Состав ламп люминесцентных: профессионал — 353 301 00 13 01 1. Ртутные лампы, люминесцентные ртутьсодержащие трубки отработанные и брак.

Содержание

Отработанные ртутьсодержащие лампы

Методы расчета объемов образования отходов

Расчёт количества отработанных люминесцентных ламп производится по формуле:

            N = ∑ niх Тi  х ti/ ki   шт. / год

Вес образовавшегося отхода определяется по формуле:

            М = Nх mi т/год

где:

            ni – количество установленных ламп i–той марки, шт.

           Тi – количество рабочих дней в году

ti – среднее время работы одной лампы i–той марки в сутки, час

ki – эксплуатационный срок службы ламп i–той марки лампы, час

                mi–  вес одной лампы i–той марки, т       

Усреднённый состав ртутьсодержащих ламп:

            стекло – 92 %

            ртуть – 0,02 %

            другие металлы – 2 %

            прочие – 5,98 %

Исходные данные для расчёта












































































































































































Тип лампы

Эксплуатационный срок службы ламп, час, ki

Вес лампы, г, mi

Примечание

1

2

3

4

ЛБ 4

6000

25

Лампы разрядные низкого давления люминесцентные

ЛБ 4-2

6000

24

ЛБ 6

7500

32

ЛБ 6-2

6000

32

ЛБ 8

7500

40

ЛБ 8-5

6000

38

ЛБ 13

7500

75

ЛБ 13-2

6000

68

ЛБ 15-1

15000

118

ЛБ 15-Э

15000

118

ЛБ 18-1

12000

110

ЛБ 18-Э

12000

110

ЛБ 20—1

15000

170

ЛБ 20-2

15000

170

ЛБ 20-Э

15000

170

ЛБ 30-1

15000

190

ЛБ 30-Э

15000

190

ЛБ 36

12000

210

ЛБ 36-Э

12000

210

ЛБ 30-1Э

12000

210

ЛБ 40

12000

210

ЛБ 40-1

15000

320

ЛБ 40-1Ж

4000

320

ЛБ 40-Э

15000

320

ЛБ 40-1Э

15000

320

ЛБ 58

12000

290

ЛБ 65

12000

290

ЛБ 65-1

15000

450

ЛБ 80

12000

450

ЛБ 80-1

12000

450

ЛБА 40-1

13000

320

ЛБЕ 10

6000

70

ЛБЕ 15

6000

100

ЛБК 22

7500

205

ЛБК 32

7500

300

ЛБК 40

7500

405

ЛБР 3

1000

20

ЛБР 4

1000

25

ЛБР 4-2

1000

25

ЛБР 20

7500

175

ЛБР 40

11000

330

ЛБР 65

11000

390

ЛБР 80

11000

390

ЛБС 20

12000

175

ЛБС 40

12000

340

ЛБУФ 36

10000

240

ЛБЦТ 36

15000

210

ЛБЦТ 40

13000

320

ЛБ U8Б3

7500

50

ЛБ U30

15000

300

ЛГ 20

7500

170

ЛГ 40

10000

320

ЛД 16

15000

118

ЛД 20

13000

170

ЛД 30

15000

190

ЛД 40

15000

320

ЛД 40-1

15000

320

ЛД 65

13000

450

ЛД 80

12000

450

ЛД 80-1

12000

450

ЛДС 20

12000

175

ЛДС 40

12000

340

ЛДЦ 15-1

15000

118

ЛДЦ 15-Э

15000

118

ЛДЦ 18

12000

110

ЛДЦ 18-Э

12000

110

ЛДЦ 20

13000

170

ЛДЦ 20-Э

13000

170

ЛДЦ 30-1

15000

190

ЛДЦ 30-1Э

15000

190

ЛДЦ 36

15000

210

ЛДЦ 36-Э

12000

210

ЛДЦ 36-1Э

12000

