Таймер на микросхеме: Простой таймер на микросхеме NE555

ТАЙМЕРЫ НА МИКРОСХЕМАХ | МОДЕЛИСТ-КОНСТРУКТОР

Таймер на микросхемах (МС) разработан для модели подводной лодки с двумя электромоторами — слегка упрощенной копии атомного ракетоносца «Дельта-III», которая была выполнена по чертежам, опубликованным в № 8 журнала «Моделист-конструктор» за 1992 год. Но как показала практика, это МС-устройство без каких-либо изменений можно успешно использовать на моделях надводных кораблей и судов, чему в немалой степени способствуют… правила судомодельных соревнований, предписывающие на моделях судов-прямоходов с длиной корпуса более 600 мм обязательное наличие таймера, отключающего ходовой двигатель после прохождения моделью дистанции.

В моем первом варианте принципиальной электрической схемы таймера (рис. 1а) задающий генератор секундных импульсов собран на трех логических элементах 2И-НЕ микросхемы DD1 (К561ЛА7). Установка частоты — подстроечным резистором R1 и выбором соответствующего номинала конденсатора С1.

Рис. 1. Принципиальная электрическая схема (а), топология печатной платы (б) и способ запуска таймера на модели подводной лодки (в)

Разумеется, задающий генератор можно было бы собрать на «часовых» счетчиках К176ИЕ5, К176ИЕ1 2, К176ИЕ17 или МС с кварцевой стабилизацией. Однако предпочтение отдано именно микросхемам серии К561. Во-первых, потому что они работают в более широком диапазоне питающего напряжения. Во-вторых, таймеру для судомоделей, на которые действуют ветер, волна, течение и так далее, сверхвысокая точность не нужна. Наконец, в-третьих, сама конструкция на К561 значительно проще и дешевле, чем на МС других серий.

Итак, секундные импульсы поступают на два десятичных счетчика-делителя DD2 и DD3 (К561ИЕ8), включенных последовательно. То есть время, которое отрабатывает таймер, можно устанавливать от 0 и до 99 с. Этого вполне достаточно для прохождения моделью дистанции в 60 метров. С целью упрощения монтажа и оперативного изменения выдержек счетные выводы МС DD2 и DD3 выносятся на двухрядную колодку (по 10 гнезд под штырьки).

Как наиболее подходящий вариант — используется часть старого компьютерного разъема СПН34С с удалением «архитектурных излишеств» и третьего ряда гнезд. Два штырька, устанавливаемые в гнезда (один в верхний ряд — «секунды», другой в нижний — «десятки секунд»), соединяются проводниками с четвертым логическим элементом 2И-НЕ микросхемы DD1, выход которого благодаря делителю R5R6 гальванически увязывается с транзисторным ключом VT1 (КТ972), где в качестве нагрузки выступает реле К1 (РЭС48, паспорт РСЗ. 081.182).

Цепочка из резисторов R2, R3 и конденсатора С2 формирует импульс сброса на счетчики-делители DD2 и DD3 при подаче электроэнергии на устройство. Для повышения точности таймера и исключения влияния помех от электромоторов на микросхемы DD1 — DD3 служит стабилитрон VD1. Диод VD2 нужен для ограничения тока, протекающего через геркон SF1, и устранения залипания контактов в момент запуска таймера.

С приближением магнита к геркону герметизированные контакты SF1 замыкаются и на схему подается напряжение питания. Благодаря резисторам R2, R3 и конденсатору С2 формируется импульс сброса (обнуления) счетчиков-делителей DD2 и DD3. Если входы четвертого элемента микросхемы DD1 не соединяются в данный момент с нулевыми выводами МС DD2 и DD3, то на выходе 4 DD1.4 появляется логическая «1» — высокий уровень, открывающий транзисторный ключ VT1.

Включается реле К1, контактная группа которого действует в режиме «самоподхвата». То есть К1.1 замыкаются, подавая на схему напряжение питания. Генератор начинает выдавать секундные импульсы, а счетчики-делители их считать до тех пор, пока на обоих входах четвертого элемента микросхемы DD1 не появляются логические «1» (высокий уровень). Тогда на выходе 4 DD1.4 возникает логический «0» (низкий уровень). Транзисторный ключ VT1, соответственно, закрывается, контакты К1.1 размыкаются и схема полностью обесточивается (отключается).

Правильно собранный на печатной плате таймер в наладке практически не нуждается. Единственное — приходится с помощью подстроечного резистора R1 выставлять частоту генератора на МС DD1, равную 1 Гц.

Сверхсложных приборов здесь не требуется, вполне хватает и секундомера или даже обычных часов с секундной стрелкой. Времязадающие штырьки устанавливаются в гнезда панельки, соответствующие выдержке 99 секунд (чем она дольше, тем выше точность настойки). К геркону подносят магнит, и одновременно с этим запускают секундомер. По шуму электромотора или вспышке подключаемой вместо него лампочки (светодиода) замеряют время работы таймера. Поворотом движка подстроечного резистора R1 добиваются совпадения задаваемого временного интервала с показаниями секундомера.

