом. Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.2М2 - 2.2 мегаома, М15 - 0,15 мегаом или 150 килоом, К47 - 0,47 килоом, или 470 ом,15М - 15 мегаом,68К - 68 килоом,3К3 - 3.3 килоом (3300 ом),4R7 - 4.7 ом. В этой маркировке 2.2 мегаома будет выглядеть как 2М2, 22 мегаома - 22М, 220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22. shemu.ru Как проверить диод мультиметром - Практическая электроникаВ радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу. На фото ниже у нас простой диод и светодиод. Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?. Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.
Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода. Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами. Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.
А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус. Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода. Меняем щупы местами. Светодиодик не загорелся. Выносим вердикт — вполне работоспособный светодиод! А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды. www.ruselectronic.com 7. Направление электрического потока. Диод | 1. Основы электроники | Часть1
7. Направление электрического потока. Диод
Направление электрического потока. Диод "Приятной особенностью большого количества стандартов является то, что есть из чего выбрать" Эндрю Таненбаум, профессор информатики Когда Бенджамин Франклин сделал своё предположение относительно направления потока зарядов (из воска в шерсть), он создал прецедент для электрических обозначений, который существует и по сей день, несмотря на то, что все знают, что электроны являются составными частями заряда, и что при натирании они переходят из шерсти в воск, а не наоборот. Благодаря именно Франклину говорят что электроны имеют отрицательный заряд, и движется этот заряд, на самом деле, в направлении противоположном тому, которое указал Франклин. Поэтому объекты, которые он назвал "отрицательными" (имеющими недостаток заряда), фактически имеют избыток электронов. К тому времени, когда было открыто истинное направление движения потока электронов, обозначения "положительный" и "отрицательный" уже настолько прочно укоренились в научном сообществе, что попытки изменить их даже не предпринимались, хотя, применительно к "избыточному" заряду, правильно было бы назвать электрон "положительно" заряженным . По большому счету, термины "положительный" и "отрицательный" являются человеческими изобретениями и, как таковые, не имеют абсолютного значения за пределами условного языка научных описаний. С такой же легкостью Франклин мог бы назвать избыток заряда "черным", а его недостаток - "белым", в этом случае ученые говорили бы, что электрон имеет "белый" заряд (при условии использования гипотезы Франклина). Поскольку мы склонны связывать слово "положительный" с "избытком" а слово "отрицательный" с "недостатком", то стандартное обозначение электрического заряда нам кажется противоположным. Благодаря этому, многие инженеры решили сохранить старое понятие электричества, где "положительный" означает избыток заряда, и соответственно обозначается направление движения зарядов (тока). Такое обозначение известно как общепринятое обозначение потока:
Другие инженеры для обозначения потока зарядов выбрали фактическое направление движения электронов в цепи. Такое обозначение известно как обозначение потока электронов:
Общепринятое обозначение потока показывает нам движение заряда в соответствии со знаками + и - (технически неправильно). Применять это обозначение имеет смысл, но направление движения потока зарядов здесь не соответствует действительности. Обозначение потока электронов показывает нам фактическое направление движения электронов в цепи, но знаки + и - выглядят здесь задом наперед. А вообще, имеет ли значение, как мы определяем направление движения потока зарядов в цепи? Не имеет, если мы последовательно используем одно из обозначений. Производя анализ цепи, вы можете с равным успехом использовать любое из этих обозначений. Понятия напряжения, тока, сопротивления, непрерывности, и даже математические методы анализа, такие как законы Ома и Кирхгофа будут действовать как в одном, так и в другом случае. Как вы можете убедиться, общепринятому обозначению потока следует большинство инженеров-электриков, и оно встречается в большинстве технических учебников. Обозначение потока электронов встречается в учебниках для начинающих и в трудах профессиональных ученых, особенно физиков твердых тел, которым важно фактическое движение электронов в веществах. Большинство исследований электрических цепей не зависит от технически точного отображения направления потока зарядов, поэтому выбор между общепринятым обозначением потока и обозначением потока электронов произволен .... почти. Многие электрические устройства допускают прохождение через них реальных токов любого направления без каких либо различий в работе. Например, лампы накаливания излучают свет одинаково эффективно, независимо от направления тока. Они хорошо работают даже при переменном токе (AC), который с течением времени быстро меняет свое направление. Проводники и выключатели также отлично работают независимо от направления тока. Все вышеперечисленные компоненты (электрическая лампочка, выключатель и провода) называются неполярными. И наоборот, любые устройства, которые по разному реагируют на токи разных направлений, называются полярными. Существует множество полярных устройств, применяемых в электрических схемах. Основная масса этих устройств изготавливается из так называемых полупроводниковых материалов, и подробно будет рассмотрена нами позже. Каждое из этих устройств (как и выключатели, ламы и батареи) изображается на схеме с помощью уникального символа. Как можно догадаться, символы полярных устройств в своем составе обычно сдержат стрелку для обозначения допустимого направления тока. Вот здесь-то конкуренция обозначений общепринятого потока и потока электронов имеет большое значение. Но, поскольку инженеры уже давно в качестве стандартного используют общепринятое обозначение, и они же изобретают электрические устройства и придумывают для них условные обозначения (символы), то стрелки, используемые в символах этих устройств, показывают направление общепринятого потока. Иными словами, у всех символов таких устройств есть значок стрелки, который указывает против фактического потока электронов. Лучшим примером полярного устройства может послужить диод, который является односторонним "клапаном" для электрического тока. Принцип его действия аналогичен обратному клапану, используемому в водопроводе и гидравлических системах. В идеале, диод обеспечивает беспрепятственный поток для тока в одном направлении (практически не оказывая ему сопротивления), и препятствует этому потоку в обратном направлении (оказывая ему бесконечное сопротивление). Условное обозначение (символ) диода выглядит следующим образом:
Если мы поместим диод в схему с батареей и лампочкой, то выполняемая им работа будет следующей:
Когда диод стоит в правильном направлении, разрешающем поток, лампочка горит. В противном случае диод блокирует поток электронов аналогично обрыву цепи, и лампочка гореть не будет. Если мы используем общепринятое обозначение потока в цепи, то стрелка символа диода указывает на направление потока зарядов от положительного контакта к отрицательному:
И наоборот, при использовании обозначения потока электронов, стрелка символа диода направлена против этого потока:
Исходя из вышеизложенного и во избежание путаницы с условными обозначениями электронных компонентов, большинство людей выбирает общепринятое обозначение потока при анализе электрических схем. www.radiomexanik.spb.ru Диод. Часть 2. Немного о конструкции и принципахЧасть 1 ▌КонструкцияДиод делают из полупроводников. Вообще, изначально, полупроводниковые материалы, такие как кремний или германий ток проводят довольно хреново. У них электроны крепко держатся двумя молекулами сразу и требуется довольно большая энергия чтобы их вырвать. Если полупроводник нагреть, облучить, подать высокое напряжение, чтобы образовалось мощное поле, которое потащит электроны, то из кристаллической решетки будет вырван электрон и будет он болтаться свободно среди молекул.А там где он был, образуется дырка. Дырка означает не скомпенсированную электроном связь, положительно заряженную область. Сдернуть электрон из ближайшего атома в соседнюю дырку куда проще, чем просто вырвать его из решетки. При этом дырка будет уже у соседнего атома, ведь электрон то надо откуда то вырвать. По сути, дырку можно считать положительно заряженной частицей. Потому как под действием поля дырки также мотает по всему кристаллу как и электроны. Хотя они и менее подвижные, т.к. на перемещение дырки надо больше энергии чем на перемещение электрона. Ну вот, есть у нас такой прикольный материал у которого сопротивление зависит от приложенной к нему энергии. И что дальше? А самое веселое начинается когда в полупроводник добавляют примеси за счет которых можно либо добавить дырок, либо свободных электронов. Накидав в кристаллическую решетку атомов с тремя или с пятью свободными электронами соответственно. Получаются проводники p и n типа. В p — есть лишние дырки (positive), а в n — лишние электроны (negative). Осталось только слепить два таких разнопроводимых кристалла вместе, чтобы получился pn переход. И мы получили диод. Суть в чем: Когда ток подается вот так: Т.е. к p-кристаллу мы подаем положительный потенциал, а на n-кристалл отрицательный, то дырки и электроны поведут себя как и подобает приличным электрическим зарядам — отталкиваясь от себе подобных и притягивясь к противоположности. В p-кристалле электроны неудержимо потянет в плюсовой провод, следовательно дырки ломанутся в центр.А в n-кристалле электроны из минусового провода, от источника питания, ломанутся к плюсу, тоже в центр. В центре электроны из n-кристалла запрыгнут в дырки p-кристалла и поскачут дальше к минусу (это называется рекомбинация). Т.е. через диод пойдет ток. И чем больше напряжение, тем больше дырок будет сдвигать и больше будет ток. Причем зависимость эта будет не линейная, а скорей параболическая. Окей. С этим все понятно. Берем и меняем полярность. Что произойдет? А все то же самое, только направление движения зарядов изменится. В p-кристалле электроны побегут в центр, значит дырки утащит к минусовому проводу, где они и останутся зиять, т.к. в металле проводника пути для них нет. А в n-кристалле усосет все свободные электроны в источник питания. И тоже останется пустота. А, как я уже говорил, полупроводник в котором нет свободных зарядов, это хреновый проводник. Почти диэлектрик. И вот, собственно, на этом месте диод и перестает проводить ток в обратном направлении. ▌ФотодиодНо при этом свойства полупроводника в зоне откуда убежали все свободные заряды никуда не деваются. Если полупроводник облучить, то в нем таки возникнут свободные заряды и он будет проводить ток. Так работает, например, фотодиод. Помните его схему включения? Вот диод стоит себе в обратном направлении, сопротивление у него огромное, намного больше подтягивающего резистора и на ноге при этом возникает положительный потенциал от подтяжки. Но стоит ему засветить, как его тотчас прорывает за счет того, что его кристалл чувствителен к свету и свет из него легко выбивает заряды. Но, на самом деле, у фотодиода характеристика ВАХ еще более интересна: Если рассмотреть его поквадрантно. То на нулевом освещении (самый верхний график) он ведет себя почти как обычный диод. Чуток травит назад, совсем мало. А прямая проводимость по той же параболе. А вот при увеличении освещения начинается самое интересное. Ну, во первых, у него резко возрастает обратный ток. Чем ярче на него светим, тем сильней. Но самое интересное это квадрант D. Если посмотреть на график, то при прямом напряжении мы имеем… обратный ток. Т.е. фотодиод является источником энергии. Генерирует обратный ток и до поры до времени сопротивляется внешнему источнику питания. В конце концов, тот конечно его перебарывает и график уходит в квадрант А. ▌СтабилитронИли вот, например, стабилитрон. Тоже девайс работает в обратку. Тоже, по сути, вполне себе добропорядочный диод. Стоит себе не пропускает, ну кроме тех случаев, когда поле (А напряженность поля напрямую зависит от напряжения. Ваш К.О.) оказывается столь сильно, что вырывает из полупроводника заряды сами по себе. И тогда он начинает подтравливать ток. Но только до тех пор, пока напряжение на нем не снизится до некого предельного уровня. Уровень этот и определяет напряжение которое стабилитрон будет стабилизировать. Причем чем больше напряжение, тем больший ток через него будет стравливаться, стараясь это напряжение удержать. Примерно как клапан ограничения давления на паровом котле. Стоит там пружина с уставкой на давление в 5 очков, и все что выше 5 очков травит наружу. То есть любой диод может пробивать в обратном направлении, при превышении определенного потенциала. И этот пробой является обратимым. При условии что ток при нем не был настолько большим, чтобы выделить тепло достаточное для уничтожения кристалла. Поэтому на стабилитроне и нужен резистор. А то слишком большой ток через него потечет и он сдохнет, а так получается своего рода делитель напряжения, в котором нижнее плечо автоматом подстраивается так, чтобы на выходе было напряжение на которое заточен стабилитрон. ▌Емкость диодаВообще, если рассматривать диод более детально, то у него есть емкость (хотя чего это я, у всего в мире есть емкость, даже у индуктивности ;) ) и более приближенная к реальности схема диода выглядит так: Но тут есть один нюанс. У этой емкости две природы. Когда диод пропускает в одну сторону, то у него заряжается диффузионная емкость. Т.е. кристаллы диода насыщается неосновыми зарядами. Что значит неосновными? А то, что в p-кристалле, где должно быть, по идее, полно дырок (основных зарядов), при протекании тока от души набивается хренова куча электронов, забивает все излишние дырки, да еще сверху насыпает с горкой. В противовес, в n-кристалле, мало того, что все электроны лишние (основной заряд) усасывает полем, так еще и дополнительно вырывает из решетки, образуя дырки (неосновной заряд). И когда напряжение резко меняют на обратное, диод то может и закроется мгновенно, но вот из насыщенных неосновными зарядами областей пока утащит все лишние электроны и дырки, которых там не должно быть, пройдет какое то время, а эти самые неосновные заряды при исходе образуют импульс обратного тока. Короткий, конечно, как иголочка. Но если у вас частота высокая, то эти короткие импульсы вам могут помех натворить, потребление увеличить, пробить что-нибудь не то и так далее. Диффузионная емкость зависит от прямого тока. Чем больше прямой ток, тем больше неосновных зарядов насуёт в кристаллы. Небольшое плато — это время на то, пока растащит заряды в области pn перехода. Собственно, время закрытия самого перехода. А вот потом уже идет обычный такой разряд конденсатора — это растаскивает неосновные заряды из основного тела полупроводника. И чем это тело больше, тем дольше их будет оттуда растаскивать. А когда диод включен обратно, то возникает барьерная емкость. Если внимательно посмотреть на обратно смещенный диод, на что это похоже? Два проводника, между ними диэлектрик… Правильно, на конденсатор. Ну и хрен что диэлектрик у этого конденсатора это полупроводник. При определенных условиях он же диэлектрик? Диэлектрик. Значит работать будет. А еще расстояние между проводящими областями зависит от электрического поля. Подали посильней обратное смещение — дырки и электроны вжались в края — диэлектрический слой увеличился, ослабил поле — уменьшился. А от толщины диэлектрика напрямую зависит емкость этого импровизированного конденсатора. Т.е. барьерная емкость зависит от приложенного обратного напряжения. Ну и обе емкости зависят от конструктива. Раньше, в советской литературе, было даже четкое деление на плоскостный и точечный диод. Т.е. у плоскостного pn переход был в виде двух плоских областей, способных пропустить через себя большой ток, но обладающих большой емкостью. А у точечного диода переход представлял собой подпружиненную иголочку с покрытием, упирающуюся в кристалл полупроводника. Площадь контакта мала, емкость мала, ток тоже мизерный. Сейчас я такого деления как то не встречаю. Видать в западной классификации диоды по конструктиву не делят. ▌ВарикапСпособность диода образовывать барьерную емкость при обратном смещении и послужило идеей для варикапа. Осталось только сделать такой диод, для которого барьерная емкость была бы максимально стабильной, не зависящей от разных там погодных условий и вуаля. Т.е. даем отрицательное постоянное смещение, а поверх него переменный сигнал, то меняя смещение можно менять емкостное сопротивление этого конденсатора для этого переменного сигнала. Такую емкость зовут барьерной. Т.к. ее величина зависит от ширины потенциального барьера. А как это применить тут можно многое придумать. Первое что приходит в голову разные электрически управляемые фильтры или колебательные контура. Вроде такого: ▌ШотткиОтдельно хочу сказать о диоде Шоттки. Диод Шоттки использует не pn переход двух полупроводников. А переход полупроводник-металл. Получается примерно то же самое, но с рядом особенностей, как то:
Минусы тоже значительные.
Вот как то так. Кратенько и по самым основам. Как раз под окончание сессии у студентов ;) easyelectronics.ru Полупроводниковый диод | Электронные печенькиДиод — полупроводниковый прибор обладающий разной проводимостью в зависимости от направления тока. Иными словами, диод пропускает ток в одну сторону и не пропускает в другую. То есть ток идёт от анода (+) к катоду (-), но не наоборот (на самом деле и наоборот иногда идёт, всё сложно. Подробности в статье 🙂 ). Разумеется, диод рассчитан на определённое напряжение и ток, которое он может пропустить в прямом направлении и определённое напряжение, которому он способен сопротивляться в обратном. Полезно знать, что на корпусе диода катод обозначается цветным кольцом. Диоды характеризуются двумя основными характеристиками: предельному обратному напряжению (Uобр) и максимальной силой тока (Imax), проходящей через него. Предельное обратное напряжение — максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии, которое он способен выдержать. Максимальный рабочий ток представляет собой ток при прямом включении диода, который диод может выдержать, не выходя из строя. Диоды широко применяются в электронике. Его основное свойство — пропускать ток только в одном направлении, определяет самое распространённое применение диода для выпрямления переменного тока. Однако, мы не станем останавливаться на выпрямителях слишком подробно. Статья рассказывает о применении диода в микроконтроллерных устройствах, разновидностях и способах подключения диода. В устройствах с микроконтроллерами в основном применяются 3 типа диодов:
Ниже рассмотрим отличия и назначения каждого типа диодов. Изображение стабилитрона на схеме. Вот с такой загогулиной, да. А так выглядит диод Зеннера в жизни Прежде чем рассказать о стабилитронах, нужно вспомнить о ВАХ. ВАХ — это не только междометие, но и аббревиатура. Расшифровывается она как вольт-амперная характеристика. Чтобы не пугать вас и делать вид, что всё очень сложно, не будем приводить здесь графики этой самой ВАХ. Достаточно просто пояснить, что существует ВАХ для прямого и для обратного включения диода. ВАХ — это график, по которому можно определить характеристики диода: предельные токи, падение напряжения и прочее. Стабилитроны конструктивно ничем не отличаются от других диодов. Но их параметры специально рассчитаны для того, чтобы подключать диод наоборот : анод на минус, а катод на плюс. Это позволяет стабилитрону стабилизировать напряжение. Это происходит в связи с особенностью ВАХ стабилитрона в обратном направлении: при определенном обратном напряжении на диоде, через него течет любой ток. Разумеется, ток через диод не может быть бесконечным, иначе стабилитрон банально перегреется и сгорит. Для стабилизации напряжения на больших токах используйте стабилизаторы напряжения. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. Как не сложно догадаться, это и есть напряжение, которое стабилитрон пропускает через себя. Подключается стабилитрон вот так: Типичная схема подключения стабилитрона Можно заметить некоторое сходство с делителем напряжения. Собственно, это он и есть. Только напряжение на выходе регулируется стабилитроном динамически, а резистор в верхнем плече делителя называют балластным. Для правильного подключения стабилитрона необходимо произвести расчёт балластного резистора. Для этого необходимо знать следующие значения:
Выбирается стабилитрон, с током стабилизации в 2 или более раз большим, чем ток, потребляемый нагрузкой. Через балластный резистор потечёт ток, равный сумме тока стабилизации и тока, потребляемого нагрузкой. По закону Ома выходит, что ток, потребляемый нагрузкой, мы можем рассчитать по формуле: (Входное напряжение-Напряжение стабилизации)/Сопротивление балластного резистора. Тогда сопротивление балласта выражается такой формулой: R1=(Входное напряжение-Напряжение стабилизации)/Ток потребляемый нагрузкой. Ну а теперь, когда вы полностью запутались, мы просто рекомендуем вам использовать резистор 33 Ом. Этого достаточно для тока нагрузки до 5мА и входном напряжении до 5 В. То есть с помощью стабилитрона из нашего магазина с резистором в 330 Ом вы сможете стабилизировать напряжение на уровне 3,3 вольт для SD модуля. Так обозначается выпрямительный диод на схеме. Ага. Безо всяких закорючек. Диод. Катод справа. Собственно, дальше не так интересно. Выпрямительные диоды… выпрямляют ток. То есть позволяют получить из переменного тока постоянный. Помимо выпрямления тока, выпрямительные диоды используются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. Эти диоды выдерживают большие токи и напряжения, но плохо работают на высоких частотах. Это значит, что защитить мощный блок питания от переплюсовки таким диодом можно, а вот ШИМ с таким диодом будет работать не так, как ожидается (работать будет, но скважность изменится, так как диод не будет успевать открываться-закрываться до конца). ВАХ обратного включения выпрямительного диода характеризуется малым напряжением при большом токе. Это как раз и значит то, что написано выше. Диод хорошо пропускает ток в «правильном» направлении и готов сопротивляться до последнего току, который вдруг потечёт назад. Выпрямительные диоды могут использоваться для защиты управляющей схемы от индуктивных нагрузок. Это, в основном, различные устройства с катушкой — моторы и реле. После отключения тока, катушка может сработать как индуктивность и вернуть заряд назад, повредив вывод контроллера. Для защиты от индуктивности, в цепь с индуктивной нагрузкой включается диод: Выпрямительный диод в цепи с мотором На схеме диод Шоттки изображается так: Диод Шоттки на схеме. Да. Теперь 2 закорючки. Диод Шоткти. Также его называют сигнальным диодом. Отличается относительно малым предельным напряжением и током, но высокой скоростью работы. Применяется в схемах передачи высокочастотных сигналов. Подробное рассмотрение особенностей диода Шоттки выходит за рамки статьи. Поделиться ссылкой:
Похожееuscr.ru Ответы@Mail.Ru: Вот это диодЕсли посмотреть на рисунок диода, то можно увидеть такую стрелочку, не так ли? И эта стрелочка показывает, в какую сторону диод пропускает ток. А ток, как принято считать в электротехнике, течет от плюса к минусу. А куда реально подключать плюс или минус - зависит от того, чего Вы хотите достичь. Если хотите, чтоб диод пропускал ток, подключайте плюс к треугольнику. Если хотите, чтоб НЕ пропускал - подключайте к треугольнику минус. сверху плюс, снизу минус. Рисунок плохой, это стабилитрон или нет? А то у него вроде палочка выгнутая Внизу плюс <img src="//content.foto.my.mail.ru/mail/alex1975333/_answers/i-714.jpg" > Один песик разбирается в простейших диодах, да еще и рисовать умеет. Плюс у диода (любого) конечно треугольник, но при выпрямлении, на нем как раз и будет минус. Так что просто понять нужно, для чего знать плюс или минус, по теории, или на практике (вечные споры, куда идет ток, от плюса к минусу, или наоборот) Удачи! Пиши, поможем... судя по рисунку-больше похоже на стабилитрон, но если диод то сверху плюс, снизу минус Господа, Вы по моему не то человеку объясняете.. . то есть правильно все, но не о том.. . У диодов нет плюса и минуса, у диода есть АНОД и КАТОД. Анод обозначается треугольником, а катод прямой чертой с возможными вариантами от типа диода. А полярность прикладываемого в конкретной схеме напряжения зависит от типа диода и варианта его использования. В данном случае приведено обозначение СТАБИЛИТРОНА. В традиционной схеме использования он включается анодом к минусу источника. Выпрямительный диод (в том числе и оный стабилитрон в прямом включении) открывается при прикладывании к нему плюса к аноду.. . (естественно на прямой ветке ВАХ) touch.otvet.mail.ru |