Теплопроводность алюминия химия: Свойства алюминия: плотность, теплопроводность, теплоемкость Al

Свойства алюминия

Свойства алюминия, одного металлов, принадлежащих к 13-й группе согласно периодической таблице химических элементов, достаточно обширны. Основные группы свойств: физические и химические. Этот легкий металл сочетает сразу множество физических характеристик относительно плотности, теплопроводности, коррозийной стойкости и пластичности. Физические свойства алюминия зависят, как и у множества металлов, от степени чистоты металла. Только особая чистота материала, наиболее приближенная к единице (99,996%), гарантирует самые высокие показатели относительно физических свойств. Именно благодаря высоким показателям металл отлично поддается ковке, штамповке и другим видам обработки.


Что примечательно, алюминий поддается практически любому виду сварки, будь то контактная, газовая или иная разновидность. Серебристо-белый легкий металл характеризуется высокой теплопроводностью, при этом обладает малой плотностью. Показатели электрической проводимости также достаточно велики, поэтому материал постоянно используется в сфере кабельной промышленности. Завершают перечень физических свойств легкого металла замечательная антикоррозийная стойкость и высокая пластичность.

 

Плотность материала

 

Плотность алюминия — это выражение массы материала в содержании единицы объема. Плотностью также называют предел массы вещества по отношению к занимаемому этим веществом объему. Именно по такой формуле вычисляется плотность легкого металла особой чистоты. Ее показатель равен 2,7*10 в кубе кг/м3. Плотность – это свойство, от которого зависит и другая характеристика материала, а именно – прочность. Так как плотность легкого металла довольно мала, то и прочность, соответственно, невелика. Потому алюминий не используется в качестве конструкторского материала.

 

 

Чтобы увеличить прочность металла, к нему добавляются другие элементы с более высокой плотностью. Под воздействием более плотных добавок, прочность алюминия резко возрастает. Также показатели прочности можно поднять с помощью применения механической или термической обработки. В результате удачного сочетания в сплавах, алюминий приобретает ценные конструкционные качества, выраженные в хорошей механической прочности при малой плотности материала. Сплавы на основе алюминия в некоторых отраслях промышленности с успехом заменяют такие металлы (сплавы), как медь или олово, цинк или свинец.

 

Теплопроводность

 

Теплопроводность алюминия — одно из его физических свойств. Оно, как и многие, зависит от чистоты структуры материала. То есть, чем ближе к единице чистота алюминия, тем выше и его свойства теплопроводности. Технический алюминий, процентность которого равна приблизительно 99,49, имеет теплопроводность (при 200 градусах Цельсия) 209 Вт/(м*К). Если же технический алюминий обладает процентностью 99,70, то значение его теплопроводности достигает 222 Вт/(м*К).

 

 

В то время, когда материал электролитически рафирован и его чистота 99,9% — значение теплопроводности уже при 190 градусах Цельсия повышается до 343 Вт/(м*К). В отличие от прочности, которая повышается при сплаве алюминия с другими металлами, свойства теплопроводности в этом случае уменьшаются. Примером можно привести добавку Mn. Всего два процента такой добавки способны уменьшить теплопроводность алюминия со значения 209 Вт/(м*К) до показателя, равного 126 Вт/(м*К). Стоит также отметить, что свойства теплопроводности алюминия настолько высоки, что преимущество относительно них есть лишь у меди и серебра.


Температура плавления алюминия — достаточно весомый показатель, который учитывается любой отраслью промышленности, работающей с данным материалом. Температура плавления – показатель нестабильный, во многом он зависит от того, какие материалы применены для примеси с алюминием. От температуры плавления зависит скорость обработки материала, то есть, можно сказать, производственные возможности. Наиболее часто алюминий обрабатывается в России, Австралии, Канаде и США. В этих странах крупная доля отрасли промышленности занимается плавкой алюминия.

 

 

У каждой страны имеются свои технологии плавки, со временем, благодаря экспериментам с добавлением различных материалов, позволившие минимально возможно снизить показатель температуры плавления алюминия. Наиболее точный, стандартный показатель температуры плавления алюминия составляет 660,32 градуса Цельсия. В связи с таким большим показателем, плавление материала можно организовать только в специальных условиях и специально оборудованных помещениях. Чтобы осуществить этот процесс в домашних условиях, первое, что необходимо – оборудование. Обычно для этого используется тигельная муфельная печь.