Убеждаются, что электрическая схема таймера работает при большеёмкостных источниках электропитания достаточно надежно. К тому же в ждущем режиме она практически не потребляет энергии (мизерный ток, обусловленный сопротивлением изоляции проводников и утечками между контактами реле, в расчет можно не принимать).

С переводом же устройства на питание от шести малогабаритных аккумуляторов Д-0,55 картина после пяти — шести успешных испытаний может выглядеть несколько иначе. Из-за повышенного потребления энергии в момент запуска бортовых электродвигателей напряжение на клеммах батареи GB1 начинает зачастую заметно снижаться (до 5-6 В). И хотя электронная часть таймера еще сохраняет свою работоспособность даже при таком режиме питания, то для электромагнитного реле РЭС48, похоже, наступает предел. Не в силах удерживать включенными свои контакты, оно отсоединяет таймер от GB1 сразу после удаления магнита от геркона.

Сама собой напрашивается мысль о необходимости замены РЭС48 на реле с низким напряжением срабатывания. Один из вариантов — сделать электропитание раздельным. Для таймера, например, желательно использовать компактную и доступную 9-вольтную «Крону». А реле заменить на недорогое, но достаточно мощное РЭС9, паспорт РС4.524.202, имеющее две группы контактов (рис. 2а).

Рис. 2. Варианты доработок таймера с отдельным питанием ходового электромотора (а) и транзисторным ключом вместо реле (б)

Перспективным может оказаться компромиссное решение (рис. 2б): оставив электропитание единым, скорректировать саму базовую схему. В частности, транзистор VT1 заменить более мощным КТ829 и вместо реле нагрузить коллектор этого полупроводникового триода непосредственно на ходовые моторы. А входные выводы первого генератора, собранного на МС DD1, разделить. Оставив вывод 2 DD1.1 с времязадающими элементами R1 и С1 без изменений, навести перемычку от вывода 1 DD1.1 к выводу 11 4-го элемента той же микросхемы. То есть DD1.4 помимо работы с транзисторным ключом должен стать еще и блокиратором работы задающего генератора.

Геркон же надо соединить с «+» шиной питания и цепью сброса счетчиков-делителей DD2, DD3. Диод VD2 можно убрать. И на всякий случай параллельно стабилитрону включить конденсатор С3 емкостью 10 мкФ для сглаживания возможных помех, создаваемых электромоторами.

Принцип действия данного варианта принципиальной электрической схемы, как и методика ее наладки, остаются по сути неизменными. Устройство вполне надежно функционирует, сохраняя работоспособность до падения напряжения, равного 3 В. И это здорово, ведь при столь низком напряжении даже электромоторы отказываются работать! Единственное, о чем можно сожалеть — таймер в ждущем режиме все-таки потребляет ток, хотя и незначительный.

Теперь о конструкции модели. Таймер разрабатывался для уменьшенной копии подводной лодки с двумя электромоторами, отсюда и запуск постоянным магнитом с помощью геркона. Последний, согласно общему замыслу, должен устанавливаться в небольшом углублении надводной части модели — в районе рубки или моторного отсека, чтобы можно было дотягиваться до герметизированного контакта рукой. Сверху такой геркон заклеивают полоской ватмана с последующей покраской и лакировкой, дабы исключить просачивание воды, грозящее произвольным срабатыванием контактов.

На моделях надводных кораблей и судов вместо геркона с магнитом целесообразно устанавливать на корме выключатель-кнопку. Если внешний вид копии не хочется портить пусть даже миниатюрными кнопками, то можно довольствоваться и электромеханическим решением. В корме модели просверливается отверстие диаметром 2,2-2,5 мм, через которое наружу выводится конец штыря-толкателя диаметром 2 мм. Другой же его конец будет замыкать контакты запуска (рис. 3а).

Рис. 3. Варианты установки кнопки запуска (а) на модели судна и автопилота (б) для удержания подводной лодки на перископной глубине: 1 — модель; 2 микровыключатель МП1, 3 — шток-толкатель; 4 — пружина; 5 — штифт, удерживающий пружину; 6 перископы-контакты; 7 — винт регулировочный; 8 — «уши»

В заключение еще одна идея: снабдить модель подводной лодки автопилотом для удержания на перископной глубине. Правда, существующими правилами судомодельных соревнований пока запрещено устанавливать на моделях подводных лодок подобную автоматику. Только ведь запреты не вечны!..

Суть идеи в том, что в рубку модели подводной лодки вклеивается два гнезда от разъема типа ЖР или им подобные (рис. 3б). К гнездам подключаются электромоторы «на разрыв», а «перископы» являются контактами, работающими на замыкание.

В надводном положении перископы-контакты замкнуты. После погружения модели задний перископ под действием набегающего потока воды слегка изогнется (материал с нужной упругостью легко подобрать, к тому же и сами контакты можно подпружинить, а для увеличения гидравлического сопротивления припаять по бокам «уши»). Контактная пара разомкнётся, моторы отключатся, и модель подвсплывет. Когда давление потока уменьшится, задний перископ выпрямится. Контактная пара замкнется, и после нового включения ходовых моторов рассмотренные выше процессы опять повторятся столько раз, сколько потребуется для удержания копии подводной лодки на перископной глубине. Ну а если арбитры соревнований воспротивятся этому новшеству, модель легко превратить в обычную, вставив вместо перископов-контактов перемычку.

В. САВЕЛЬЕВ, руководитель судомодельного кружка ЦДТ, г. Радужный, Владимирская обл.

Суточный таймер — две схемы на микросхеме CD4060

Главная » Измерение и контроль » Суточный таймер — две схемы на микросхеме CD4060

Две схемы, приведенные в данной статье,  представляют собой многодиапазонные таймеры с периодичностью до 24 часов и более. Их можно использовать как повторяющиеся таймеры или как одиночные таймеры.

Обе схемы, по сути, одинаковы. Основное различие между ними заключается в их поведении в режиме одиночного режима. В одиночном режиме по истечении заданного времени — схема №1 подает питание на реле, а схема №2 отключает реле. Первая схема потребляет меньше энергии во время работы таймера, а вторая схема потребляет меньше энергии после остановки таймера. Выберите схему, которая лучше всего подходит для вашего применения.

Микросхема КМОП CD4060 представляет собой 14-битный двоичный счетчик. Однако на выводах мы можем обнаружить только 10 бит. Остальные биты — Q1, Q2, Q3 и Q11  существуют, но они не доступны на выводах микросхемы.

Схема №1

 

Микросхема CD4060 оснащена двумя инверторами. Данные инверторы соединены последовательно и доступны на выводах 9, 10 и 11. Совместно с резисторами с R4, R3, R1 и конденсатором C1 они образуют генератор. В течение работы этого генератора 14-разрядный счетчик отсчитывает количество импульсов, а результат отсчета отображаться на выходных выводах.

Менять частоту работы генератора можно при помощи переменного резистора R3. С его помощью вы можете задать скорость отсчета. Иными словами — вы можете решить, сколько необходимо времени для того, чтобы на любом выходе установился высокий уровень.

Когда на выходе устанавливается высокий уровень, то открывается транзистор, который в свою очередь активирует электромагнитное реле.

В одиночном режиме работы таймера — выходной сигнал дополнительно через диод D1 останавливает работу генератора. Если необходимо, чтобы таймер работал в режиме повтора, просто удалите диод D1. Отсчет будет происходить бесконечно. Сигнал с выхода будет включать и выключать транзистор с равными постоянными интервалами времени.

Схема №2

Использование метода «проб и ошибок» для установки длительного периода времени дело достаточно утомительное. Лучшим решением будет воспользоваться предоставленной таблицей настройки и рассчитать время, необходимое для того, чтобы сигнал на выводе 7 стал высоким.

Например, если вам нужен 3 часовой период — таблица показывает, что вы можете использовать вывод 1.  Чтобы на выводе 1 появился высокий уровень необходимо, чтобы прошло 3 x 60 x 60 = 10 800 секунд. В таблице в 3 столбце указан делитель 256 на который необходимо разделить это число секунд. в результате получим: 10800 / 256 = примерно 42 секунды.

Отрегулируйте сопротивление переменного резистора R3 так, чтобы после подачи питания желтый светодиод загорелся через 42 секунды. Это обеспечит высокий уровень на выводе 1 примерно через 3 часа.

Блок питания 0…30В/3A

Набор для сборки регулируемого блока питания…

Подробнее

В идеале конденсатор C1 должен быть неполяризованным, но подойдет и обычный электролит при условии, что у него не слишком большая утечка. Если вам нужен период более длительный чем 24 часа — увеличьте емкость C1.

Кнопка сброса необязательна, и ее не следует использовать во время настройки. Время, необходимое для загорания желтого светодиода, должно быть измерено с момента подачи питания.

Хотя резисторы R6, R5 и два светодиода помогают в настройке, они не являются обязательными для работы таймера. Если вы хотите снизить энергопотребление — отключите их после завершения настройки.

Таймеры рассчитаны на 12-вольтовое питание. Однако при условии использования подходящего реле обе схемы будут работать при любом напряжении от 5 до 15 вольт.

Инвертор 12 В/ 220 В

Инвертор с чистой синусоидой, может обеспечивать питание переменно. ..

Подробнее

Categories Измерение и контроль Tags CD4060, Таймер

Отправить сообщение об ошибке.

Elite Microchip Cat Flap с таймером — белый (355 Вт)

Наведите курсор на изображение, чтобы увеличить
Нажмите на изображение, чтобы увеличить

Сохранить 0

Артикул: 355 Вт