210

ЛДЦ 40-1

15000

320

ЛДЦ 40-Э

15000

323

ЛДЦ 40-1Э

15000

320

ЛДЦ 65

13000

450

ЛДЦ 80

12000

450

ЛДЦА 40-1

13000

320

ЛДЦС 20

12000

175

ЛДЦС 40

12000

340

ЛДЦУФ 40

13000

400

ЛЕЦ 8

7500

40

ЛЕЦ 13

7500

70

ЛЕЦ 16

7500

150

ЛЕЦ 18

12000

110

ЛЕЦ 18-Э

12000

110

ЛЕЦ 20

13000

130

ЛЕЦ 20-1

13000

170

ЛЕЦ 36

12000

210

ЛЕЦ 36-Э

12000

210

ЛЕЦ 40-1

13000

320

ЛЕЦ 40И

7500

170

ЛЕЦ 58

12000

290

ЛЕЦ 60И

10000

320

ЛЕЦ 65

13000

450

ЛЕЦ U22

7500

180

ЛЕЦ U30

15000

300

ЛЕЦК 22

7500

205

ЛЖ 40

10000

320

ЛЗ 40

10000

320

ЛК 40

10000

320

ЛР 40

10000

320

ЛР 40-1

15000

320

ЛС 15

15000

120

ЛС 30

15000

200

ЛТБ 15

15000

118

ЛТБ 20

13000

170

ЛТБ 30

15000

190

ЛТБ 40-1

15000

320

ЛТБ 65

13000

450

ЛТБ 80

12000

450

ЛТБ 40Б3

7000

325

ЛТБ 40Б3-1

7000

325

ЛТБС 20

12000

175

ЛТБС 40

12000

340

ЛТБЦЦ 8

7500

 

ЛТБЦЦ 13

7500

 

ЛТБЦЦ 20

13000

 

ЛТБЦЦ 20-1

13000

 

ЛТБЦЦ 40

13000

 

ЛТБЦЦ 40И

75000

 

ЛТБЦЦ 60И

10000

 

ЛТБЦЦК 22

7500

 

ЛТБЦЦК 32

7500

 

ЛТБЦЦК 40

7500

 

ЛТБЦЦК 80

8000

 

ЛУФК 22

5000

 

ЛУФК 32

5000

 

ЛХБ 15

15000

 

ЛХБ 20

13000

 

ЛХБ 30

15000

 

ЛХБ 40-1

15000

 

ЛХБ 86

13000

 

ЛХБ 80-1

13000

 

ЛХБС 20

12000

 

ЛХЕ-40

5200

 

КЛ7/ТБЦ

5000

 

КЛ9/ТБЦ

5000

 

КЛ11/ТБЦ

5000

 

КЛС9/ТБЦ

5000

 

КЛС11/ТБЦ

5000

 

КЛС13/ТБЦ

5000

 

КЛС18/ТБЦ

5000

 

КЛС25/ТБЦ

5000

 

ДБ 15

3000

 

ДБ 30-1

5000

 

ДБ 24

7500

 

ДБ 60

3000

 

ДРБ 8

5000

 

ДРБ 8-1

5000

 

ДРЛ 250 (6) 4

12000

 

ДРЛ 250 (10) 4

12000

 

ДРЛ 250 (14) 4

12000

 

ДРЛ 400 (6) 4

15000

 

ДРЛ 400 (10) 4

15000

 

ДРЛ 400 (12) 4

15000

 

ДРЛ 700 (6) 3

20000

 

ДРЛ 700 (10) 3

20000

 

ДРЛ 700 (12) 3

20000

 

ДРЛ 1000 (6) 3

18000

 

ДРЛ 1000 (10) 3

18000

 

ДРЛ 1000 (12) 3

18000

 

ЛУФ 15

4000

 

Лампы разрядные низкого давления (ультрафиолетовое излучение)

ЛУФ 80

4000

 

ЛУФ 80-1

4000

 

ЛУФ 80-2

7500

 

ЛЭ 15

5000

 

ЛЭР 40

3000

 

Люминесцентные лампы | Световое Оборудование

Применение трубчатых люминесцентных ламп позволяет изменить визуальную геометрию и дизайн освещаемых помещений.

Люминесцентные лампы являются вторым по распространенности источником света, а в некоторых странах (например, в Японии) они лидируют, оставив позади лампы накаливания. Каждый год в мире выпускается больше миллиарда этих ламп.

Первые люминесцентные лампы в том виде, в котором они дошли до наших дней, были созданы американской компанией General Electric в 1938 году. За прошедшие годы люминесцентные лампы проникли во многие сферы деятельности людей и сейчас используются практически в каждом магазине или офисе.

Принцип образования электромагнитного излучения в люминесцентных лампах

Люминесцентный источник — это газоразрядная лампа низкого давления, в которой электрический разряд образуется в смеси ртутных паров и инертного газа (обычно аргона). Колба лампы всегда выполняется в виде стеклянного цилиндра 12, 16, 26 или 38 миллиметров в диаметре. Цилиндр может выполняться изогнутым в форме окружности, буквы U или другой сложной фигуры. По обеим сторонам цилиндра к нему герметично припаяны ножки из стекла, с внутренней стороны которых расположены электроды.

По своей конструкции электроды напоминают биспиральное тело ламп накаливания и тоже изготавливаются в виде вольфрамовой нити. В некоторых лампах электроды выполнены в форме триспирали, в которых из биспирали образована новая спираль. С внешней стороны электроды припаяны к цоколю. В прямых и U-образных люминесцентных лампах применяется две разновидности цоколей — G5 и G13 (цифры обозначают расстояние между ножками в миллиметрах).

Подобно лампам накаливания, воздух из колб люминесцентных ламп полностью откачивается штенгелем, впаянным в ножку. После откачивания воздуха в колбу нагнетается инертный газ и вводится небольшая капля ртути (около 30 мг) или сплав ртути с другими металлами (висмут, индий и т.д.). На устанавливаемые в лампах электроды наносится слой из смеси оксидов стронция, кальция, бария, тория для повышения их активности.

Продукция

ДСО02 Universal LED АСТЗ

Светодиодный светильник IP20, 22 Вт 

Ардатовский СТЗ 

ЛПО46 Luxe АСТЗ

Потолочный светильник IP20, 18-58 Вт 

Ардатовский СТЗ 

ДПО46 Contur АСТЗ

Светодиодный светильник IP44, 19-76 Вт 

Ардатовский СТЗ 

ЛПО46 Luxe Line АСТЗ

Потолочный светильник IP20, 36 Вт 

Ардатовский СТЗ 

Мы поможем подобрать светильники на ваш объект

Ответственный менеджер по запросу:
Евгений Чилимов
+7(495)649-86-94 доб. 106

Если на лампу подано напряжение, превышающее напряжение зажигания, то между электродами происходит разряд, ток которого должен ограничиваться дополнительными внешними компонентами. Колба лампы заполнена инертным газом, но в ней постоянно находятся ртутные пары, объем которых зависит от температуры самого холодного участка колбы. Частицы ртути ионизируются при разряде быстрее частиц инертного газа, поэтому свечение лампы и проходящий через нее ток определяются именно ртутью.

Меры, обеспечивающие увеличение доли видимого излучения

В ртутных лампах низкого давления доля излучения составляет не более двух процентов от мощности самого разряда, а светоотдача разряда — лишь 5–7 лм/Вт. Однако больше половины мощности разряда преобразуется в ультрафиолет с волнами длиной 254 и 185 нм. Из курса физики известно, что при сокращении длины волны излучения увеличивается энергия этого излучения. С помощью люминофоров можно преобразовать одно излучение в другое, причем в соответствии с законом сохранения энергии преобразованное излучение будет менее энергичным, чем первоначальное. Этим путем ультрафиолет можно преобразовать в видимое излучения, применяя люминофоры, а обратное преобразование невозможно.

Изнутри цилиндрическая колба покрыта слоем специального вещества – люминофора, который преобразует ультрафиолетовые лучи ртутных паров в видимый свет. Чаще всего в люминесцентных лампах в качестве люминофора применяется галофосфат кальция с добавлением марганца и сурьмы. При попадании на такой люминофор ультрафиолетовых лучей он начинает светиться сплошным белым светом различных тонов. Излучение люминофора имеет сплошной спектр с двумя максимумами — 480 и 580 нм. Первый максимум зависит от доли сурьмы в люминофоре, а второй — марганца. Изменение содержания этих веществ позволяет получать белый свет различных тональностей цвета — от теплых оттенков до оттенков дневного света.

Корректировка цветопередачи

В 70-е годы прошлого века начался выпуск ламп с тремя люминофорами, обладающими максимумами спектра излучения в синей, зеленой и красной областях (450, 540 и 610 нм, соответственно). Эти люминофоры изначально создавались для кинескопов цветных телевизоров, и с их помощью формировалась качественная передача цветов. Совместное применение трех люминофоров дало возможность и в лампах добиться улучшения цветопередачи и светоотдачи по сравнению с применением одного люминофора. Однако такие люминофоры имеют довольно высокую стоимость по сравнению с традиционными, что обусловлено применением в них редких химических элементов — европия, тербия и церия. Поэтому до сих пор чаще всего в люминесцентных лампах используются традиционные люминофоры на основе галофосфата кальция.

В люминесцентных лампах электроды являются как источниками, так и приемниками электронов и ионов, которые обеспечивают протекание электрического тока через разрядный промежуток. Для попадания электронов в разрядный промежуток они должны нагреваться до 1100–1200 градусов. При таких высоких температурах вольфрам излучает слабое свечение вишневого оттенка, а его испарение очень незначительно. Для повышения числа электронов электроды покрываются слоем активирующего состава, имеющим значительно меньшую термостойкость, чем вольфрам, и в процессе работы слой распыляется и оседает на внутренних стенках колбы. Главным образом именно этот процесс распыления активирующего слоя определяет продолжительность службы ламп.

Потребность в разноразмерных колбах

Для повышения эффективности разряда, то есть для максимального излучения ртутного ультрафиолета, нужно поддерживать необходимую температуру самой колбы, для чего в каждом конкретном случае подбирается диаметр колбы. Все лампы имеют приблизительно равную плотность тока, исчисляющуюся отношением величины тока к площади сечения колбы, поэтому лампы разной мощности в одинаковых колбах обычно работают при одинаковых номинальных токах. Снижение напряжения на лампе пропорционально ее длине, а так как мощность является произведением величины тока на напряжение, то при равном диаметре колб мощность ламп пропорциональна их длине. У ламп мощностью 36–40 Вт длина колбы равна 1210 мм, а у ламп мощностью 18–20 Вт — 604 мм.

Укорачивание ламп и последующее достижение необходимых мощностей за счет повышения разрядного тока не оправдывает себя, так как при этом повышается температура колбы, что ведет к повышению давления ртутных паров и снижению светоотдачи ламп. Производители ламп уменьшают их общую длину с помощью изменения формы ламп, изготавливая U-образные или кольцевые лампы. Уже в 50-е годы ХХ века в СССР изготавливались U-образные лампы мощностью 30 Вт с диаметром колбы 26 мм и мощностью 8 Вт с диаметром колбы 14 мм.

Полностью устранить проблему снижения размеров ламп получилось лишь в 80-е годы с началом применения люминофоров, которые допускают использование высоких электрических нагрузок. Колбы люминесцентных ламп стали изготавливать из трубок с диаметром 12 мм и изгибать их, уменьшая этим общую длину ламп. Началось производство компактных люминесцентных ламп, по конструкции и принципу работы не отличающихся от линейных ламп.

Люминесцентные лампы прочно вошли в нашу жизнь как один из экономичных источников света. Благодаря не ослабевающему вниманию к ним со стороны изобретателей, они продолжают быть интересны и производителям светотехнической продукции.

Мы поможем подобрать светильники на ваш объект

Ответственный менеджер по запросу:
Евгений Чилимов
+7(495)649-86-94 доб. 106

Освещение магазинов на объектах

Перейти в галерею

Статьи по теме #промышленное освещение

Преимущества и перспективы применения светодиодов в искусственном освещении

#промышленное освещение

Реализация задач искусственного освещения с применением светодиодов позволяет создать принципиально новые, экономичные, экологически чистые осветительные средства. Незначительная деградация светового потока и длительная работа свойственна и LED лампам.

Классификация и обозначение галогенных ламп

#промышленное освещение

Галогенные лампы накаливания разделяются на линейные и компактные (малогабаритные).
Линейные галогенные лампы обычно оборудованы цоколями по обеим сторонам колбы. Лампы мощностью 2000 ватт и выше не оснащены цоколями.

Проблемы существующих систем промышленного освещения и пути их решения

#промышленное освещение

На многих крупных предприятиях функционируют устаревшие системы наружного освещения, которые требуют модернизации для сокращения затрат на их содержание и увеличения безопасности эксплуатации.

Читать все статьи

Компактные люминесцентные лампы — Химия LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    50803
    • Эд Витц, Джон В. Мур, Джастин Шорб, Ксавьер Прат-Ресина, Тим Вендорф и Адам Хан
    • Цифровая библиотека химического образования (ChemEd DL)

    Компактные люминесцентные лампы или компактные люминесцентные лампы обманчиво просты. По сравнению с принципами работы лампы накаливания, понимание того, как КЛЛ излучает свет, требует знания электронной структуры атомов, участвующих в излучении света. Эксплуатация КЛЛ проста: как только электрический ток начинает течь через КЛЛ, внутренняя часть лампы начинает светиться и излучать видимый свет. Если копнуть глубже, КЛЛ содержит несколько ключевых компонентов, участвующих в этом излучении видимого света, включая присутствие паров элементарной ртути, инертных газов (аргона, ксенона, неона или криптона) и внутреннего покрытия, называемого люминофором, который фактически является ответственным веществом. для получения видимого света из КЛЛ.

    Вспоминая электронную конфигурацию атома и его орбитальные подоболочки, каждый атом содержит некоторое различное количество орбитальных подоболочек, которые соответственно заполняются с возрастающей энергией, начиная с орбитальной подоболочки с наименьшей энергией. Например, гелий содержит два электрона, оба из которых расположены на орбитали 1s2, что делает эту орбиталь заполненной. Для сравнения, атом водорода содержит только один электрон на орбитали 1s 2 , что делает эту орбиталь частично заполненной. Этот принцип полных или частично заполненных орбиталей жизненно важен для понимания работы КЛЛ.

    Все газы, населяющие внутреннюю полость КЛЛ, содержат полностью заполненные орбитальные подоболочки. Поскольку электронные конфигурации ртути и благородных газов находятся на самом низком возможном энергетическом уровне, называемом основным состоянием, эти типы атомов сильно сопротивляются отказу от каких-либо электронов из-за стабильности, которой они уже достигли благодаря заполненным орбитальным подоболочкам. Однако, когда энергия, обеспечиваемая электрическим током, проходит через КЛЛ, избыточный поток электронов воздействует на атомы ртути и инертных газов. Это столкновение, называемое неупругим рассеянием между электроном и атомом, заставляет электрон из самой внешней подоболочки столкнувшегося атома временно «прыгать» или переходить на следующий самый высокий энергетический уровень. Этот электрон сейчас находится в «возбужденном» состоянии, но желает вернуться в свое прежнее стабильное состояние, поэтому будет излучать фотон энергии, когда возбужденный электрон переходит обратно на более низкий энергетический уровень, тем самым высвобождая избыточную энергию в виде этого протона.

    Однако эти фотоны, испускаемые газообразными атомами, имеют длины волн в ультрафиолетовом спектре и должны быть сначала преобразованы в видимый свет для любой полезности. Здесь внутреннее покрытие КЛЛ, называемое люминофором, работает по тому же механизму, что и ранее описанное возбуждение и переходы из более высоких в более низкие энергетические состояния. Люминофор будет поглощать ультрафиолетовые фотоны, вызывая временное возбуждение на следующем более высоком энергетическом уровне, а затем излучение фотона с более низкой энергией из-за свойств материала люминофора, состоящего из смеси металлических металлов, например: меди, цинка, сульфиды, оксиды, нитриды, алюминий, селениды, кремний или редкоземельные металлы. В зависимости от этого состава видимый свет, излучаемый КЛЛ, может различаться по длине волны и соответствующему видимому цвету.

    Из ChemPRIME: 5.15: Электронные конфигурации

    • Эд Витц (Университет Куцтауна), Джон В. Мур (UW-Мэдисон), Джастин Шорб (Колледж Хоуп), Ксавьер Прат-Ресина (Университет Миннесоты в Рочестере), Тим Вендорф и Адам Хан.


    Эта страница под названием «Компактные люминесцентные лампы» используется в соответствии с незаявленной лицензией, ее авторами, ремиксами и/или кураторами выступили Эд Витц, Джон У. Мур, Джастин Шорб, Ксавьер Прат-Ресина, Тим Вендорф и Адам Хан.

    1. Наверх
    • Была ли эта статья полезной?
    1. Тип изделия
      Раздел или Страница
      Автор
      ХимПРАЙМ
    2. Теги
      1. Образец

    Компактные люминесцентные лампы (КЛЛ) – информационный бюллетень/часто задаваемые вопросы

    • Что такое компактные люминесцентные лампы (КЛЛ)?
    • Регулирует ли FDA компактные люминесцентные лампы?
    • Излучают ли КЛЛ УФ-излучение?
    • Каков диапазон длин волн светового излучения, излучаемого КЛЛ?
    • Как я узнаю, что уровень УФ излучения КЛЛ является приемлемо низким?
    • Как близко мы можем безопасно подобраться к работающему КЛЛ?
    • Как узнать, чувствителен ли я к ультрафиолетовому или видимому свету?
    • Существуют ли меры предосторожности, которые я могу предпринять для дальнейшего снижения небольшого уровня УФ-излучения от компактных люминесцентных ламп, если захочу?
    • Любые другие проблемы с безопасностью? Я слышал, что КЛЛ содержат ртуть. Должен ли я беспокоиться?

    Что такое компактные люминесцентные лампы (КЛЛ)?

    Компактные люминесцентные лампы относятся к типу люминесцентных ламп. Доступно множество моделей компактных люминесцентных ламп, предназначенных для замены традиционных ламп накаливания. Компактный размер этих компактных люминесцентных ламп позволяет им вписываться во многие существующие светильники с лампами накаливания, включая настольные и напольные лампы, обычно используемые в домашних хозяйствах. КЛЛ очень энергоэффективны, потребляя примерно четверть энергии по сравнению с традиционными лампами накаливания. КЛЛ также имеют очень долгий срок службы, обычно 6000-15000 часов по сравнению с 750-1000 часов у обычной лампы накаливания.

    Регулирует ли FDA компактные люминесцентные лампы?

    Люминесцентные лампы, включая компактные люминесцентные лампы, являются электронными продуктами, подпадающими под действие Раздела 532 Закона о пищевых продуктах, лекарствах и косметике. Раздел 532 Закона уполномочивает FDA устанавливать и осуществлять программу радиационного контроля электронных продуктов, предназначенную для защиты здоровья и безопасности населения от излучения, которое может излучаться электронными продуктами, например УФ, которое может излучаться компактными люминесцентными лампами.

    Хотя FDA регулирует КЛЛ в соответствии с Сводом федеральных правил (CFR) 21, часть 1000, в настоящее время для КЛЛ не существует конкретных стандартов или требований к ежегодной отчетности. Производители КЛЛ подчиняются CFR 21, часть 1002.20, который требует, чтобы производители КЛЛ сообщали о случайных радиационных инцидентах в случае их возникновения. Кроме того, часть 1003.10 CFR требует, чтобы производители уведомляли FDA в случае дефекта или отказа продукта, который может привести к случайному воздействию.

    Подавляющее большинство продуктов, вызывающих озабоченность FDA, способны излучать значительные уровни излучения, например, рентгеновское оборудование или лампы для загара кожи, но компактные люминесцентные лампы не попадают в эту область.

    Излучают ли КЛЛ УФ?

    Все люминесцентные лампы излучают некоторое количество УФ-излучения. Типичные люминесцентные лампы, включая компактные люминесцентные лампы, с которыми сталкиваются потребители, излучают очень низкий уровень УФ-излучения. Для измерения УФ-излучения этих ламп необходимо использовать очень чувствительное измерительное оборудование.

    Каков диапазон длин волн светового излучения, излучаемого КЛЛ?

    Поскольку компактные люминесцентные лампы предназначены для общего освещения, большая часть света, излучаемого компактными люминесцентными лампами, сосредоточена в видимой области спектра (длина волны примерно 400–700 нм). Кроме того, типичные компактные люминесцентные лампы излучают небольшое количество УФ-В (280-315 нм), УФ-А (315-400 нм) и инфракрасного (> 700 нм) излучения.

    Как я узнаю, что уровень ультрафиолетового излучения КЛЛ является приемлемо низким?

