Транзисторные ключи: схема, принцип работы и особенности. Транзистор в режиме ключасхема, принцип работы и особенности :: SYL.ruМикроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике. Что такое электронный ключ?Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:
На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора. Коммутация нагрузкиПростыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15... 14 А, напряжений 50... 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт. Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков. Электромагнитное релеРеле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии. Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают. Выводы электромагнитного релеОбычно в электромагнитных реле имеется 5 выводов:
В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом. Как работает электромагнитное релеПринцип работы электромагнитного реле довольно простой:
Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника. Проводимость транзисторовОдин из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:
К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n. Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n. Транзистор в режиме ключаТранзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:
Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов - около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды. Принцип работы транзистораЭлемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой. В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала "эмиттер - коллектор" может меняться в больших пределах. Пример работы транзистора в режиме ключаКоэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу "эмиттер - коллектор", выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h31Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе "коллектор - эмиттер" он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала). При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход "коллектор - эмиттер" открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью. Режим насыщенияУ всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах "база - эмиттер" может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток. Практические конструкцииПрактических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д. Работа с микроконтроллерамиПри расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом. Применяются несложные конструкции, состоящие из таких элементов:
Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки. Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал "коллектор - эмиттер" открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства. Использование транзисторов в конструкцияхНужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой. Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя. Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно. www.syl.ru Транзисторные ключи. Схема, принцип работыПри работе со сложными схемами полезным является использование различных технических хитростей, которые позволяют добиться поставленной цели малыми усилиями. Одной из них является создание транзисторных ключей. Чем они являются? Зачем их стоит создавать? Почему их ещё называют «электронные ключи»? Какие особенности данного процесса есть и на что следует обращать внимание? На чем делаются транзисторные ключиОни выполняются с использованием полевых или биполярных транзисторов. Первые дополнительно делятся на МДП и ключи, которые имеют управляющий р–n-переход. Среди биполярных различают не/насыщенные. Транзисторный ключ 12 Вольт сможет удовлетворить основные запросы со стороны радиолюбителя. Статический режим работыНасыщение ключаВ таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить. Недостатки ненасыщенного ключаА что будет, если не было достигнуто оптимальное значение? Тогда появятся такие недостатки:
Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство. БыстродействиеЭтот параметр зависит от максимальной допустимой частоты, когда может осуществляться переключение сигналов. Это в свою очередь зависит от длительности переходного процесса, что определяется инерционностью транзистора, а также влиянием паразитных параметров. Для характеристики быстродействия логического элемента часто указывают среднее время, которое происходит при задержке сигнала, при его передаче в транзисторный ключ. Схема, отображающая его, обычно именно такой усреднённый диапазон отклика и показывает. Взаимодействие с другими ключамиДля этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется. Что выбратьС чем лучше работать? Давайте представим, что у нас есть простой транзисторный ключ, напряжение питания которого составляет 0,5 В. Тогда с использованием осциллографа можно будет зафиксировать все изменения. Если ток коллектора выставить в размере 0,5мА, то напряжение упадёт на 40 мВ (на базе будет примерно 0,8 В). По меркам задачи можно сказать, что это довольно значительное отклонение, которое накладывает ограничение на использование в целых рядах схем, к примеру, в коммутаторах аналоговых сигналов. Поэтому в них применяются специальные полевые транзисторы, где есть управляющий р–n-переход. Их преимущества над биполярными собратьями такие:
