Как работает транзистор и где используется? Транзистор как выглядитТРАНЗИСТОРЫТранзистор в разрезе На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:Внешний вид советских транзисторов Структура биполярных транзисторов Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.Транзистор как два диода Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.Золото в транзисторах СССР Приведу ещё несколько фотографий распространённых транзисторов:Малой мощности Средней мощности Большой мощности В металлическом корпусе На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:
Фото SMD транзистор Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:Схема с общим эмиттером Схема включения с общим коллектором, это дает нам усиление только по току:Схема с общим коллектором И схема включения с общей базой, усиление только по напряжению:Схема с общей базой Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.Пример усилителя по схеме с общим эмиттером Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:Схема транзистора в ключевом режиме Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:Схематическое изображение фототранзисторов А так выглядит один из фототранзисторов:Фототранзистор - фотография Полевые транзисторыКак ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:Строение полевого транзистора Привожу первый вариант схематического обозначения полевого транзистора:Схематическое изображение полевого транзистора На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.Изображение на схемах полевых транзисторов с изолированным затвором Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) - это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:Схематическое изображение мощного полевого транзистора Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:Фото SMD полевой транзистор Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов: С общим истоком С общим стоком С общим затвором Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах. Однопереходные транзисторыСуществуют так называемые Однопереходные транзисторы, второе, менее распространённое название - Двухбазовый диод. Ниже приведены схематическое изображение и фото однопереходных транзисторов.Схематическое изображение однопереходных транзисторов Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи - AKV.Форум по радиоэлементам Обсудить статью ТРАНЗИСТОРЫ radioskot.ru Что такое транзистор? (принцип действия, назначение и применение, как выглядит)Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор — это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля. Виды транзисторовПреобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока. Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу. Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:
Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов. Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах. Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды. Биполярные транзисторыБиполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц. Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием. Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно. Полевые транзисторыПолевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:
Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение. Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области. Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники — сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла — затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП. Устройство и принцип работы для начинающихТехнологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние — в этом заключается двойная работа приборов. Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:
До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов. Преимущества и недостатки замены ламп транзисторамиИзобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:
Недостатки проявляются в следующих положениях:
Схемы включенияЧтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:
Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко. Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:
В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ. Для чего нужны транзисторы?Область применение разграничена в зависимости от типа прибора — биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров. Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа. Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:
Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату. Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения. Транзисторы обоих видов используются в следующих случаях:
Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния. Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла. Похожие статьиodinelectric.ru Как проверить транзистор | ЭлектрикЧасто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности. Проверка биполярных транзисторовСпособы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.Биполярные транзисторы существуют двух типов проводимости: p-n-p и n-p-n что необходимо помнить и учитывать при проверке. А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор "пробит" но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть "нулевого" сопротивления - поэтому это и есть самый простой способ выявления поломки транзистора.Ну а теперь рассмотрим более достоверные способы проверки и поподробней. И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка "разряжен". На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке. И так поочередно проверяем все переходы транзистора:
В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление "прозвонки" переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное. Как определяется "пробитый" переход?Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет "нулевое" сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен. Как определить обрыв p-n перехода?Если один из переходов в обрыве - он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов. Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица "1" что говорит о "бесконечном" сопротивление. Проверка транзистора стрелочным тестеромПринцип проверки все тот же, мы проверяем переходы (как диоды) Отличие лишь в том что такие "омметры" не имеют режима прозвонки диодов и "бесконечное" сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о "нулевом" сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке. Измерения лучше всего производить в режиме "1Ом" (можно пробовать и до *1000Ом пределе).Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не "нулевое" а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать "кз" и пищать (тоже конечно зависит от точности прибора). Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще. Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ: Все что нам нужно - поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.Нам нужно найти два перехода которые покажут бесконечность "1". Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным - база справа.Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер. Быстрая точная проверка транзистораЕсли под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов - замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна). У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.Простой пробникВ данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.Если транзистор рабочий - при нажатие кнопки светодиод светится, при отпускание гаснет.Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора - просто менять полярность источника питания. Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или "даташит" со всем описанием транзистора. Как проверить составной транзисторЧтобы проверить такой транзистор его необходимо "запустить" то есть он должен как бы работать, для создания такого условия есть простой но интересный способ. Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер - для n-p-n (для p-n-p наоборот) - стрелка тестера не двинется сместа оставаясь в начале шкалы "бесконечность" (для цифрового мультиметра "1") Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется. Таким же способом можно проверить любой транзистор даже не выпаивая з схемы. Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.Проверка полевых транзисторовЗдесь есть один отличительный момент при проверке таких транзисторов - они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы. Какие методы безопасности?Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд - применяют антистатический браслет который надевают на запястье.Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой. Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального). Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах. Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный - к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода. Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать "бесконечным" ("1") - если это не так то транзистор скорее всего неисправен. Особенностью современных мощных полевых транзисторов (MOSFET'ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).Чтобы не посчитать такую "прозвонку" канала за неисправность просто следует помнить о диоде. В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние - после закорачивания выводов) Если переход прозваниваеться в обе стороны с "нулевым" сопротивлением то такой транзистор "пробит" и неисправен Наглядный способ (экспресс проверка)
Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора. Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию. Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением. Простая схема пробника для проверки полевых транзисторовМожно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора - просто поменять полярность источника питания. elektt.blogspot.com Транзисторы [Амперка / Вики]Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным. В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено. Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторыБиполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер. Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА. Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению. NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped). NPN более эффективны и распространены в промышленности. PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток. Полевые транзисторыПолевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт. Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены. P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением. Подключение транзисторов для управления мощными компонентамиТипичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе. Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно. Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В. Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор. Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET, позволяет управлять очень мощными компонентами. wiki.amperka.ru Как выглядит транзистор? — Ответ здесьТранзистором в радиоэлектронике называется устройство, или прибор для преобразования электрических сигналов в цепи. Транзистор помогает регулировать силу электрического тока, как кран напор воды. Как же выглядит транзистор? В микроэлектронике транзистор позволяет управлять силой тока при помощи принципа стоп-сигнала: блокировать или разрешить протекание по цепи. Транзисторы выпускаются в корпусах или без, причем один и тот транзистор выглядит в разных корпусах по-разному. Выглядит транзистор компактно, он не имеет движущихся или предназначенных для вибрации частей, перепонок, утолщений или наслоений. Особенно большое разнообразие транзисторов можно встретить среди радиодеталей. Стандартный обычный транзистор имеет три выхода –эта база, эммитер и коллектор. По существу, выглядит транзистор без корпуса, как собранные в единую схему проволочные проводка милимметрового , или как говорят, мини-сечения. На принципиальной заводской схеме транзистора всегда есть маркировка, которая определяет символами базу «В», коллектор «С», и эммитер «Е». Многие компоненты микросхем можно легко спутать с транзистором, особенно новичкам. Поэтому все составляющие радиоплат имеют свое обозначение, а также размер, колибровку и параметр типо номинала серии выпуска. Транзисторы бывают со встроенными или индуцированными каналами. Иногда транзистор имеет четвертый выход, для соединения подложки с истоком, то есть выходом тока. Эта особенность встречается редко и непринципиальна. По сути, транзистор – это полупроводниковый прибор, выполненный на основе монокристаллических проводников из кремния или германия. Транзисторы бывают биполярные и униполярные. Выглядит транзистор биполярный как элемент с двумя электронно-дырочными переходами, это трехэлектродный полупроводниковый прибор. Униполярный тип транзистора содержит либо электронные, либо дырочные структуры. На транзисторе отмечается полярность входа и выхода тока в цепи. Деятельность транзистора управляется его базой. questione.ru Транзисторы. Общие сведения.Что такое транзистор?Транзистор – электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Если быть точнее, то транзистор позволяет регулировать силу электрического тока подобно тому, как водяной кран регулирует поток воды. Отсюда следуют две основные функции прибора в электрической цепи — это усилитель и переключатель. Существует бесконечное множество разных типов транзисторов – от огромных усилителей высокой мощности размером с кулак, до миниатюрных переключателей на кристалле процессора размером в считанные десятки нанометров (в одном метре 109 нанометров). Что значит слово «транзистор» и как это связано с его работой?Слово «транзистор» происходит от двух английских слов — «transfer» (переносить) и «resistor» (сопротивление). Что можно буквально перевести, как «переходное сопротивление». Однако, лучше всего для описания работы этого прибора, подойдет название «переменное сопротивление». Поскольку в электронной цепи, транзистор ведет себя именно как переменное сопротивление. Только если у таких переменных резисторов, как потенциометр и обычный выключатель, нужно менять сопротивление с помощью механического воздействия, то у транзистора его меняют посредством напряжения, которое подается на один из электродов прибора. Обозначения и типы транзисторов.Устройство и обозначение транзисторов разделяют на две большие группы. Первая – это биполярные транзисторы (БТ) (международный термин – BJT, Bipolar Junction Transistor). Вторая группа – это униполярные транзисторы, еще их называют полевыми (ПТ) (международный термин – FET, Field Effect Transistor). Полевые, в свою очередь, делятся на транзисторы с PN-переходом (JFET — Junction FET) и с изолированным затвором (MOSFET- Metal-Oxide-Semiconductor FET) . Применение биполярных транзисторов.На сегодняшний день биполярные транзисторы получили самое широкое распространение в аналоговой электронике. Если быть точнее, то чаще всего их используют в качестве усилителей в дискретных цепях (схемах, состоящих из отдельных электронных компонентов). Также нередко отдельные БТ используются совместно с интегральными (состоящими из многих компонентов на одном кристалле полупроводника) а налоговыми и цифровыми микросхемами. В этом возникает необходимость, например, когда нужно усилить слабый сигнал на выходе из интегральной схемы, обычно не располагающей высокой мощностью. Применение полевых транзисторов.В области цифровой электроники, полевые транзисторы, а именно полевые транзисторы с изолированным затвором (MOSFET), практически полностью вытеснили биполярные благодаря многократному превосходству в скорости и экономичности. Внутри архитектуры логики процессоров, памяти, и других различных цифровых микросхем, находятся сотни миллионов, и даже миллиарды MOSFET, играющих роль электронных переключателей. hightolow.ru Как проверить биполярный транзистор мультиметромТранзистор…Блин, какое страшное слово! Думаю, у всех чайников транзистор ассоциируется с чем-то очень трудным и непонятным. Но, уверяю вас, мои дорогие чайники, ничего трудного нету в транзисторе. Давайте же для начала разберемся, что он вообще из себя представляет и как его можно проверить на работоспособность. Сразу оговорюсь, в нашей статье мы будет проверять биполярные транзисторы. Что это значит? А значит это то, что эти транзисторы состоят из двух P-N переходов. P-N переходы, дырки, электроны бла бла бла… Ну нафиг! Нам это не надо знать, как там ведут себя электроны, а как дырки и тд и тп. Просто знайте, если ток будет течь через P-N переход, то он сможет течь только в одном направлении. Из P-N перехода сделаны все диоды. А как вы знаете, диод пропускает ток тольков в одном направлении, и не пропускает в другом направлении. То есть другими словами, в одном направлении сопротивление диода маленькое, а в другом — очень большое. Это мы с вами видели в статье как проверить диод мультиметром . Биполярный транзистор, как я уже сказал, состоит из двух P-N переходов. А в зависимости, как расставлены материалы P и N, так и называется транзистор. На рисунке ниже схематическое обозначение P-N-P транзистора: Его выводы обозначаются, как эммитер, база и коллектор. Материал, который посередине, между двумя другими материалами, называется в транзисторе базой. Эммитер и коллектор находятся по краям и состоят из одного какого либо одинакового материала. В P-N-P транзисторе ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе. Все просто :-). Схематическое обозначение P-N-P транзистора в схеме выглядит так: где Э — это эмиттер, Б — база, К — коллектор. Существует также другая разновидность биполярного транзистора — N-P-N. Здесь уже материал P заключен между двумя материалами N. Принцип его действия схож с P-N-P транзистором, просто здесь ток течет уже в другом направлении. Вот его схематическое изображение на схемах Так как диод состоит из одного P-N перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика! Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Ну чтоже, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент: Внимательно читаем, что нам написали на транзисторе: С4106. Теперь залезаем в интернет и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся с английскими буквами. Нас больше всего интересует распиновка контактов. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор. В этом и вся прелесть даташита. А вот и схемка распиновки: Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер. Возвращаемся к нашему рисуночку Наш подопечный — это N-P-N транзистор. Получается, если он здоров, то у нас будет маленькое падение напряжения в миллиВольтах, если мы приложим «плюс» к базе, а «минус» к коллектору или эммитеру. А если мы приложим «минус» к базе , а «плюс» к коллектору или эмиттеру, то увидим единичку на мультике. Начинаем проверять диоды транзистора, как мы это делали при проверке диодов в статье Как проверить диод мультиметром. Ставим на прозвонку и начинаем мусолить наш транзистор. Для начала ставим «плюс» к базе, а «минус» к коллектору Все ок, прямой P-N переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милиВольта или 0,54 Вольта. Проверяем переход база-эммитер, поставив на базу «плюс» , а на эммитер «минус». Видим снова падение напряжения прямого P-N перехода. Все ок. Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на P-N переходе. Все ОК, так как видим единичку. Проверяем теперь обратное падение напряжения перехода база-эммитер. Здесь у нас мультик также показывает единичку. Значит можно дать диагноз транзистору — здоров. Давайте проверим еще один транзистор. Он подобен транзистору, который мы с Вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультик на прозвонку и цепляемя к нашему подопечному. Нолики… Это не есть хорошо. Это говорит о том, что P-N переход пробит, а раз уж он пробит, то можно смело выкидывать такой транзистор в мусорку. В заключении статьи, хотелось бы добавить, что лучше всегда отыскивать даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов или даже диоды наряду с транзистором вместе. Имейте также ввиду, что некоторые радиоэлементы выполняют, как транзисторы. Это могут быть тиристоры, стабилизаторы или преобразователи напряжения или даже какая нибудь заморская микросхемка. Вот так-то! Не ленитесь отыскивать даташиты на проверяемые транзисторы. www.ruselectronic.com |