    Североамериканское общество инженеров по светотехнике (IESNA) опубликовало серию стандартов, касающихся эмиссии излучения от освещения общего назначения. Если КЛЛ превысит допустимые уровни УФ-излучения (согласно IESNA RP 27.3), его упаковка должна быть снабжена предупредительной этикеткой. Этот стандарт, разработанный при содействии FDA, требует, чтобы производители ламп предусмотрели соответствующие меры предосторожности, если таковые необходимы. На обычных расстояниях использования уровни УФ-излучения от компактных люминесцентных ламп падают ниже уровня, вызывающего общую озабоченность у нормальных здоровых людей, и поэтому не содержат такого предупреждения.

    Как близко мы можем безопасно подобраться к работающему КЛЛ?

    Если вы не являетесь одним из немногих людей, у которых есть заболевание (например, некоторые формы волчанки), которое делает вас особенно чувствительным к ультрафиолетовому или даже видимому свету, вы должны иметь возможность использовать эти лампы на том же расстоянии, что и вы. использовать традиционные лампы накаливания. Однако недавнее исследование, проведенное Агентством по охране здоровья Соединенного Королевства, показало, что существуют измеримые уровни УФ-излучения от КЛЛ с одной оболочкой при использовании на расстоянии менее 1 фута. В качестве меры предосторожности рекомендуется не использовать эти типы компактных люминесцентных ламп на расстоянии менее 1 фута более одного часа в день.

    Как узнать, чувствителен ли я к ультрафиолетовому или видимому свету?

    Только ваш врач может поставить такой диагноз. Подавляющее большинство людей не страдают такой чувствительностью к ультрафиолетовому или видимому свету.

    Существуют ли меры предосторожности, которые я могу предпринять, чтобы еще больше снизить небольшой уровень УФ-излучения от компактных люминесцентных ламп, если захочу?

    Стекло, используемое в компактных люминесцентных лампах, уже обеспечивает эффект УФ-фильтрации. Кроме того, любое дополнительное стекло, пластик или ткань, используемые в осветительных приборах между вами и КЛЛ, еще больше снизят и без того низкие уровни до еще более низких уровней, поскольку эти материалы действуют как дополнительные УФ-фильтры. Увеличение расстояния между вами и любым источником излучения, включая компактные люминесцентные лампы, также снизит малый уровень до более низкого уровня.

    Однако, если вы все же хотите предпринять дополнительные шаги, вы можете приобрести КЛЛ с дополнительной стеклянной или пластиковой крышкой, закрывающей КЛЛ, чтобы она больше походила на традиционную лампу накаливания. Эти покрытия обеспечивают дополнительное снижение низкого уровня УФ до более низкого уровня.

    Любые другие проблемы с безопасностью? Я слышал, что КЛЛ содержат ртуть. Должен ли я беспокоиться?

    Как и традиционные ламповые люминесцентные лампы, компактные люминесцентные лампы содержат небольшое количество ртути. Именно использование этого небольшого количества ртути позволяет любой люминесцентной лампе производить видимое освещение с гораздо более высоким уровнем эффективности, чем лампы накаливания. Типичные бытовые компактные люминесцентные лампы содержат менее 5 мг ртути, что представляет собой сферу размером с кончик ручки. КЛЛ не выделяют ртуть во время работы. Единственный способ выброса ртути из компактной люминесцентной лампы — это разрыв внешней стеклянной трубки, содержащей ртуть.

    Будьте осторожны, чтобы не сломать КЛЛ. Если вы разбили один из них, вы должны тщательно очистить весь остаток в соответствии с инструкциями EPA, которые вы можете найти по адресу http://www.epa.gov/mercury/spills/index.htm

    . Что насчет других потенциальных неблагоприятных последствий для здоровья от КЛЛ? ? Я видел некоторые заявления о том, что КЛЛ вызывают у некоторых людей головную боль. Это правда?

    Подавляющее большинство пользователей КЛЛ, как в домашних хозяйствах, так и в коммерческих зданиях, не сообщают о проблемах, связанных с использованием КЛЛ, включая головные боли. Однако есть некоторые неподтвержденные сообщения, и, хотя до сих пор нет исследований, прямо объясняющих какой-либо вероятный причинный механизм, возможно, что некоторые люди подвержены таким эффектам головной боли, как некоторые люди утверждают, что их раздражает обычное флуоресцентное освещение. Однако подавляющее число людей, использующих КЛЛ, не сообщают о таких негативных последствиях.


    Опубликовано

    в

    от

    Метки:

    Комментарии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *