Как правильно подключить двухцветный светодиод? Светодиод двухцветныйДвухцветные светодиоды на микроконтроллере | Техника и ПрограммыДвухцветные светодиоды содержат на одном кристалле два отдельных светзлучателя, которые изготавливаются из разных полупроводниковых сплавов. Такой индикатор может светиться как минимум двумя разными цветами. Почему «как минимум»? Потому что за счёт общего корпуса, выполненного из светорассеивающей пластмассы, при одновременном включении обоих излучателей можно получить суммарный третий цвет. В Табл. 2.5 перечислены встречающиеся сочетания оттенков в двухцветных светодиодах. Надо чётко представлять, что не все цветовые смеси хорошо различаются визуально. Например, сочетание «жёлтый — зелёный» в смеси лучше не использовать, поскольку теряется однозначность, ведь суммарный «зелёно-жёлтый» оттенок сложно без навыка отличить от зелёного и от жёлтого цвета. Таблица 2,5, Цветовые сочетания в двухцветных светодиодах
Восприятие цвета человеком весьма субъективно. В колориметрии (науке о цвете) различают более тысячи образцов цветовых эталонов, стандартизованных в специальных книгах-атласах. Некоторые люди обладают даром «абсолютного цвета», но это столь же редко, как и «абсолютный слух» у музыкантов. На практике пользователь хорошо различает оттенки, но только при одновременном предъявлении ему нескольких образцов для сравнения. Светодиоды формируют достаточно тусклые по насыщенности цвета. Если взять смесь красного с зелёным, то в сумме должен получиться жёлтый цвет. Однако в светодиодном исполнении образуется оттенок, который одни воспринимают как «оранжево-жёлтый», другие как «жёлто-зелёный». Более того, если смотреть на светодиод перпендикулярно прямо, то виден жёлтый цвет, но если смотреть с правой стороны, то оттенок «краснеет», а с левой — «зеленеет» или наоборот. Вывод — конструировать устройство необходимо так, чтобы на панели постоянно светился хотя бы один образцовый индикатор базового цвета, по которому можно устойчиво идентифицировать остальные оттенки. Им обычно служит зелёный светодиод наличия питания. Другой вариант — каждому индикатору назначить своё посадочное место, примерно как в светофоре — «красный-жёлто зелёный» или ввести режим мигания для суммарного цвета. Прямое падение напряжения у двухцветных светодиодов такое же, как у обычных светодиодов того же оттенка. Ориентироваться можно по условной точке начального подъёма ВАХ: 1.6 В (красный), 1.7 В (жёлтый/оранжевый), 1.8 В (зелёный), 3.5 В (белый/синий). Любой двухцветный светодиод можно заменить двумя обычными, рядом расположенными или накрытыми общим корпусом, если провести электрические соединения между ними согласно внутренней схеме. Цветовая гамма наружных индикаторов должна подбираться по правилам эргономики. Например, красным цветом обозначают состояние «Авария», «Брак», зелёным — «Норма», «Готовность», «Работа». Смена режимов «Ждущий/Активный» можно индицировать жёлтым/зелёным цветом. «Синие» светодиоды хорошо смотрятся в полумраке или применяются для декоративной подсветки тёмных поверхностей. И ещё. Считается, что зелёный и красный — это нарядные рождественские цвета, а чёрный и оранжевый — предупреждающие цвета Хэллоуина. Двухцветные светодиоды бывают двух трёх выводные. Первые из них имеют встречно-параллельное соединение (Рис. 2.15, а…ж), а вторые — два отдельных излучателя с общим анодом/катодом (Рис. 2.16, а…к). На всех последующих cxeмах для простоты будет принято, что светодиоды являются «красно-зелёными». Важный нюанс. Обычно в трёхвыводных светодиодах общий контакт конструктивно располагается по центру корпуса, но иногда встречаются модели, например, BL-Bxx204-A (фирма Bright LED Electronics), у которых общий вывод находится с краю. Определить «что есть что» можно прозвонкой выводов омметром.