 

Теплоемкость

 

Теплоемкость алюминия, если взять показатель постоянного давления и температуру 291 составит 581 кал/град, моль. Но теплоемкость материала может значительно поменяться, если значение температуры будет низким. Высокий показатель теплоемкости диктует свои условия относительно использования достаточно мощных источников тепла. Иногда применяет даже метод подогрева. Высота уровня коэффициента линейного расширения, а также незначительный модуль упругости, могут создать значительные сварочные деформации. Такое обстоятельство диктует условия использования зажимных приспособлений с повышенным уровнем надежности.

 

 

Возникающие деформации в конструкциях, к которым следует подходить с ответственностью, устраняются уже после сварки. Стоит отметить, что высокие показатели таких свойств, как теплоемкость и теплопроводность, относительно самого алюминия, а также его сплавов, значительно влияют на то, какой именно метод сварки следует выбрать. Удельная теплоемкость алюминия, измеряемая в Дж/(кг*град. Цельсия), равна значению 920. Если брать показатели удельной теплоемкости, нужно отметить – они меняются зависимо от агрегатного состояния материала.

 

Удельное сопротивление

 

Удельное сопротивление алюминия выше по сравнению с аналогичной величиной меди. Но на показатель удельного сопротивления меди может существенно повлиять такой метод обработки, как отжиг. На алюминий этот метод практически не имеет влияния. При этом, температурные коэффициенты меди и алюминия идентичны. В кабельной промышленности довольно часто применяется оксидная изоляция.

 

 

 

Теплостойкость оксидированного алюминиевого провода составляет 400 градусов Цельсия. Вообще, удельное сопротивление рассматриваемого материала превышает аналогичный показатель меди в 1,65 раза. Алюминиевые провода достаточно часто подвергаются оксидной изоляции. В то время, чтобы данный метод применить по отношению к медному проводу, его необходимо покрыть хотя бы тонким слоем алюминия. Оксидированный алюминий служит материалом для изготовления катушек, способных работать при высоких температурах.

 

Химические свойства

 

Химические свойства алюминия выражают его валентность, свойства взаимодействия с окружающими сферами. Первое, что стоит отметить – алюминий обладает достаточно высокой химической активностью. Если рассматривать ряд напряжений металлов, то данный материал займет место между магнием и цинком. Алюминию свойственно быстрое окисление кислородом, взятым из воздуха, в результате чего получается прочная защитная оксидная пленка.

 

 

Именно эта пленка является препятствием на пути к дальнейшему окислению материала. Также оксидная пленка оберегает изделия из алюминия от взаимодействия с другими веществами, контакт с которыми может привести к разрушению структуры материала. Именно защитной пленке отводится роль фактора, повышающего антикоррозийную стойкость алюминия. Если нарушается данная оксидная защита, то материал легко вступает во взаимодействие с влагой даже при обычной температуре.

Физические свойства алюминия зависят от его чистоты

Основные свойства

Алюминий — химический элемент третей группы периодической
системы Д.И. Менделеева.

Таблица физических свойств алюминия
Плотность , (кг/м3) 2,7
Температура плавления Тпл, °С 660
Температура кипения Ткип, °С 2 327
Скрытая теплота плавления, Дж/г 393,6
Теплопроводность l , Вт/м •град (при 20° С) 228
Теплоемкость Ср, Дж/(г ·
град) (при 0–100°С)
0,88
Коэффициент линейного расширения α × 10-6,
1/°С (пр°С)
24,3
Удельное электросопротивление ρ × 10-8,
Ом× м (при 20°С)
2,7
Предел прочности σ в, МПа 40–60
Относительное удлинение δ , % 40–50
Твердость по Бринеллю НВ 25
Модуль нормальной упругости E , ГПа 70

Плотность алюминия

Плотность твердого и расплавленного алюминия снижается по мере увеличения его чистоты:

Плотность алюминия при 20°С
Степень чистоты, %   99,25 99,40 99,75 99. 97 99,996 99.9998
Плотность при 20°С, г/см3  2,727 2,706 2,703 2,6996 2,6989 2,69808

Плотность расплавленного алюминия при 1000°С
Степень чистоты, % 99,25 99.40 99.75
Плотность, г/см3 2,311 2,291 2,289

Температура плавления и кипения.