Транзисторный ключ реле – вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки – и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество. Пример работыДавайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое – превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя. В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей. Расчет транзисторного ключаДля понимания привожу пример расчета, можете подставить свои данные: 1) Коллектор-эмиттер – 45 В. Общая рассеиваемая мощность - 500 mw. Коллектор-эмиттер – 0,2 В. Граничная частота работы – 100 мГц. База-эмиттер – 0,9 В. Коллекторный ток – 100 мА. Статистический коэффициент передачи тока – 200. 2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45. 3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом. 4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА. 5) Считаем ток базы: 56\200=0,28 мА (0,00028 А). 6) Сколько будет на резисторе базы: 5 – 0,9 = 4,1В. 7) Определяем сопротивление резистора базы: 4,1\0,00028 = 14,642,9 Ом. ЗаключениеИ напоследок про название "электронные ключи". Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом – дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там. fb.ru 9.4 Транзисторные ключи на биполярных транзисторахТранзисторный ключ является основным элементом устройств информационной электроники и многих устройств силовой электроники. На рис. 9.11 а представлена схема простейшего ключа на биполярном транзисторе, включенном по схеме с общим эмиттером, на рис 9.11 б – диаграмма входного напряжения, а на рис. 9.11 в – выходного напряжения. В начале рассмотрим работу транзисторного ключа в установившемся режиме. До момента времени t1 эммитерный переход транзистора заперт отрицательным входным напряжением, транзистор находится в режиме отсечки. Рис.9.11. Схема простейшего ключа на биполярном транзисторе и диаграммы его работы В этом режиме IК=-Iб=IK0 (IK0 – обратный ток коллектора), IЭ0. Пренебрегая малым обратным током коллектора IК0, получаем iк = iб 0 . При этом URб URк 0; Uбэ U2; Uкэ ЕК. (рис. 9.11 в). В промежутке t1 t2 величину сопротивления Rб и входного напряжения U1 выбирают так, чтобы транзистор находился в области насыщения, либо близкой к ней. В этом режиме транзистор открыт и выполняются соотношения:
Таким образом, низкому входному (управляющему) потенциалу соответствует высокий потенциал на выходе ключа и наоборот. Такой режим работы называется инверсным. Часто ключевые схемы работают друг на друга и тогда входное (управляющее) напряжение будет иметь форму выходного сигнала, а это значит, что с учетом возможных входных помех, параметры схемы должны быть рассчитаны таким образом, чтобы входное напряжение не превышало некоторую пороговую величину. Например, для кремниевых транзисторов надежное запирание обеспечивается уровнем в 0,4 В. Надежное отпирание транзистора обеспечивается при условии выполнения соотношения . Кроме этого необходимо учитывать, что RК должно быть выбрано так, чтобы при открытом транзисторе коллекторный ток не превысил максимально допустимого для выбранного типа транзистора. То есть . Надежное открывание транзистора сопровождается его переходом в область насыщения, при этом в цепи коллектора протекает ток IКнас., определяемый соотношением . Напряжение UКЭ в режиме насыщения различно у различных типов транзисторов и обычно лежит в пределах 0,08 ÷ 1 В. Минимальный ток базы необходимый для обеспечения режима насыщения определяется выражением: . Глубину насыщения оценивают через коэффициент насыщения qнас показывающий во сколько раз реальный ток базы больше того минимального значения тока базы, которое необходимо для обеспечения режима насыщения. То есть: . При выбранном qнас можно производить расчет элементов ключа в статическом режиме. При этом следует руководствоваться следующими соображениями. Режим насыщения должен обеспечиваться для различных экземпляров транзисторов выбранного типа при заданном диапазоне температур. Увеличение тока базы в режиме насыщения уменьшает величину UКЭ, уменьшая мощность выделяющуюся в выходной цепи транзистора, но при этом увеличивается мощность выделяемая во входной его цепи. Кроме этого увеличение тока базы уменьшает время перехода из закрытого состояния в открытое (в режим насыщения), но затягивает время выхода транзистора из режима насыщения. Исходя из этих соображений, в расчетах принимают qнас=1,5 ÷ 2. Динамический режим работы ключа изображенного на рис 9.11 рассмотрим на временных диаграммах его работы. На рис 9.12 приведены временные диаграммы, поясняющие процесс включения транзисторного ключа. Рис.9.11. Временные диаграммы включения транзисторного ключа При подаче входного переключающего напряжения начинается перезарядка барьерных емкостей эммитерного СЭ и коллекторного СК переходов, поэтому, когда во время t1 входное напряжение изменяется скачком, транзистор остается запертым, поскольку напряжение на его входной емкости не может изменятся скачком. Через сопротивление базы начнет протекать ток, изменяя Uбэ хотя сам транзистор продолжает оставаться запертым. Время задержки приблизительно можно определить по формуле: t3 = вх[1+( Uбо/ U1 )], где вх = Rб(СЭ+СК), Uбо – начальное смещение Uбэ – вызванное выпирающим входным напряжением - U2. Значение t3 обычно не велико. Поэтому этим временем в расчетах часто пренебрегают. Когда напряжение Uбэ достигает некоторого порогового значения Uбэ порог транзистор начнет отпираться формируя фронт выходного сигнала tф. При этом коллекторный ток экспоненциально нарастает до перехода транзистора в режим насыщения. В это время экспоненциально падает Uэк=Uвых до достижения величины Uкэ нас.. Длительность отрицательного фронта может быть определена в соответствии с формулой: , где а – постоянная времени цепи базы, - ток базы при переходе в режим насыщения. Оценить порядок величины отрицательного фронта можно рассмотрев типовой пример. Так, если а=2 мкс; ст =50; =1 mА;=5 mА, то=0,2 мкс. Общее время включения транзистора определяется суммой t3 + tф. Начиная с момента t3 токи коллектора, эмиттера и базы практически не изменяются, однако заряд в базе продолжает нарастать с постоянной времени H и заканчивается через время tH = (2÷3)H. Процесс выключения транзисторного ключа иллюстрируется рис. 9.12. и начинается с момента подачи входного отрицательного управляющего потенциала (-U2) (время t1) процесс запирания транзистора происходит в два этапа: рассасывание избыточного заряда (до времени t2) и формирование положительного фронта (до времени t3). Заряд, накопившийся в базе открытого транзистора мгновенно рассосаться не может и в течение некоторого промежутка времени ток коллектора не изменяется. При достаточно большом запирающем напряжении время рассасывания можно определить по формуле tp = HqнасIк.нас./(стIб), где H – постоянная времени насыщения; Iб – скачёк базового тока в момент начала выключения ключа. В интервале рассасывания ток базы (без учета Uбэ) определяется соотношением: . Рис.9.12. Временные диаграммы выключения транзисторного ключа На интервале формирования положительного фронта продолжается уменьшение концентрации неравновесных носителей, ток Iк значительно уменьшается, а напряжение Uкэ возрастает. По окончании время выключения (после времени t3) ток коллектора становится равным току базы, эммитерный переход смещается в обратном направлении, ток базы быстро уменьшается по модулю и становится практически равным нулю. В рассматриваемой схеме время рассасывания tрасс существенно больше всех остальных времен, поэтому временем спада и установления можно пренебречь. При этом следует иметь ввиду, что чем больше по модулю переключающий ток базы, тем меньше время рассасывания, и чем больше коэффициент насыщения, тем больше время рассасывания. Количественный анализ переходных процессов удобнее всего осуществлять с помощью пакетов программ для машинного анализа электронных схем (например Micro – Cap V и др.) Одним из способов повышения быстродействия является предотвращение насыщения транзистора с целью уменьшения времени рассасывания путем специальных схемотехнических решений. На рис. 9.13 приведен вариант реализации ненасыщенного транзисторного ключа с нелинейной отрицательной обратной связью по напряжению на высокочастотном диоде. Рис.9.13. Вариант реализации ненасыщенного ключа Напряжение смещения Uсм в такой схеме выбирается в диапазоне0,4÷ 0,6В. Работает схема следующим образом. Пока транзистор достаточно далек от области насыщения, диод VD закрыт напряжением ЕК. На границе активного режима и режима насыщения напряжения UКБ оказывается близким к нулю и диод открывается за счет UСМ. После этого часть тока источника входного сигнала ответвляется в цепь диода, ток базы уменьшается и транзистор не входит в режим насыщения. На рис. 9.14 показан вариант схемы ненасыщенного ключа в котором нелинейная отрицательная обратная связь реализуется через диод Шотки у которого напряжение отпирания около 0,25 В. При использовании диода Шотки дополнительного источника смещения не требуется. Рис.9.14. Ненасыщенный ключ на диоде Шотки studfiles.net Биполярные транзисторы.Часть 2. Ключевой каскад.Ключевой режим работы транзистора, наверное, один из самых простых (с точки зрения поддержания параметров) и в тоже время очень часто встречающихся из режимов работы транзистора. По своей сути транзистор большую часть времени находится лишь в двух состояниях: отсечки и насыщения.Ниже показана схема включения транзистора Использование транзистора в ключевом режимено прежде чем начинать описывать работу этой схемы, необходимо задекларировать несколько простых правил, при которых транзистор работает. Правила приведены для транзистора p-n-p-типа, но и для транзистора n-p-n-типа они сохраняются, но с учётом того, что полярность напряжения должна быть изменена на противоположную: Принцип работы трназистора
данное правило определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора. Из правила 2 следует, что между базой и эммитером напряжение не должно превышать 0,6…0,8 В (падение напряжения на диоде), иначе возникает очень большой ток. Учитывая выше изложенные правила можно понять, как с помощью небольшого тока создать ток большей величины. В случае, когда контакт разомкнут через базу ток не течёт и согласно правилу 4 отсутствует коллекторный ток, следовательно, лампочка не светится. Как только замыкается контакт напряжение между базой и эммитером составит 0,6…0,8 В. Падение напряжения на сопротивлении базы Rб составит примерно 9,3 В, а ток, протекающий через базу 9,3 мА. Казалось бы, с учётом правила 4, что через лампочку должен протекать ток порядка 930 мА (примем значение h31Э = 100), но это не так. Как говорилось ранее, правило 4 действует лишь с учётом правил 1 – 3. В нашем случае, когда ток через лампочку, а следовательно и ток коллектора достигнет значения 0,1 А падение напряжения на лампочке будет равно 10 В. Далее, согласно правила 1, роста тока не будет, так как потенциал коллектора и эммитера сравняется (в реальности падение напряжения на лампочке никогда не будет равно напряжению питания, потому что на транзисторе будет падение напряжения равное напряжению насыщения транзистора). Когда напряжение на коллекторе будет приближаться к напряжению на эммитере, транзистор переходит в режим насыщения и изменение напряжения на коллекторе прекращаются. Расчёт ключевой схемыКак же рассчитать элементы «обвязки» транзистора? Во-первых, необходимо, как и в случае любой другой схемы понять, что необходимо получить и что приходит на вход. 1. Рассчитывают ток протекающий через коллектор: , гдеUpit – напряжение питания, RК – сопротивление в коллекторной цепи. 2. Рассчитывают базовый ток: 3. Рассчитывают сопротивление базового резистора Rб: Uвх – напряжение на входе ключевого каскада. Казалось бы, на этом можно закончить рассматривать ключевой каскад, он настолько простой, что и говорить не о чем. Но есть ещё одно дополнение, как было сказано выше, ключевой каскад характеризуется использованием транзистора в двух состояниях: насыщения и отсечки. С состоянием насыщения всё понятно транзистор жестко включён в цепь и на него внешние факторы не влияют. Что же происходит в состоянии отсечки транзистора, когда его база отключена от схемы, говорят, что она «повисла в воздухе». Так как мы окружены постоянно электричеством, то на базовый вывод могут быть наводки в виде блуждающих токов, да и в транзисторе в результате его работы могут быть внутренние токи. В таком случае транзистор не будет закрыт полностью, поэтому на всякий случай между базой и эммитером транзистора включают сопротивление RБЭ, которое выбирается таким, чтобы при работе падение напряжения на нём не составило меньше, чем 0,6 В. Он берётся примерно раз в 10 больше базового сопротивления. Ниже приведён пример, который часто используют при подключении ключевого каскада к выводу микросхем, где стандартное выходно напряжение составляет +5 В. Пример использования транзистора в ключевом режимеТеория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками Скажи спасибо автору нажми на кнопку социальной сети www.electronicsblog.ru Ключ на полевом транзисторе своими рукамиПожалуй, даже далёкий от электроники человек слышал, что существует такой элемент, как реле. Простейшее электромагнитное реле содержит в себе электромагнит, при подаче на который напряжения происходит замыкание двух других контактов. С помощью реле мы может коммутировать довольно мощную нагрузку, подавая или наоборот, снимая напряжение с управляющих контактов. Наибольшее распространение получили реле, управляющиеся от 12-ти вольт. Также встречаются реле на напряжение 3, 5, 24 вольта. Однако коммутировать мощную нагрузку можно не только с помощью реле. В последнее время широкое распространение получили мощные полевые транзисторы. Одно из их главных предназначений – работа в ключевом режиме, т.е. транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток – Исток практически равно нулю. Открыть полевой транзистор можно подав напряжение на затвор относительно его истока. Сравнить работу ключа на полевом транзисторе можно с работой реле – подали напряжение на затвор, транзистор открылся, цепь замкнулась. Сняли напряжение с затвора – цепь разомкнулась, нагрузка обесточена. При этом ключ на полевом транзисторе имеет перед реле некоторые преимущества, такие, как:
СхемаСхема ключа на полевого транзистора представлена ниже:Резистор R1 в ней является токоограничивающим, он нужен для того, чтобы уменьшить ток, потребляемый затвором в момент открытия, без него транзистор может выйти из строя. Номинал этого резистора можно спокойно изменять в широких пределах, от 10 до 100 Ом, это не скажется на работе схемы.Резистор R2 подтягивает затвор к истоку, тем самым уравнивая их потенциалы тогда, когда на затвор не подаётся напряжение. Без него затвор останется «висеть в воздухе» и транзистор не сможет гарантированно закрыться. Номинал этого резистора также можно менять в широких пределах – от 1 до 10 кОм. Транзистор Т1 – полевой N-канальный транзистор. Его нужно выбирать исходя из мощности, потребляемой нагрузкой и величины управляющего напряжения. Если оно меньше 7-ти вольт, следует взять так называемый «логический» полевой транзистор, который надёжно открывает от напряжения 3.3 – 5 вольт. Их можно найти на материнских платах компьютеров. Если управляющее напряжение лежит в пределах 7-15 вольт, можно взять «обычный» полевой транзистор, например, IRF630, IRF730, IRF540 или любые другие аналогичные. При этом следует обратить внимание на такую характеристику, как сопротивление открытого канала. Транзисторы не идеальны, и даже в открытом состоянии сопротивление перехода Сток – Исток не равно нулю. Чаще всего оно составляет сотые доли Ома, что совершенно не критично при коммутации нагрузки небольшой мощности, но весьма существенно при больших токах. Поэтому, чтобы снизить падение напряжения на транзисторе и, соответственно, уменьшить его нагрев, нужно выбирать транзистор с наименьшим сопротивлением открытого канала. «N» на схеме – какая-либо нагрузка. Недостатком ключа на транзисторе является то, что он может работать только в цепях постоянного тока, ведь ток идёт только от Стока к Истоку.Изготовление ключа на полевом транзистореСобрать такую простую схему можно и навесным монтажом, но я решил изготовить миниатюрную печатную плату с помощью лазерно-утюжной технологии (ЛУТ). Порядок действий, следующий:1) Вырезаем кусок текстолита, подходящий под размеры рисунка печатной платы, зачищаем его мелкой наждачной бумагой и обезжириваем спиртом или растворителем.2) На специальной термотрансферной бумаге печатаем рисунок печатной платы. Можно использовать глянцевую бумагу из журналов или кальку. Плотность тонера на принтере следует выставить максимальную.3) Переносим рисунок с бумаги на текстолит, используя утюг. При этом следует контролировать, чтобы бумажка с рисунком не смещалась относительно текстолита. Время нагрева зависит от температуры утюга и лежит в пределах 30 – 90 секунд. 4) В итоге на текстолите появляется рисунок дорожек в зеркальном отображении. Если тонер местами плохо прилип к будущей плате, можно подправить огрехи в помощью женского лака для ногтей.5) Далее, кладём текстолит травиться. Существует множество способов изготовить раствор для травления, я пользуюсь смесью лимонной кислоты, соли и перекиси водорода.После травления плата приобретает такой вид:6) Затем необходимо удалить тонер с текстолита, проще всего это сделать с помощью жидкости для снятия лака для ногтей. Можно использовать ацетон и другие подобные растворители, я применил нефтяной сольвент.7) Дело за малым – теперь осталось просверлить отверстия в нужных местах и залудить плату. После этого она приобретает такой вид:Плата готова к запаиванию в неё деталей. Потребуются всего два резистора и транзистор. На плате имеются два контакта для подачи на них управляющего напряжения, два контакта для подключения источника, питающего нагрузку, и два контакта для подключения самой нагрузки. Плата со впаянными деталями выглядит вот так: В качестве нагрузки для проверки работы схемы я взял два мощных резистора по 100 Ом, включенных параллельно. Использовать устройство я планирую в связке с датчиком влажности (плата на заднем плане). Именно с него на схему ключа поступает управляющее напряжение 12 вольт. Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Падение напряжение на транзисторе при этом составило 0,07 вольта, что в данном случае совсем не критично. Нагрева транзистора на наблюдается даже при постоянной работе схемы. Успешной сборки! Скачать плату и схему: plata.zip [4,93 Kb] (cкачиваний: 354)sdelaysam-svoimirukami.ru Биполярный транзистор. Резистор в базеНу и как успехи в изучении транзистора? Читали предыдущую статью? Если да, то это очень хорошо, если нет, срочно читайте, иначе не поймёте о чем речь в этой статье. Итак, у некоторых возникли непонятки с резистором, который цепляется к базе транзистора. Вроде бы понятно, что он ограничивает силу тока, но непонятно зачем. Давайте вспомним нашу картинку с предыдущей статьи: Видите резистор на 500 Ом? Что он там делает и для чего нужен, мы с вами разберем в этой статье. Итак, у нас есть всеми нами любимый и знакомый транзистор КТ815Б – классика Советского Союза 😉 Вспоминаем его цоколевку (расположение выводов): Включение транзистора в схему с ОЭ (Общим Эмиттером) будет выглядеть приблизительно вот так: Как вы видите, в этой схеме мы подключали также лампочку и источник тока к коллектору-эмиттеру. Откинем пока что лампу и источник Bat2 и просто цепанемся крокодилами от Блока питания на выводы базы и эмиттера: Плюс от блока питания на базу, а минус на эмиттер. Теперь давайте будем увеличивать напряжение от нуля и до какого-то значения. Итак, кручу крутилку до 0,6 В и только тогда амперметр на блоке питания показал 10 мА: Кручу дальше и получаю следующие результаты (слева-направо): Дальше добавлять напряжение сыкотно, так как транзистор становится горячим. Кстати, первый подопытный транзистор скончался, испустив белый дым, под напряжением в 1,5 В. Слишком резко крутанул крутилку). Давайте построим график по нашим точкам, или как говорится в народе, Вольт амперную характеристику (ВАХ): Чуток коряво конечно, но смысл уловить можно. Среди профи-электронщиков этот график называется входной характеристикой биполярного транзистора, при нулевом напряжении на коллектор-эмиттере. Как вы помните, транзистор можно схемотехнически представить, как два диода, соединенные или анодами, или катодами (кто не помнит, читаем эту статью). В нашем случае транзистор КТ815Б является транзистором NPN, следовательно, его можно представить вот так: Так что это получается? Мы тупо подавали напряжение на диод? Ну да, все верно) Так вот, для диода ВАХ будет выглядеть как-то вот так: Что тут можно увидеть? Подавая напряжение на диод в прямом включении (на анод плюс, на катод – минус), мы видим, что через диод ток начинает течь только тогда, когда напряжение становится больше, чем 0,5 В. Далее подавая напряжение на диод чуточку больше, сила тока через диод возрастает непропорционально. Напряжения добавили чуть-чуть, а сила тока стала в разы больше. Так как переход база-эмиттер – это что ни на есть самый простой диод, то следовательно, малое изменение напряжения в плюс вызовет большое изменение силы тока. Настолько большое, что транзистор можно сгореть! Для нашего подопечного максимально допустимый постоянный ток базы составляет 0,5 А. Я же выжал 0,7 А, но транзистор за эти пару секунд чуть не вскипел. Что же это получается? Если напряжение изменится в плюс даже на каких-то десятки Вольт, то транзистору придет крындец? Да, все именно так. Но как нам теперь быть? Неужели придется использовать высокостабильный блок питания? Делать так для каждой схемы конечно не реально, но выход есть проще некуда, и называется он Делитель напряжения. Давайте проведем два небольших опыта. Для этого к базе цепанем резистор на 10 Ом: Смотрим теперь на показания блока питания (слево-направо): Строим график по полученным точкам: Сравниваем с графиком без резистора: Обратите внимание на вертикальную шкалу силы тока базы (Iбазы). При одном вольте на графике без резистора базовый ток был уже почти 0,7 А! А с резистором на 10 Ом базовый при 1 В уже был каких-то 0,02 А. Чувствуете разницу? Почему же так все получилось? Дело в том, что на резисторе «осело» лишнее напряжение. Досконально это схема будет выглядеть вот таким образом: По цепи, которую я отметил красными проводками, течёт электрический ток. Нагрузкой для электрического тока является резистор и диод транзистора. А так как они соединены последовательно, то вспоминая статью Делитель напряжения можно сказать, что и на диоде транзистора и на резисторе R падает напряжение. А сумма этих напряжений равняется напряжению батареи Bat. В данном случае вместо батареи я использовал блок питания. То есть можно записать, что UBat = UR + Uбаза-эмиттер Проверяем, так ли оно на самом деле? В нашем случае используем тот же самый резистор на 10 Ом. Выставляем на блоке питания напряжение 1 В. Видим, что сила тока, протекающая по цепи равна 20 мА. Итак, замеряем падение напряжения на резисторе: А теперь падение напряжения на базе-эмиттере: Итого: 0,32 + 0,74 = 1,06 В 0,06 В спишем на погрешность вольтметра блока питания). Ну как, теперь понятно, почему всё так происходит? Небольшое лирическое отступление. Так как резистор рассчитан на определенную мощность, нужно таким образом подбирать резистор, чтобы он не колыхнул ярким пламенем. Какая же мощность сейчас в данный момент рассеивается на резисторе? Так как в нашем случае нагрузки подцеплены последовательно (резистор и диод транзистора), сила тока, проходящая через каждую нагрузку везде будет одинаковой. Значит, резистор в данный момент рассеивает мощность, равную P = IU = 0,02х0,32 = 0,0064 Вт. Мой резистор рассчитан максимум на 0,25 Вт, значит все гуд. Если на резисторе будет рассеиваться мощность больше, чем 0,25 Вт, резистор сгорит. Имейте это ввиду, когда будете проектировать свои электронные поделки. А что будет, если взять резистор еще больше по номиналу? Давайте попробуем. Возьмем резистор на 100 Ом: И проводим аналогичный опыт. Вот наши показания (слева-направо): Строим по ним график: Из всего выше сказанного, показанного и написанного делаем простые и не очень выводы: 1) Резистор в базе используется для того, чтобы плавно регулировать силу тока в базе, а также для ограничения силы тока, которая может спалить транзистор. Для чего нам плавно регулировать ток базы, мы с вами еще обсудим. 2) Чем больше номинал резистора, тем больше станет диапазон напряжения для регулировки силы тока в базе, тем самым можно плавнее регулировать этот самый ток. На рисунке (художник из меня хреновый) мы видим резистор, который качается на качелях, прикрепленных к графику входной характеристики транзистора ну и следовательно, чем больше его номинал, тем больше он прогибает график))). Продолжение——-> <——-Предыдущая статья www.ruselectronic.com Основы цифровой электроники. Транзистор в роли инвертораИтак, давайте сразу ближе к делу. Рассмотрим вот такую простенькую схемку: Что мы здесь видим? Видим ключ, резистор и источник питания. Резистор R мы повесили для того, чтобы не было короткого замыкания в источнике питания, когда замыкается ключ S. На клемму +U мы подаем плюс питания, а на землю, соответственно, минус. В схеме возможны два варианта развития событий: ключ замкнут и ключ разомкнут. Давайте рассмотрим каждый из этих двух вариантов: 1) Ключ замкнут В результате в цепи +U——-> R——-> S ——-> земля побежит электрический ток. Будет ли в этом случае напряжение между клеммой «А» и землей? Чешем свою репу и думаем… Так как ключ у нас замкнут, следовательно, в идеале его сопротивление 0 Ом. Вспоминаем закон Ома для участка цепи: I=U/R, отсюда U=IR. Получается, что падение напряжения на сопротивлении 0 Ом будет равно U=IR= I х 0 = 0 Вольт. Значит, напряжение между землей и клеммой «А» будет 0 Вольт. Получается, что напряжения на клемме «А» не будет. 2) Ключ разомкнут. Что в результате у нас будет на клемме «А»? Давайте также посчитаем по закону Ома. Мы знаем, что электрический ток бежит от плюса к минусу. Но так как у нас минус вообще не при делах, так как цепь разорвана ключом, следовательно, сила тока в цепи +U——->R——->клемма «А» будет равняться 0 Ампер. Значит, падение напряжения на резисторе R будет равняться U=IR=0 х R = 0 Вольт. Получается, что все полноценные +U Вольт доходят до клеммы «A». Поэтому, на клемме «А» будет напряжение +U. А почему бы нам не заменить ключ S транзисторным ключом? Вводя транзистор в режим насыщения или отсечки, мы можем управлять сопротивлением между коллектором и эмиттером. Следовательно, в режиме отсечки схема примет вот такой вид: а в режиме насыщения вот такой: Хотя, если честно, падение напряжения в этом случае на коллекторе-эмиттере будет составлять доли Вольт, что на самом деле не критично. Как мы видим, ключ на транзисторе у нас имеет Вход и Выход: Допустим, мы на Вход не подаем никакого сигнала. Что будет на Выходе? Не подавая никакого сигнала на базу транзистора через резистор R1, в данном случае на Вход, у нас транзистор НЕ откроется и ключ будет разомкнут (как вы помните, для открытия мы должны подать на базу более 0,6-0,7 Вольт), поэтому на Выходе (клемма «А» ) у нас будет +U Вольт Но если правильно рассчитать резистор R1 и подать сигнал, значение напряжения которого будет больше, чем 0,6-0,7 Вольт, то у нас транзистор войдет в режим насыщения и ключ будет замкнут В этом случае на Выходе (на клемме «А») у нас будет напряжение близкое к нулю. Итак, что получаем? Подаем сигнал и имеем на выходе 0 Вольт, если НЕ подаем сигнал — имеем +U. Такая схема в народе называется инвертором. — Закрой окно.— Я не расслышала, закрыть окно или открыть?— Инвертируй! Если за входной сигнал и +U взять напряжение, допустим, в 5 Вольт, и договориться, что значение напряжения близкое к 5 Вольтам принять за логическую единичку, а напряжение близкое к нулю принять за логический ноль, то можно вывести самую простую закономерность: — подаем логическую единичку на вход, получаем логический ноль на выходе — подаем логический ноль на вход, получаем логическую единичку на выходе На осциллограмме все это будет выглядеть вот так: Также в цифровой электронике есть такое понятие, как таблица истинности, которая показывает значение Выходов каких-либо логических элементов со всеми возможными комбинациями на Входе. Для нашего инвертора таблица истинности примет вот такой вид: Ладно, харэ трепать языком. Перейдем ближе к делу. Давайте построим инвертор на транзисторе КТ815Б, рассчитаем его и испытаем. +U возьмем 5 Вольт. На Вход также будем подавать управляющий сигнал в 5 Вольт. Вся схема у нас будет вот такая: Как мы уже сказали, резистор R2 будет ограничивать силу тока в цепи +5 Вольт ——-> R2——-> коллектор——-> эмиттер——-> земля, когда транзистор будет полностью открыт, то есть будет находиться в режиме насыщения. Также R2 будет задавать силу тока через нагрузку в режиме отсечки, которую мы цепанем на Выход схемы. В принципе, резистора Ом на 500 вполне хватит, чтобы в цепи +U——->R2——->коллектор——->эмиттер——->земля в режиме насыщения протекал ток силой в 10 миллиАмпер (I=U/R= 5 В / 500 Ом = 10 мА) Дело за малым. Надо рассчитать резистор R1. Для этого щелкаем на статью работа транзистора в режиме ключа, и берем из этой статьи формулы для расчета резистора R1. Для начала рассчитываем базовый ток по формуле: где IБ — это базовый ток, в Амперах kнас — коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения. IK — коллекторный ток, в Амперах β — коэффициент усиления тока транзистора, для расчетов берут минимальное значение в даташите или замеряют на практике С помощью своего китайского транзистор-тестера я без труда замеряю β . Здесь он обозначается как hFE. Теперь kнас берем 3, так как у нас будет типа переключающая схема. Iк у нас 10 миллиАмпер, это значение мы высчитывали выше. Считаем базовый ток: Iб = (3 х 0,01) / 78 = 3,84 х 10-4 А Так как управляющее напряжение у нас будет 5 Вольт, применяем закон Ома: Iб = U/R1 R1 = U/Iб = 5 / 3,84 х 10-4 =1,3 х 104 Ом. Берем ближайший из ряда на 12 КилоОм. Следовательно, схема будет с такими параметрами: Вот так она выглядит на макетной плате: Давайте вместо нагрузки подцепим светодиод. Когда я НЕ подаю 5 Вольт на Вход, светодиод светится: Когда беру 5 Вольт с другого блока питания и подаю на Вход схемы, то светодиод тухнет: Как мы видим, схема работает. Ну а теперь момент истины, смотрим осциллограммы. Желтый — входной сигнал амплитудой в 5 Вольт с китайского генератора частоты, а красный — выходной сигнал: Подали прямоугольный сигнал в 5 Вольт и с частотой в 7 КилоГерц, вышел прямоугольный сигнал в 5 Вольт 7 КилоГерц. Выйти-то он вышел, но обратите внимание на то, что его фаза абсолютно противоположна фазе входного сигнала. Если взять 5 Вольт за логическую единичку, а 0 Вольт за логический ноль, то у нас получается, что загоняя единичку на вход, получаем ноль на выходе, и наоборот, загоняя ноль на вход, получаем единичку на выходе. Инвертор во всей своей красе 😉 Все, конечно, замечательно, но и здесь есть свои подводные камни. Дело все в том, что транзистор не может сразу быстро выключаться. Проблема заключается в физическом строении самого биполярного транзистора. Для выключения ему требуется некоторое время. В медленно переключающих схемах это не имеет значения, а вот схемы, которые работают на высоких частотах, уже будут иметь искажения. Вот осциллограмма выходного красного сигнала на частоте в 50 КилоГерц : А вот на частоте в 100 КилоГерц: Как видите, сигнал очень сильно искажается. Как же с этим бороться? Можно спроектировать ключ так, чтобы он переключался чуть выше границы насыщения. В этом случае коэффициент насыщения должен быть равен хотя бы единице. Но в этом случае у нас будет падать бОльшее напряжение между коллектором и эмиттером, что приведет к нагреву транзистора и лишним энергозатратам. Второй вариант, использовать полевые транзисторы. Их еще называют МОП-транзисторы. Характеристики у МОПов намного лучше и энергозатраты на переключение даже меньше, чем у биполяров. Поэтому в основном сейчас везде применяются МОП-транзисторы в роли ключей. Ну и самый пик моды — это IGBT-транзисторы. Может быть мы когда-нибудь дойдем и до них… www.ruselectronic.com |