а) на двух линиях MK формируются противофазные уровни ВЫСОКИЙ-НИЗКИЙ или НИЗКИЙ-ВЫСОКИЙ. Соответственно, светодиод HL1 светится то красным, то зелёным цветом. Для полного гашения светодиода надо установить на выходах MK одинаковые уровни: НИЗКИЙ-НИЗКИЙ или ВЫСОКИЙ-ВЫСОКИЙ; б) управление светодиодом HL1 от одной линии MK: ВЫСОКИЙ уровень — красный цвет, НИЗКИЙ — зелёный, вход с Z-состоянием — полное гашение. Недостатком схемы является лишний расход мощности на делителе R1, R2, что оправдано, если опорный уровень со средней точки используется для других узлов устройства; в) аналогично Рис. 2.15, б, но с меньшими потерями мощности, поскольку через стабилитроны VD1, VD2 не протекает лишний ток. Резистором R1 регулируется общая яркость; г) аналогично Рис. 2.15, в, но с возможностью раздельного регулирования яркости красного и зелёного светоизлучателей резисторами R1, R2; д) аналогично Рис. 2.15, в, но с пониженным питанием и заменой двух стабилитронов транзисторными ключами F77, VT2. Резистором &2регулируется общая яркость; О
О Рис. 2.15. Схемы подключения двухцветных светодиодов с двумя выводами (окончание): е) коммутация полярности включения яркого светодиода HL1 через мостовую схему. Сигналы на выходах MK должны быть строго противофазными. Резистор R5 защищает пары транзисторов VT3, VT4 и VT5, VT6 от перегрузки по току при их одновременном включении из-за ошибок в программе, а также при переходных процессах. Резистор R6 задаёт яркость свечения; ж) управление тремя двухцветными светодиодами HL1…HL3 от трёх линий MK. Возможны одноцветные и разноцветные комбинации свечения в любом порядке.
Рис. 2.16. Схемы подключения двухцветных светодиодов с тремя выводами (начало): а) при ВЫСОКОМ уровне на одном из выходов МК светодиод HL1 загорается красным или зелёным цветом. При двух ВЫСОКИХ уровнях должен получаться цвет, близкий к жёлтому. Его реальный оттенок зависит от типа светодиода и соотношения сопротивлений резисторов R1, R2. При обоих НИЗКИХ уровнях на выходах MK светодиод полностью погашен; б) аналогично Рис. 2.16, а, но для светодиода HL1 с общим анодом и с активными НИЗКИМИ уровнями; в) при НИЗКОМ уровне на выходе MK индикатор HL1 светится зелёным цветом, при ВЫСОКОМ — красным, поскольку «зелёный» излучатель (1.8 В) шунтируется «красным» (1.6 В). Диод VD1 устраняет небольшую подсветку «зелёного» излучателя при светящемся «красном»; О
г) аналогично Рис. 2.16, в, но для светодиода HL1 с общим анодом и с активным НИЗКИМ уровнем. Диод VD1 может отсутствовать (проверяется экспериментально). Если поменять местами выводы «R» и «G» индикатора HL1, то наличие диода VD1 обязательно; д) один общий резистор на два излучателя светодиода HL /, что может привести к некоторому различию в яркости их свечения. Для получения промежуточных цветовых оттенков используют два противофазных сигнала ШИМ с изменяющейся скважностью; е) аналогично Рис. 2.16, д, но для светодиода HL1 с общим анодом; ж) выбор одного из двух излучателей производится механическим переключателем SA 1\ з) аналогично Рис. 2.16, в, но с полевым транзистором VT1 Схема эффективна при повышенном токе через светодиод HL1 (задаётся резистором R1). и) плавное получение всей гаммы цветовых оттенков в спектре от красного до зелёного при помощи переменного резистора R2\ к) джампер, установленный между контактами 1-2 соединителя *S7, определяет красный, а между контактами 2-3 — зелёный цвет свечения всех индикаторов HL1…HLn одновременно. Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»). nauchebe.net Двухцветный светодиод. Особенность | Личный блог Wan-DererДвухцветный трёхногий светодиод имеет некоторую особенность, которая поначалу может сбить с толку, но которую можно пустить на пользу. Соберём макетик по заглавной картинке и исследуем его. Зелёный проводок относится к зелёному кристаллу, оранжевый — к красному. Подключим батарейку и пощёлкаем тумблером. Тумблер выключен, светодиод зелёный Тумблер включен, светодиод красный (правда, красный, на фото плохо получилось) При разомкнутой цепи светодиод светит зелёным, при замкнутой… красным. Ой, что-то не то! Ведь зелёный кристалл подключен напрямую к батарейке и должен светить всегда! Т.