В момент плавления алюминия возрастает объем металла: для алюминия чистотой 99,65 % — на 6,25%, для более чистого металла — на 6,60 %. По мере повышения степени чистоты алюминия температура его плавления возрастает:

Зависимисть температуры плавления алюминия от чистоты
Степень чистоты, % 99,2 99,5 99,6 99,97 99,996
Температура плавления, °С 657 658 659,7 659,8 660,24

Теплопроводность алюминия

Теплопроводность алюминия повышается с увеличением степени его чистоты. Для технического алюминия (99,49 и 99,70%) теплопроводность при 200°С равна соответственно 209 и 222 Вт/(м×К). Для электро­литически рафинированного алюминия чистотой 99,9% теплопроводность при 190°С возрастает до 343 Вт/(м×К). Примеси меди, магния и марганца в алюминии снижают его теплопроводность. Например, добавка 2 % Mn к алюминию снижает теплопроводность с 209 до 126 Вт/(м×К).

Электропроводность алюминия

Алюминий отличается высокой электропроводностью (четвертое место среди металлов — после серебра, меди и золота). Удельная электропроводность алюминия чистотой 99,99 % при 20°С равна 37,9 мкСм×м, что составляет 63,7% от электропроводности меди [59,5 мкСм×м]. Более чистый алюминий [99,999 %] обладает электропроводностью, равной 65,9% от электро­проводности меди.
На электропроводность алюминия влияет ряд факторов: степень деформации, режим термической обработки и т. д., решающую же роль играет природа примесей, присутствующих в алюминии. Примеси по их отрицательному влиянию на электропроводность алюминия можно расположить в следующий ряд: Cr, V, Mn, Ti, Mg, Ag, Сu, Zn, Si, Fe Ni.
Наиболее отрицательное влияние на электросопротивление алюминия оказывают примеси Сг, V, Мп и Ti . Поэтому в алюминии для электротехнической промышленности сумма Cr+V+Mn+Ti не должна превышать 0,015% (марка А5Е) и даже 0,01 % (А7Е) при содержании кремния соответственно 0,12 и 0,16 %.

Влияние примесей на электропроводность алюминия

Основными примесями в алюминии являются кремний, железо, медь, цинк и титан. При малых содержаниях кремния в алюминии (0,06%) величина Fe : Si (в пределах от 0,8 до 3,8) сравнительно мало влияет на его электросопротивление. При увеличении содержания кремния до 0,15—0,16% влияние Fe : Si возрастает. Ниже приведено влияние Fe : Si на электропроводность алюминия:

Влияние Fe : Si на электропроводность алюминия
Fe : Si    1,07 1,44 2,00 2,68 3,56
Удельное электросопротивление алюминия,
×10-2 мкОм·мм:
 
нагартованного 2,812 2,816 2,822 2,829 2,838
отожженного 2,769 2,771 2,778 2,783 2,788

Удельное электрическое сопротивление отожженной алюминиевой проволоки (ρ, мкОм·м) при 20°С в зависимости от содержания примесей можно приблизительно определить по следующей формуле: ρ=0,0264+0,007×(% Si)+0,0007×(% Fe) + 0,04×[% (Cr+V + Mn + Ti)].

Отражательная способность

С повышением степени чистоты алюминия возрастает его способность отражать свет от поверхности. Так, степень отражения белого света от прокатанных алюминиевых листов (фольги) в зависимости от чистоты металла, возрастает следующим образом: для Аl 99,2%—75%, Аl 99,5%—84% и для Аl 99,8%—86%. Поверхность листа, изготовленного из электролитически рафинированного алюминия чистотой 99,996%, отражает 90% падающего на него белого света.

Теплопроводность

Теплопроводность

9 9 00004 Copper

79,5

40004

0,138

9000

9000

Материал Теплопроводность
(CAL/SEC)/(CM 2 C/см)
Теплопроводность
(W/M K)*
Diamond
… … …
1000
Серебро
1.01
406.0
0. 99
385.0
Gold
314
Brass
109.0
Алюминий
0,50
205,0
Железо
0,163
79,5
Сталь
Steel
.

50.2
Lead
0.083
34.7
Mercury
8.3
Ice
0,005
1,6
Стекло, обыкновенный
0,0025
0,8
9000
0. 002
0.8
Water at 20° C
0.0014
0.6
Asbestos
0.0004
0.08
Snow (dry)
0,00026
Стеклопластик
0,00015
0,04
Bric0009

0.15
Brick, red
0.6
Cork board
0.00011
0.04
Wool Well
0,0001
0,04
Скальная шерсть
0,04
. 0009

0.033
Polyurethane
0.02
Wood
0.0001
0.12-0.04
Воздух при 0 ° C
0,000057
0,024
Глия (20 ° C)
0,138
0,138
0,138
Hydrogen(20°C)
0.172
Nitrogen(20°C)
0.0234
Oxygen(20°C )
0,0238
Силик Аэрогель
. ..
0,003

*Большинство из Юнга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из CRC Handbook of Chemistry and Physics.

Обратите внимание, что 1 (кал/сек)/(см 2 Кл/см) = 419 Вт/м·К. Имея это в виду, два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт/мК для полиуретана можно принять за номинальную цифру, которая делает пенополиуретан одним из лучших изоляторов. NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethan.html. Их расчет для наполненного фреоном полиуретана плотностью 1,99 lb/ft 3 при 20°C дает теплопроводность 0,022 Вт/мК. Расчет для наполненного полиуретана CO 2 с плотностью 2,00 фунт/фут 3 дает 0,035 Вт/мК.

Обсуждение теплопроводности
Температура Дебая и теплопроводность

Индекс

Таблицы

Справочник
Юнг
Глава 15.

  Гиперфизика***** Термодинамика Назад

Соотношение между теплопроводностью и электропроводностью металлов можно выразить через отношение:

, которое можно назвать отношением Видемана-Франца или постоянной Лоренца.

2,23

9

.

Металл K/ST (10 -8 WW/K 2 )
CU
2,23
AG
AG
2.31
Au
2. 35
Zn
2.31
Cd
2.42
Sn
2.52
Mo
2,61
PB
2,47
PT
2,51

0004 Обсуждение теплопроводности
Закон Видемана-Франца


Алфавитный указатель

Таблицы

Справочные материалы
Блатт
Раздел 13.2

  Гиперфизика***** Термодинамика Вернуться назад

Тепло- и электропроводность алюминия. [коэффициент Зеебека; от 80 до 400/sup 0/K] (Технический отчет)

Тепло- и электропроводность алюминия. [коэффициент Зеебека; от 80 до 400/суп 0/K] (Технический отчет) | ОСТИ.GOV

перейти к основному содержанию

  • Полная запись
  • Другие родственные исследования
Авторов:

Кук, Дж. Г.;

Мур, JP;

Мацумура, Т .;

Ван дер Меер, член парламента

Дата публикации:
Исследовательская организация:
Национальная лаборатория Ок-Ридж, Теннесси (США)
Идентификатор ОСТИ:
5066461
Номер(а) отчета:
ОРНЛ-5079
Номер контракта Министерства энергетики:  
W-7405-ENG-26
Тип ресурса:
Технический отчет
Страна публикации:
США
Язык:
Английский
Тема:
36 МАТЕРИАЛОВЕДЕНИЕ; АЛЮМИНИЙ; ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА; АЛЮМИНИЕВЫЕ ОСНОВНЫЕ СПЛАВЫ; ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ; ЭФФЕКТ Зеебека; ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ; ТЕПЛОПРОВОДНОСТЬ; СПЛАВЫ; АЛЮМИНИЕВЫЕ СПЛАВЫ; ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА; ЭЛЕМЕНТЫ; МЕТАЛЛЫ; ФИЗИЧЕСКИЕ СВОЙСТВА; ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА; 360104* – Металлы и сплавы – Физические свойства

Форматы цитирования

  • MLA
  • АПА
  • Чикаго
  • БибТекс


Кук, Дж. Г., Мур, Дж. П., Мацумура, Т., и Ван дер Меер, член парламента . Тепловая и электрическая проводимость алюминия. [коэффициент Зеебека; от 80 до 400/суп 0/K] . США: Н. П., 1975.
Веб. дои: 10.2172/5066461.

Копировать в буфер обмена


Кук, Дж. Г., Мур, Дж. П., Мацумура, Т., и Ван дер Меер, член парламента Тепло- и электропроводность алюминия. [коэффициент Зеебека; от 80 до 400/суп 0/K] . Соединенные Штаты. https://doi.org/10.2172/5066461

Копировать в буфер обмена


Кук, Дж. Г., Мур, Дж. П., Мацумура, Т., и Ван дер Меер, член парламента, 1975.
«Тепло- и электропроводность алюминия. [Коэффициент Зеебека; от 80 до 400 / суп 0 / K]». Соединенные Штаты. https://doi.org/10.2172/5066461. https://www.osti.gov/servlets/purl/5066461.

Копировать в буфер обмена

@статья{osti_5066461,
title = {Тепло- и электропроводность алюминия.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *