Содержание
Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире.
Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.
Принцип понижения напряжения питания для светодиода
Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.
Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)
Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.
Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.
Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.
Радиодетали для подключения светодиода к 220 вольтам
Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль — это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г
Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.
Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)
Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!
(…как и н на схеме выше использован гасящий конденсатор + резистор)
Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.
Схема подключения светодиода к напряжению 220 вольт (резистор)
Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.
R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.
Если один, то само собой все напряжение будет падать только на нем.
Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.
Подключение нескольких светодиодов к 220 вольтам
Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье «Драйвер для светодиодов (светодиодной лампы)».
Видео о подключении светодиода к сети 220 вольт
А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)
Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!
Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)
Онлайн калькулятор для расчета номинала и мощности токоограничивающего резистора | |
---|---|
Напряжение источника питания U, В: | |
Напряжение падения на одном LED, В: | |
Кол-во последовательно включенных LED, шт: | |
Максимально допустимый ток через LED, мА: | |
способы интеграции, схемы питания и особенности подключения
Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов. В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. п. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна. Тогда и встаёт вопрос о том, как включить светодиод в 220 В, не используя понижающих напряжение трансформаторных устройств.
- Технические особенности диода
- Подключение через резистор
- Применение конденсатора
Технические особенности диода
Светодиод представляет собой радиотехнический элемент, пропускающий ток, как и стандартный диод, только в одном направлении, но при этом излучающий электромагнитные волны в видимом диапазоне. Если осуществлять интеграцию такого диода в сеть с постоянным током, то важно не перепутать «плюс» и «минус». Внедрение же светового диода в переменную сеть и решение вопроса о том, как запитать светодиод от сети 220 В, где периодически (с частотой 50 Гц) происходит изменение направления тока и напряжения, потребует дополнительных расчётов.
Чтобы определить среднее значение тока и подключить светодиод к сети 220 вольт, необходимо разделить напряжение действующей сети пополам, то есть 220 В / 2 = 110 В.
Это значение берут за основу для последующих расчётов.
Электрическое сопротивление светодиода, как и любого полупроводникового элемента, не линейно и зависит от величины разности потенциалов, приложенной к нему. Для сети с переменным током и напряжением 220 В с приемлемой точностью можно взять усреднённое значение в 1,7 Ом. Тогда, согласно закону Ома, величина тока, который будет проходить через полупроводниковый кристалл диода, если его подключить напрямую к сети, будет примерно равна 65 ампер (110/1,7).
Такой показатель просто приведёт к сжиганию прибора. Для уменьшения величины тока, проходящего через полупроводник, потребуется последовательное включение в цепь рядом со световым диодом сопротивления.
Для этой цели применяют исключительно резисторы в цепях с постоянным напряжением, а с переменным током есть возможность применять так называемые реактивные сопротивления — конденсаторы и катушки индуктивности. Сопротивление они создают благодаря накапливанию электромагнитной энергии в первый полупериод (ток протекает в одном направлении) и возвращению её в сеть во втором полупериоде (при обратном течении электрического тока).
Подключение через резистор
Подобная схема обычно реализуется для индикации работы электротехнических устройств. Она используется в световом сигнале, свидетельствующем о включении в сеть электрочайника, в подсветке кнопки выключателя и т. д. Главными достоинствами этого варианта интеграции светящегося диода в сеть считаются относительная дешевизна, простота и надёжность.
Но есть в этой схеме один нюанс. Он заключается в необходимости гашения обратного напряжения, так как его избыток может привести к выходу из строя полупроводникового прибора. С этой задачей легко справляются кремниевые диоды, которые способны пропускать ток по величине не меньше того, что проходит в сети. Подключить их можно в цепь двумя способами:
- последовательно, то есть после резистора и перед светодиодом, но соблюдая полярность;
- параллельно со светящимся диодом, но изменив полярность на 180 градусов.
Некоторые специалисты считают, что использование гасящих диодов необязательно, но практика показывает, что обратный ток в некоторых случаях вызывает тепловой пробой p-n перехода. Поэтому дополнительные затраты на приобретение кремниевых диодов вполне оправданы для реализации подключения светодиода к сети 220 В, схема которого содержит гасящий резистор.
Применение конденсатора
Негативной стороной использования резистора для уменьшения тока при включении в цепь 220 В светодиода является довольно существенное рассеивание мощности. Эта проблема становится заметной при нагрузке с большим током потребления. Решением является схема подключения светодиода к 220 В, где реализуется интеграция неполярного конденсатора вместо резистора. Сопротивление конденсаторов имеет реактивный характер, что исключает рассеивание мощности.
Подключение конденсатора в схему светодиода с целью токоограничения имеет один нюанс, который может привести к выходу из строя светового диода, — сохранение накопленного заряда после отключения питания сети. Из-за этого в схему с неполярным конденсатором добавляют:
- два резистора;
- диод, подключённый параллельно светодиоду, но в обратном направлении.
Резисторы (один — параллельно с конденсатором, а второй — последовательно) защищают всю схему от бросков напряжения при подаче напряжения из сети, а диод является защитой светодиода от разности потенциалов с обратной полярностью.
Эти способы подключения применимы к маломощным светодиодам, которые используются для индикации или подсветки. Подключение мощных диодных элементов, предназначенных для светодиодных ламп освещения, осуществляется схемами с использованием спецблоков питания (драйверов).
Светодиодные ленты 220В-240В переменного тока — Купить светодиодное освещение онлайн
Сортировать по
—Цена: Сначала самая низкая Цена: Сначала самая высокая Название продукта: от A до Z Название продукта: от Z до AВ наличииСсылка: Сначала самая низкаяСсылка: Сначала самая высокая
Показаны 1–11 из 11 позиций
-
Светодиодная лента COB 220В | 640 светодиодов/м | 10 м | ФЛИП ЧИП | 1650 лм/м | 15 Вт/м | CRI90 | IP67
Светодиодная лента COB 220В | 640 светодиодов/м | 10м |...
От
187,07 €Светодиодная лента COB длиной 10 метров с 640 светодиодами/метр FLIP CHIP высокой мощности, мощностью 15 Вт с диммированием при напряжении 220 В. Он включает в себя клейкую ленту 3M для облегчения его установки. Предназначен для размещения внутри и снаружи помещений. Идеально подходит для ОСВЕЩЕНИЯ всех видов пространств. НЕ ТРЕБУЕТСЯ ИСТОЧНИК ВЫПРЯМИТЕЛЯ = ПОСТОЯННОЕ 220В. -НЕТ ПАДЕНИЯ НАПРЯЖЕНИЯ-. Если вы обрабатываете его для размещения на открытом воздухе,…
№ по каталогу:
SP640D15W -
Комплект Anti-Blinking для светодиодных лент 220v
Комплект Anti-Blinking для светодиодных лент 220v18,94 €
Это устройство устраняет мерцание светодиодных лент 220 В, когда его причина связана с током, создаваемым нагрузками по напряжению, которые питают светодиодные фонари. Устройство запоминает напряжение и регулирует его подачу, чтобы избежать мерцания полосок, питаемых от 220В.
Светодиодная лента 220В Арт. 2835-120П-С-230В№ по каталогу:
PHLDR90568 -
Силиконовый клей для светодиодных лент и электронных компонентов — IP65
Силиконовый клей для светодиодных лент и…2,93 €
Силиконовый клей и герметик, специально разработанный для крепления светодиодных лент и электронного оборудования. Наш силикон нейтрален, не содержит спирта в своем составе, устойчив к влаге и имеет полужесткую текстуру. Выдерживает температуру от -55ºC до 160ºC. Устойчив к старению и атмосферным воздействиям. Гибкость и стабильность в долгосрочной перспективе.
№ по каталогу:
3565 -
Разъем для светодиодной ленты 230В
Разъем для светодиодной ленты 230В0,70 €
на сайте factorled.com вы найдете соединительный разъем для светодиодных лент на 230В. Идеально подходит для светодиодных лент с силиконом.
Мы рекомендуем использовать ленту радиатора и алюминиевый профиль для увеличения срока службы.№ по каталогу:
8201 -
Светодиодная лента 15W — CUSTOM CUT — Dimmable 220V AC SMD 2835 180 LED/м IP65 — 15мм
Светодиодная лента 15W — CUSTOM CUT — Dimmable 220V…2,94 €
-СВЕТОДИОДНОЕ ОСВЕЩЕНИЕ 220В. ДЛЯ РЕЗКИ- В комплект входят: выпрямительный кабель + светодиодная лента + торцевая заглушка. Размер: 15 мм. 180 диодов SMD2835 на метр подключается напрямую к блоку питания через необходимый выпрямительный кабель. Для наружного использования IP65 необходимо герметизировать для правильной защиты соединений.
1 ЕДИНИЦА = 1 МЕТР СВЕТОДИОДНОЙ ЛЕНТЫ (ВЫБЕРИТЕ НУЖНЫЕ МЕТРЫ)…Код:
1020 -
Профиль ПВХ — 1М. — для светодиодных лент 220В
Профиль ПВХ — 1М. — для светодиодных лент 220В1,18 €
Профиль из ПВХ, который позволяет крепить светодиодные ленты 220V Monocolor, обеспечивая надежную установку простым способом.
С помощью этого профиля можно создавать декоративные приложения, такие как световые линии, встроенные в любой тип материала, разметка ступеней, подсветка вывесок, под кухонными шкафами, эстетические решения в ванных комнатах, перила и т. д.Код:
1034
Добавить комментарий