е. при замыкании тумблера мы должны получить свечение обоих кристаллов и как бы жёлтый цвет! Но если присмотреться, видно что при включении красного зелёный гаснет! Прям коммутатор какой-то. Так, изобразим схему этой… схемы 🙂 Ага, понятно. Неправильное включение светодиодов! Ведь во всех мурзилах сказано: при параллельном включении каждый светодиод должен иметь свой собственный балластный резистор. А при такой схеме, из-за индивидуальных отличий, они будут светить вразнобой: кто-то ярче, кто-то тусклее. Но! Мы-то наблюдаем другую картину. У нас горит один кристалл. Т.е. простой замыкающий контакт у нас работает как переключающий. Почему? Попробуем разобраться. Для этого соберём схему попроще — с одним светодиодом, но обвешаем её измерительными приборами и будем наблюдать за их показаниями: У нас есть:
Мы будем плавно поднимать напряжение от 0, наблюдая за показаниями приборов. Если бы в цепи было два последовательных резистора, всё было бы просто: ток в цепи нарастал бы от 0, напряжения на вольтметрах также возрастало бы, причём пропорционально сопротивлениям резисторов, а их сумма была бы равна напряжению источника. Подробнее здесь и здесь. С диодом интереснее. Дело в том что диод (в т.ч. и светодиод) является нелинейным элементом. Его сопротивление в прямом направлении зависит от протекающего тока. Чем больше ток, тем меньше сопротивление. Кроме того, диод имеет т.н. порог. При напряжении ниже этого порога диод будет закрыт даже в прямом направлении. Итак, потихоньку крутим наш источник питания, поднимая напряжение. И сразу видим отличие от схемы на резисторах. Вот уже пол-вольта, один вольт, а амперметр не кажет. Ток = 0. Напряжение Ur = 0, а Uvd = напряжению источника. Т.е. диод закрыт, его сопротивление очень велико, тока в цепи практически нет, а всё напряжение «высаживается» на нём. Но вот мы подобрались к порогу, для красного светодиода это около 1.3 вольт. Светодиод открылся и слабо засветился. Амперметр с нуля сразу прыгнул до некоторого значения. Также резко появилось напряжение Ur. Добавим ещё чуть-чуть. При напряжении около 1.7 В светодиод засветился в полную силу. Добавляем дальше. И опять видим странное! Ток растёт как положено. Растёт Ur. А вот Uvd остаётся на уровне 1.7 В! Т.е. диод «стремится» сохранить напряжение на себе равным 1.7 В. Для этого при росте тока он снижает своё сопротивление и всё больше и больше напряжения достаётся резистору — ведь сумма Ur+Uvd обязана быть равной напряжению источника. Так будет происходить пока ток не возрастёт настолько что диод перегреется и сгорит. При этом разница в яркости между «только засветился» и «почти сгорел» будет незначительна хотя ток изменился в разы. А напряжение Uvd возросло, но не сильно, где-то до 2.5 В. Напряжение, при котором светодиод «вышел на режим», т.е. его ток и яркость соответствуют норме и считают типичным падением напряжения для данного типа полупроводника. Да, для разных типов полупроводников эти значения отличаются. У кремниевого p-n перехода будет одно значение, у германиевого — другое, у перехода на основе арсенида галия (красный светодиод) — третье, у перехода металл-полупроводник (диод Шоттки) четвёртое. И тут мы наконец можем ответить на вопрос почему так странно работает схема из заголовка статьи. Дело в том что зелёный и красный кристалл выполнены из разных материалов, имеющих разные пороги и разное падение напряжения. В моём макете падение на зелёном кристалле было около 2 В (при питающем напряжении от 3 до 9 В), а на красном — 1.7 В. Что происходит когда параллельно светящемуся зелёному мы подключаем красный? Напряжение сразу валится до 1.7 В! И зелёному просто не хватает прямого напряжения чтобы открыться. Всё оказалось просто 🙂 Теперь. Как можно использовать эту неправильную схему. Например, можно переключать с зелёного на красный используя одну ножку микроконтроллера, а не две. Правда, такое решение потребует кое-какой дополнительной «обвязки», но если надо жёстко экономить ножки — может сгодиться. Более простые схемы также могут использовать этот трюк. Один из примеров будет в следующей статье.
wan-derer.ru Двухцветный светодиод с двумя и тремя выводамиСветодиодами называют электронные компоненты разных размеров и цветов, которые заключены в прозрачный корпус. Линзы из эпоксидной смолы являются корпусом светодиода, кристаллы - источником света, длинный вывод – анод, короткий - катод. Определить какого свечения будут лампы сразу невозможно. Лампы начинают светиться тогда, когда ток идет в прямом направлении. Интенсивность свечения пропорциональна электрическому току. Каждый светоизлучающий диод по всем законам физики должен давать лишь один цвет. Он зависит от материала, из которого изготовлен полупроводник. Никаких изменений в процессе эксплуатации не происходит. Как же тогда создается двухцветный светодиод? А многоцветный? Описание двухцветных светодиодовДвухцветный светодиод – это два отдельных светоизлучателя, объединенных на одном кристалле и изготовленные из разных полупроводниковых сплавов. Такой LED выдает минимум два цвета. Поскольку его корпус выполнен из специального светорассеивающего пластика, одновременно работающие два светоизлучателя создают третий цвет. Учитывая особенности восприятия человеком цветовых смесей, в светодиоде на 2 цвета чаще всего используются следующие сочетания:
Также светодиод на 2 цвета можно разделить на несколько типов:
В одном корпусе LED могут быть разные лампы:красно-желтые, красно-зеленые, сине-желтые и другие. Трехцветный светодиод объединяет в одном корпусе красные, зеленые и синие лампы. Самый распространенный трехвыводной LED - с двумя светодиодами зеленой и красной лампы в одном корпусе. Такие LED более востребованы, поскольку их применение дает больше цветовых гамм, что позволяет выпускать недорогие светильники, лампы которых способны менять свет в широком спектре. С помощью импульсного модулятора, меняя интенсивность свечения каждого полупроводника, удается изменять и тон освещения у каждого диода. Для предотвращения возможной перегрузки, для каждого светодиода предусмотрен отдельный резистор. Область применения двухцветных светодиодовСветодиод на 2 цвета - это интегрированная сборка с двумя светоизлучающими кристаллами на одной подложке. Несмотря на довольно ограниченный спектр излучения, светодиоды на 2 цвета нашли широкое применение в:
Эти приборы широко применяются в системах сигнализации, индикации и визуального оформления. 2- х цветное LED освещение активно используется в создании электронных табло и указателей. Кроме того, двухцветный светодиод применяется в качестве индикатора вращения электродвигателя, работающего на постоянном токе, демонстрируя в какую сторону идет вращение.
Cветодиод на 2 цвета – это два обычных светодиода в одном корпусе. У него две ноги и каждая одновременно является катодом светодиода одного цвета и анодом другого цвета. Поэтому от того в каком направлении через двухцветный диод движется ток зависит каким цветом будут светиться лампы. Для такого LED необходим только один резистор. Двухцветные светодиоды менее популярны, чем трехцветные. Примером светодиода на 2 цвета является зарядка для мобильного устройства и аккумуляторной батареи, когда лампочка индикатора в момент зарядки светится красным, а после зарядки батареи свет меняется на зеленый. В автомобилях LED лампы используются там, где требуется 2 цвета в фаре, когда одна лампа одновременно выполняет роль габарита и поворотника. Габариты при этом будут красные, а поворотники - желтыми. Как подключить двухцветный светодиод? Подключение светодиодов к цепи требует подключения балластного сопротивления, которое встроено в современные светодиоды. Ограничивая ток в цепи, подключение светодиода возможно с напряжением в сети 220В. Стандартная схема включения светодиодовСвечение светодиода на 2 цвета меняется от того, в какую сторону через лампу течет ток. Схема прибора вполне понятна. В ней есть резистор и два включенных навстречу друг другу диода, которые соединены параллельно. При протекании тока в прямом направлении один диод оказывается запертым и не светится. При движении тока в обратном направлении все меняется с точностью наоборот. После определения тока и напряжения светодиода можно рассчитать параметры сопротивления, которые ограничивают ток в цепи. В простейшей схеме включения двухцветного светодиода резистор ограничивает ток. После расчета сопротивления, рассчитывается его мощность. Если выбирать маломощный резистор, то есть вероятность, что он в скором времени выйдет из строя. При последовательном соединении LED хватит одного резистора, подключенного к цепи. Светодиоды с различными номинальными токами нельзя соединять последовательно. Для правильного подключения надо понимать, что при параллельном подключении сила тока суммируется, а при последовательном подключении суммируется напряжение. Параллельное и последовательное подключение возможно только одинаковых светодиодов с использованием одного резистора. А если происходит подключение разных светодиодов, то для надежности лучше рассчитать каждому LED свой пассивный элемент электрической цепи. led-svetodiody.ru RGB светодиод - принцип работы и виды цветных LED. Многоцветные RGBWВ основе идеи создания трехцветного светодиода лежит оптический эффект получения разнообразных оттенков путем смешивания 3-х базовых цветов. В качестве базовых цветов обычно используются красный (R), зеленый (G) и синий (B). Поэтому был создан именно rgb светодиод. Как устроены 3 цветные led диодыКонструктивно трехцветный светодиод представляет собой 3 цветных светодиода, смонтированных в общем корпусе, а если быть более точным, 3 кристалла, интегрированных на одной матрице. На рис.1 представлена микрофотография интегрального rgb светодиода. Цветные квадраты на фото – это кристаллы основных цветов. Рис. 1 ВидыДля адаптации к разным вариантам схемы управления, ргб диоды производятся в нескольких модификациях:
В первом случае светодиод управляется сигналами положительной полярности, поступающими на аноды, во втором – отрицательными импульсами, подаваемыми на катоды. Третья модификация исполнения допускает любые варианты коммутации и выпускается обычно в виде SMD компонента. ПодключениеВ качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом. Рис. 2 Ниже схема с общим анодом: Рис. 3 Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V). Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов. УправлениеВключение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым. На цифровых выходах платы Arduino формируются периодические прямоугольные импульсы напряжения, как на рисунке 4., с изменяемой скважностью. Рис. 4 Для тех, кто забыл. Скважностью называется отношение длительности периода следования импульсов к длительности импульса. Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера. Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией). На Рис.4 приведены примеры диаграмм прямоугольных импульсов различной скважности. Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета. Рис. 5 На схеме (Рис.5) rgb диоды (led1- led10) имеют общий анод. Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3. При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета. Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться. Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета. Кстати. Применение такого регулирования в системах подсветки панелей приборов транспортных средств позволяет водителю выбирать любой оттенок и яркость. RGBW светодиодыДля того чтобы получить чисто белый цвет, используя разноцветный rgb светодиод, необходима точная балансировка яркости свечения по кристаллу каждого цвета. На практике это бывает затруднительно. Поэтому, для воспроизведения белого цвета и увеличения разнообразия цветовых эффектов, rgb диод стали дополнять четвертым кристаллом белого свечения. Чаще всего, RGBW светодиоды используются в светодиодных лентах RGBW SMD. Для питания таких светодиодных лент созданы специальные RGBW контроллеры, как правило, управляемые пультами дистанционного управления на инфракрасных лучах. На фотографии представлен мощный четырехцветный светодиодный модуль SBM-160-RGBW-h51-RF100 производства Luminus Devices Ink. Рис. 6 ПрименениеОсновной сферой применения rgb светодиодов является создание световых эффектов для рекламы, сценическое оформление концертных площадок, развлекательных мероприятий, праздничное декорирование зданий, подсветка фонтанов, мостов, памятников. Интересные результаты получаются при использовании rgb led диодов для дизайнерского светового оформления интерьеров. Для этих целей налажен выпуск разнообразной светотехники на основе rgb и rgbw – диодной технологии, номенклатура которой продолжает расширяться и завоевывать новые области применения. ВидеоДля закрепления рассмотренного материала рекомендуем посмотреть видео, автор которого очень доходчиво и интересно рассказывает про многоцветные RGB светодиоды. ВыводМногоцветный RGB светодиод — это разновидность обычного LED. Его конструктивная особенность позволяет получить любой спектр излучаемого цвета радуги. Это одновременно увеличивает его стоимость и усложняет схему подключения. Поэтому перед выбором, задайтесь вопросом, действительно ли Вам нужен RGB светодиод или достаточно воспользоваться обычным LED нужного цвета?
ledno.ru Цветные светодиоды, трехцветные светодиоды 3, двухцветные светодиодыЦветные светодиоды бывают следующие: красный, оранжевый, янтарный, жёлтый, зелёный, голубой и белый. Голубой и белый светодиоды значительно более дорогие, чем другие цвета.Цвет свечения светодиода определяется материалом полупроводника, из которого он изготовлен, а не цветом пластмассы корпуса. Поэтому цветные светодиоды доступны также и в бесцветных корпусах (матовых или прозрачных) и невозможно определить цвет светодиода без его включения. Трехцветные светодиодыТрехцветные светодиоды наиболее популярны в варианте, объединяющем в себе красный и зелёный светодиод. Трехцветные светодиоды имеют три вывода и называются трехцветными потому, что в случае, когда светятся оба, создаётся эффект смешивания и получается третий цвет. В случае одновременного излучения красного и зеленого цветов, получается желтый.На картинке хорошо видно, что средний вывод, самый длинный, является общим для обоих светодиодов. Это катод. Другие два вывода имеют меньшую длину и служат для включения конкретного светодиода. Таким образом можно их включить любой по отдельности или оба вместе. Каждый из двух светодиодов должен включаться через свой резистор. Светодиод 3-х цветный бывает ещё 4-х пиновым. См. рисунок слева. Он состоит из трёх независимых светодиодов. Это красный, синий и зелёный. Такой комбинированный светодиод позволяет путём смешивания (одновременного включения двух или трёх св-дов с разной яркостью) получать буквально все цвета радуги. Каждый св-диод имеет свой вывод и общим для всех является анод, положительный вывод. Цоколёвка у него следующая: красный, анод, зелёный, синий. Каждый вывод (кроме общего) должен иметь свой резистор. Ни в коем случае не один резистор на общий вывод!
Двухцветные светодиодыДвухцветные светодиоды имеют всего два вывода и могут излучать только один цвет в каждый момент времени. Смена цвета происходит при смене полярности источника питания. Т.е. цвет излучения двухцветного светодиода зависит от направления движения тока через него. Для такого светодиода необходим только один резистор. Двухцветные светодиоды менее популярны, чем трехцветные. katod-anod.ru двухцветные красно-желтые светодиоды 3528. ремонтируем задние фонариХочу сразу предупредить, что обзор получился «несколько» скомканным, потому что если честно — изначально как-то я его и писать-то не планировал, да и не люблю я при работе отвлекаться на фотографирование процесса.Поэтому получилось из серии «кто в курсе — тот поймёт» Вводная часть.Какое-то время назад автопроизводители заморочились переходом на светодиодные фонари. При этом у фольксвагена, в частности, умудрились как-то накосячить в схемотехнике, ну и вроде бы вечные светодиоды оказались нифига не вечными. Они перестают гореть, причем изрядными секторами Скажем, в моём случае в одном фонаре не горело всего два светодиода указателей поворота, а в другом половина, если не больше. выглядит это примерно так (фото из сети): Особенно поражает тот факт, что в основном перегорают светодиоды указателей поворотов — сколько они проработали-то в сумме?! Проблема стоит достаточно остро, потому что имеет массовый характер, а новые фонари стоят весьма так порядочно. Выглядят фонари, кстати, примерно так: В конце концов эта проблема коснулась и меня, пришлось озадачиться поиском решения. Гуглинг дал вот какие результаты. Предположительно в фонарях используются светодиоды Osram LAY T67B-T2V1-1-1+U2V2-45, либо kingbright KAA-3528SURKSYKC Это двухцветные, красно-желтые светодиоды в 4-выводном корпусе 3528: Узнав что именно нужно — начал искать в продаже. в местных магазинах я естественно ничего не нашел, полез на али, где достаточно быстро нашел и приобрел предмет обзора. Поставляются в антистатическом пакете, в ленте. на фото я уже порезал на полоски по 10 шт — мне так удобнее хранить. Вот как выглядят в сравнении с выпаянным оригиналом: Проверка распиновки также показала полное соответствие оригиналу. далее будет «как нарисовать сову». Разбираем фонарь. Есть разные способы — кто-то пилит корпус ножовкой, кто-то режет паяльником, я же отколол стекло — где ножом, где отвертками. Получилось неидеально, местами заметны трещинки, но если не приглядываться — то и не особо заметно Откручиваем саму плату с диодами Отпаиваем старые (я использовал сплав Розе), чистим плату Припаиваем новые, проверяем, собираем. Стекло я приклеивал на силикон. Как выглядит собранный фонарь на машине — видно на фото в начале обзора, а вот как выглядит самый страшный дефект: Как видим с расстояния особо в глаза не бросается. Может показаться, что там трещина на весь фонарь — нет, это отражение кабель-канала на стене ;) Думается, если этим заниматься — то надо изобретать простой и надёжный способ вскрытия. Я склоняюсь к тому что надо видимо надрезать стекло каким-то резаком из ножовочного полотна и потом откалывать. Резать корпус мне как-то не нравится. убогие видео Еще раз прошу прощения за качество видео. Повторюсь, снималось всё спонтанно и на телефон, так что уж что получилось то получилось :(подытоживая: светодиоды на вид как родные, стали как родные, светят как родные. по надежности — время покажет, если не забуду, то отпишусь через месяцок-другой. в целом по ремонту фонаря — есть высокая вероятность сломать-таки стекло, так что работать очень аккуратно, и лучше потренироваться на чем-то ненужном. работать ОБЯЗАТЕЛЬНО в перчатках, а лучше еще и в белом чистом халате, потому что металлизация на отражателе тончайшая, стирается от любого прикосновения. перепайка светодиодов же — самая простая операция во всём процессе ;) UPD: сегодня в темноте поразглядывал что получилось. могу констатировать, что новые светодиоды чуть менее яркие и чуть более красные. их цвет мне нравится больше родных, если честно. жена сказала что в сравнении с этими — родные ближе к оранжевым. UPD2: на сегодняшний день фонари всё еще работают без проблем. mysku.ru Все о светодиодах.Что такое светодиод?Светодиоды образуют неотъемлемую часть в современной электроники, простые показатели для оптических коммуникационных устройств. Светоизлучающие диоды используют свойства р-п перехода и испускают фотоны, когда ток в прямом направлении. Светодиоды специально излучают свет, когда потенциалы приложены к аноду и катоду. История светодиодов начинается с 1907 года, когда капитан Генри Джозефа наблюдал особенности электро-люминесценции карбида кремния. Первый светодиод был разработан в 1962 году. Он был разработан Холоньяк, работал в General Electric (GE). Это был GaAsP устройства. Первая коммерческая версия светодиодов пришли на рынок в 1960-х годов. Изготовление светодиодной технологии произвела бум в 1970-е годы с введением арсенида галлия алюминия (GaAlAs). Эти светодиоды высокой яркости и во много раз ярче, чем старая рассеянного типа. Синие и белые светодиоды были введены в 1990 году, в котором используется индия нитрида галлия (InGaN) в качестве полупроводника. Белый светодиод содержит неорганический фосфор. Когда голубой свет внутри светодиода попадает на люминофор, он излучает белый свет. Что делает светодиод идеальным?Светодиоды широко используются в электронных схемах из-за его преимущества по сравнению с лампами. Некоторые важные особенностями являются:
Что находится внутри светодиода?Внутри корпуса LED, есть две клеммы связаны маленький чип изготовлен из галлия соединения. Этот материал обладает свойством излучения фотонов при переходе P-N смещен в прямом. Различные цвета создаются выбиванием основного материала из другого веществама. Внутри светодиода Светодиодная технологияЯркость является важным аспектом LED. Глаз человека имеет максимальную чувствительность к свету около 550 нм в области желто — зеленой части видимого спектра. Именно поэтому зеленый светодиод излучается ярче, чем красный светодиод, хотя оба используют тот же ток. Важные параметры светодиодов являются:
Прямой ток, прямое напряжение, угол обзора и скорость реагирования это факторы, влияющие на яркость и эффективность светодиодов. Прямой ток (I) является ток, протекающий через светодиод, когда он смещен в прямом направлении и он должен быть ограничен от 10 до 30 миллиампер, если выше то светодиоды будут уничтожены. Угол обзора составляет от — угол оси, при котором световая интенсивность падения до половины осевого значения. Вот почему индикатор показывает больше яркости в полном объеме состоянии. Высокие яркие светодиоды имеют узкий угол обзора, так что свет фокусируется в пучок. Рабочее напряжение (V) является падение напряжения на светодиоде. Падение напряжения в диапазоне от 1,8 В до 2,6 вольт для обычных светодиодов, но в голубой и белый он будет идти до 5 вольт. Скорость отклика представляет, как быстро светодиод включается и выключается. Это очень важный фактор, если светодиоды используются в системах связи. Требуется ли балластный резистор? Светодиоды всегда подключены к источнику питания через резистор. Этот резистор называют «балластный резистор», которая защищает диод от повреждений, вызванных избыточным током. Он регулирует прямой тока на светодиод для безопасного предела и защищает ее от жжения. Номинал резистора определяет прямой тока и, следовательно, яркость светодиодов. Простое уравнение Vs — Vf — используется для выбора резистора. Vs представляет входное напряжения цепи, Vf прямое падение напряжения светодиода(ов) при допустимом токе через светодиод. Полученное значение будет в Омах. Лучше ограничить ток до безопасного предела 20 мА. Приведенная ниже таблица показывает прямое падение напряжения на светодиоде.
Через типичный светодиод может пройти 30 -40 мА безопасный ток через него .Номинальный ток, чтобы дать достаточную яркость, стандартный красный светодиод 20 мА. Но это может быть 40 мА для синего и белого светодиода. Ограничение тока балластным резистором защищает диод от избыточного тока, протекающего через него. Значение балластного резистора должны быть тщательно отобраны, чтобы предотвратить повреждение светодиодов, а также получить достаточную яркость при токе 20 мА. Следующее уравнение объясняет, как выбирать балластный резистор. R = V / I Где R — является значение сопротивления в Ом, V — является входное напряжение в цепи, и I — это допустимый ток через светодиод в амперах. Для типичного красного светодиода, прямое падение напряжения составляет 1,8 вольта. Таким образом, если напряжение питания 12 В (Vs), падение напряжения на светодиод 1,8 В (V) и допустимый ток составляет 20 мА (Если), то значение балластного резистора будет Vs — Vf / Если = 12 — 1,8 / 20 мА = 10,2 / 0,02 = 510 Ом. Но если 510 Ом резистор не доступен то можно подобрать ближайший, например 470 Ом резистор может быть использован даже если ток через светодиод слегка увеличивается. Но рекомендуется использовать 1 K резистор для увеличения срока службы светодиодов, хотя там будет небольшое снижение яркости. Ниже готова арифметические для выбора ограничительного резистора для различных версий светодиодов при различных напряжениях.
С добавлением других цветов Светодиод, который может дать разные цвета полезно в некоторых приложениях. Например, светодиоды могут указывать на все системы OK, когда он становится зеленой, и неисправный, когда он становится красной. Светодиоды, которые могут производить два цвета называются Bicolour (Биколор) светодиодов. Двухцветный светодиодный охватывает два светодиода (обычно красный и зеленый) в общем пакете. Два кристалла установлены на двух клеммах. Двухцветный светодиодный дает красный цвет, если ток проходит в одном направлении и становится зеленым, когда направление тока меняется на противоположное. Триколор и многоцветные светодиоды , также доступны, которые имеют два или более кристаллов, заключенных в общий корпус. Трехцветный светодиодный имеет два анода для красного и зеленого кристалла и общим катодом. Таким образом, он излучает красный и зеленый цвета в зависимости от анода, в котором имеется ток. Если оба анода подключены, то светодиоды испускают свет и получается желтый цвет. Общий анод и отдельные светодиоды типа катода, также имеются. Двухцветный индикатор светится разными цветами , начиная от зеленого через желтый, оранжевый и красный основной на ток, протекающий через их аноды, выбрав подходящий резистор для ограничения тока анода. Многоцветные светодиоды содержат более двух чипов, обычно красного, зеленого и синего чипы-в одном корпусе. Мигание разными цветами светодиодов, теперь доступны с двумя выводами. Это дает радугу цвета, которые являются весьма привлекательным. Инфракрасный диод — источник Невидимого светаИК диоды широко используются в удаленном управлении (пульт ДУ). Инфракрасные диоды на самом деле испускают нормальный свет с определенным цветом, который не чувствителен к человеческим глазом, потому что его длина волны 950 нм, ниже видимого спектра. Многие источники, такие как солнце, лампы, даже человеческое тело испускает инфракрасные лучи. Поэтому необходимо, чтобы модулировать излучение от ИК-диода, чтобы использовать его в электронном приложении, чтобы предотвратить ложное срабатывание. Модуляции делает сигнал от ИК-светодиода значительно выше чем шум. Инфракрасные диоды есть в корпусе, которые являются непрозрачным для видимого света, но прозрачна для инфракрасного. ИК-светодиоды широко используются в системах управления. Инфракрасные диодыФотодиод — Он может увидеть светФотодиод генерирует ток, когда его р-п перехода получает фотоны видимого или инфракрасного света. Основная работа фотодиода зависит от поглощения фотонов в полупроводниковом материале. Фото-генерируемых носителей разделены электрическим полем, и в результате фототок пропорционален падающему свету. Скорость, с которой носители движутся в области обеднения связана с силой электрического поля по всему региону и подвижность носителей. Фотон, который поглощается полупроводником в области обеднения приведет к образованию электронно-дырочной проводимости. Дырки и электроны будут транспортироваться под действием электрического поля к краям области обеднения. После носителей покидают область истощения они идут к клеммам фотодиода, чтобы сформировать фото-ток во внешней цепи. Время отклика фотодиода, как правило, 250 наносекунд . ФотодиодыЛазерные диодыЛазерный диод похож на обычные прозрачные светодиодные, но производит Laserwith высокой интенсивности. В лазерном луче число атомов вибрируют в такой цикле, что всё испускаемое излучение одной длины волны в фазе друг с другом. Лазерный свет является монохроматическим и проходит в виде узкого пучка. Луч типичных лазерных диодов составляет 4 мм х 0,6 мм, которая расширяется только до 120 мм на расстоянии 15 метров. Лазерный диод может включаться и выключаться на более высоких частотах даже выше, чем 1 ГГц. Так что это весьма полезно в телекоммуникационных системах.Поскольку лазер генерирует тепло на поражение тканей тела, он используется в хирургии, чтобы исцелить поражения в очень чувствительных частей, как сетчатки, головного мозга и т.д. лазерные диоды являются важными компонентами в проигрывателях компакт-дисков, чтобы получить данные, записанные в компакт-дисках. Лазерные Диодыradioschema.ru |