Сопротивление кабеля активное и реактивное: Активные и реактивные сопротивления кабелей

Содержание

Определение сопротивления кабелей на напряжение 6

В данной статье приводятся таблицы активного и индуктивного сопротивления кабелей на напряжение 6 — 35 кВ взятые из различных справочников по проектированию электрических сетей и руководящих указаний.

Значения активного и индуктивного сопротивления кабелей необходимы при расчете токов короткого замыкания и проверки кабеля на потери напряжения.

Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ

1. РД 153-34.0-20.527-98 – Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. 2002 г. Таблица П.8, страница 145.

2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г. Таблица 2-5, страница 48.

3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.

4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449

Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.

Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».

Активное сопротивление кабеля

1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:

где:

  • l — длина жилы, м;
  • s – поперечное сечение жилы, мм2, определяется по формуле: π*d2/4;
  • d – диаметр жилы кабеля;
  • α20 – температурный коэффициент сопротивления, равный при 20 °С:
  • 0,00393 1/град – для меди;
  • 0,00403 1/град – для алюминия;
  • ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.
  • tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1. 3.12.

2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:

  • 0,0184 Ом*мм2/м – для медных жил;
  • 0,031 Ом*мм2/м – для алюминиевых жил.

3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:

Индуктивное сопротивление кабеля

1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:

где:

  • d – диаметр жилы кабеля.
  • lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле [Л1.с.19]:

где:

  • lА-В — расстояние между центрами жил фаз А и В;
  • lВ-С — расстояние между центрами жил фаз В и С;
  • lС-А — расстояние между центрами жил фаз С и А.

Пример

Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.

Решение

1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:

S = π*d2/4 = 3,14*13,52/4 = 143 мм2

Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.

где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.

Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:

2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:

где:

  • l = 1000 м – длина жилы, м;
  • α20 – температурный коэффициент сопротивления, равный при 20 °С:
  • 0, 00393 1/град – для меди;
  • 0,00403 1/град – для алюминия;
  • ρр – удельное сопротивление материала многопроволочной жилы, равное:
  • 0,0184 Ом*мм2/м – для медных жил;
  • 0,031 Ом*мм2/м – для алюминиевых жил;
  • tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п. 1.3.10.

3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:

где: L = 0,3 км – длина кабельной трассы, км;

4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.

где:

  • lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
  • lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
  • lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.

Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).

5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:

где: d = 13,5 мм – диаметр жилы кабеля;

6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:

Сопротивление кабелей с изоляцией из сшитого полиэтилена на напряжение 6 — 35 кВ

Значения активного и реактивного (индуктивного) сопротивления кабелей с изоляцией из сшитого полиэтилена приводятся в каталогах завода-изготовителя. Для ознакомления приведу лишь некоторых производителей кабельной продукции.

«Электрокабель» Кольчугинский завод» – Каталог кабельной продукции.

В таблице 12 – приводятся значения активного сопротивления кабелей согласно ГОСТ 22483-2012

Компания «Estralin» — Каталог силовые кабели и кабельные системы 6 – 220 кВ.

Компания «Камкабель» — Настольная книга проектировщика. Кабели с изоляцией из сшитого полиэтилена на напряжение 6-35 кВ.

Справочники по проектированию электрических сетей и руководящие указания, которые упомянуты в данной статье, вы сможете найти, скачав архив.

СКАЧАТЬ

Литература:

1. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

ООО «НПП «Энергосервис»

О предприятии…

Октябрь 29, 2016 | Мамаев М.М.


Общество с ограниченной ответственностью «Научно-производственное предприятие «Энергосервис»
образовано 12 апреля 2006 года.
Основу предприятия составляют инженеры и профессионалы высокого уровня, имеющие опыт в проведении инженерных
изысканий, проектирования, строительства объектов электроэнергетики и владеющие самыми современными методами
решения технических проблем при проектировании.
Опыт работы предприятия составляет более 14 лет, до настоящего времени
выполнено более 1100 объектов.

Основные виды деятельности

Инженерные изыскания

Инженерные изыскания всех видов:

геологические, геодезические и экологические.

Проектная документация

Проектная и сметная документация:

для строительства объекта, его эксплуатации или ликвидации.

Объекты электроэнергетики

Строительство объектов электроэнергетики включая:

выполнение работ «под ключ».

Экономия тепловой энергии

Внедрение мероприятий направленных на эффективное расходование тепловой энергии.

Экономия электрической энергии

Внедрение мероприятий направленных на эффективное расходование электрической энергии.

Экономия водопотребления

Внедрение мероприятий направленных на эффективное расходование воды.

Энергоэффективность и энергосбережение


Энергоэффективность и энергосбережение входят в пять стратегических направлений приоритетного
технологического развития Российской Федерации и предполагают полезное и эффективное расходование энергии, в настоящее время вопросам экономии энергии
и повышении показателей энергетической эффективности уделяется особое внимание.

 


  • ООО «НПП «Энергосервис» осуществляет внедрение системы энергетического менеджмента
    на предприятии, а также разработку и внедрение организационных мероприятий,
    направленных на повышению показателей энергоэффективности и энергосбережения в соответствии с Федеральным законом
    №261-ФЗ от 23.11.2009 «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты
    Российской Федерации».

Конкурентные преимущества


Учитывая высокие требования к качеству выполняемых работ и квалификации персонала, ООО «НПП «Энергосервис»
обеспечивает конкурентные преимущества во всех видах работ по профилю своей деятельности за счет наличия таких показателей, как
профессионализм, оптимальные сроки выполнения работ,
ответственность перед клиентами, партнерские и долговременные отношения.

Организация работ «под ключ»


ООО «НПП «Энергосервис» обеспечивает выполнение всех видов работ по профилю своей деятельности,
начиная от составления технического задания и заканчивая сдачей документации со всеми необходимыми согласованиями, экспертизой
проектной документации, инженерных изысканий и полностью отвечает за качественное внедрение конечного продукта в указанные сроки.

Отлаженная технология управления


Специалисты ООО «НПП «Энергосервис» используют возможности одновременного выполнения ряда работ,
что оптимизирует общее время реализации проекта, позволяет координировать резервные ресурсы и свести к минимуму риск выхода за
временные рамки, отведенные на конкретный проект.

Работа с различными производителями


При проектировании жилых, гражданских сооружений и комплексов, объектов электроэнергетики, в зависимости от поставленной задачи,
может применяться оборудование, как отечественных производителей, так и зарубежных. При этом в любом случае используется только
качественное оборудование, прошедшее различные испытания на надежность, а также имеющее сертификаты качества.

 

Понимание основ реактивной мощности

Реактивная мощность малопонятна для не инженеров и важна при проектировании систем электроснабжения, особенно на уровне распределения. Хотя для понимания реактивной мощности требуется знание интегрального исчисления, основные интуитивные представления можно понять без тщательного математического изучения. По мере того, как системы распределения становятся более сложными с распределенными энергоресурсами и автоматизацией спроса, участникам отрасли необходимо общее понимание последствий «воображаемой мощности» для эффективности и стабильности системы.

Реактивная мощность – это электричество, которое одновременно бесполезно и необходимо

Электрическая мощность (P, в ваттах) состоит из напряжения (В, в вольтах) и тока (I, в амперах). Формула P = V × I. Хорошей аналогией для описания взаимосвязи между напряжением и током является вода, текущая по реке. Ток — это скорость воды, а напряжение — наклон реки. Когда становится круче, эта река ведет себя странно. Скорость течения остается прежней, однако вода становится более плотной, и в результате течение становится тяжелее. Способность потока толкать вас вниз по реке — скорость течения, умноженная на плотность воды (напряжение) — это сила реки.

кажущаяся мощность реки — если ее просто измерить — включает как поступательное движение, так и нисходящее давление на русло реки. В то время как поступательное движение полезно для выполнения работы (скажем, для запуска небольшой гидротурбины), давление на русло реки служит только для поддержания потока. Это разница между реальной мощностью (P, в ваттах) и реактивной мощностью (VAr, в мнимых ваттах). Отношение реактивной мощности к полной мощности (активная мощность 2 + реактивная мощность 2 ) 1/2 называется коэффициентом мощности . Рассмотрим пример лошади, тянущей вагон.

Пример коэффициента мощности: использование лошади и дрезины

Источник: Consolidated Edison

Как показано на рисунке выше, представьте себе лошадь, которая тянет вагон с края пути. Хотя лошадь привязана по диагонали, вагон может двигаться только по рельсам. Сила натяжения веревки — это кажущаяся мощность; только часть этой мощности равна «рабочая» (реальная) мощность, тянущая вагон вперед. Из-за угла тяги лошади часть затрачиваемой энергии тратится впустую в виде «нерабочей» (реактивной) мощности. По мере того, как этот угол становится больше, соотношение между активной мощностью и реактивной мощностью снижается до тех пор, пока лошадь не начнет тянуть прямо от путей, не двигая вагон вообще. Это соотношение часто рассчитывается как коэффициент мощности: деление активной мощности на полную мощность (активная + реактивная).

Огромные отключения электроэнергии произошли в результате сбоев реактивной мощности

Реактивная мощность важна для потока энергии, поскольку она помогает регулировать напряжение. Возвращаясь к аналогии с рекой, без русла реки, на которое можно было бы опираться для движения вперед, не могло бы быть течения воды. Увеличение реактивной мощности можно описать как увеличение крутизны русла реки при одновременном «выдавливании» воды вперед. Это «сжатие» увеличивает плотность воды и позволяет ей двигаться дальше. Точно так же реактивная мощность имеет решающее значение в линиях электропередачи для повышения напряжения вверх по течению и «сжатия» потока вниз по течению.

Производство реактивной мощности, иногда называемой мнимой мощностью , требует мощности электростанции, но не дает прямой экономической выгоды — представьте себе лошадь, тянущую вагон по диагонали. Для интегрированных коммунальных предприятий-монополистов работа электростанций по производству реактивной мощности компенсируется через тарифную базу. Для торговых генераторов реактивная мощность отнимает мощность станции, которая вместо этого могла бы производить реальную энергию. Таким образом, реактивная мощность должна компенсироваться в качестве вспомогательной услуги.

14 июля 2003 г. на северо-востоке США и в Канаде произошло историческое отключение электроэнергии, которое затронуло около 55 миллионов человек в восьми штатах и ​​одной провинции. Среди причин этого огромного отказа системы в качестве важного фактора была названа острая нехватка реактивной мощности. В часы, предшествовавшие отключению электроэнергии, спрос на реактивную мощность был особенно высоким из-за больших объемов передачи на большие расстояния через Огайо в Канаду. В то же время предложение реактивной мощности было опасно низким отчасти из-за отсутствия стимула для производства реактивной мощности. Сбои реактивной мощности также способствовали отключениям электроэнергии на Западе (1996) и во Франции (1978).

Реактивная мощность возникает в результате задержки между током и напряжением

В цепи постоянного тока (DC) мощность имеет постоянную интенсивность и может течь только в одном направлении. С другой стороны, ток и напряжение в цепях переменного тока (AC) быстро колеблются, и кажется, что мощность течет во всех направлениях. Скорость флуктуаций называется частотой  , а задержка между двумя «частотами» – их фазовый угол . Фазовый угол важен как в одном месте, так и между двумя точками. Например, задержка частоты напряжения между начальной и конечной точками провода дает потоков мощности . Важным фактором в цепях переменного тока является задержка между колебаниями напряжения и тока в любой точке. Когда ток и напряжение в одной точке находятся в идеальном соотношении в фазе друг с другом, таким образом, имея точно такое же время, вся мощность, полученная от потока, равна реальная мощность . По мере того как задержка между током и напряжением увеличивается, увеличивается и количество реактивной мощности — лошадь все дальше тянет от вагона. Реактивная мощность присутствует всякий раз, когда ток «отстает» или «опережает» напряжение.

Фазы тока, напряжения и мощности в системе переменного тока

Источник: MIT Electric Grid of the Future Report

Препятствия для потоков мощности на линии электропередач называются импедансами . Эти импедансы могут быть сопротивлением или реактивным сопротивлением. Сопротивление — это трение электронов с атомами внутри электрических проводников, которое в равной степени влияет как на ток, так и на напряжение, преобразуя небольшое количество энергии в отработанное тепло. Реактивное сопротивление может относиться либо к электрическим полям, либо к магнитным полям. Электрические поля , влияющие на напряжение, создаются, когда две электрически заряженные металлические пластины помещаются близко друг к другу, не касаясь друг друга. Эти конденсаторы создают напряжение без протекания тока, тем самым эффективно накапливая и задерживая колебания напряжения относительно тока. Магнитные поля , с другой стороны, вызывают отклонение тока от напряжения. Сами электрические линии постоянно накапливают и извлекают переменный ток в магнитном поле, которое закручивается по спирали вокруг провода. Катушки индуктивности — это специально разработанные катушки проволоки, предназначенные для накопления тока в магнитных полях. Некоторые бытовые приборы, такие как электродвигатели и холодильники, обладают индуктивными свойствами.

Когда ток отстает от напряжения, возникает положительная реактивная мощность в цепи. Наиболее важной причиной положительной реактивной мощности является реактивное сопротивление самих линий электропередач. На протяжении всей линии часть тока совершает «объезд» в спиралевидном магнитном поле вокруг линии. Трансформаторы, основанные на катушках индуктивности, также вводят в линии положительную реактивную мощность. На краю сети индуктивные приборы, такие как электродвигатели и холодильники, также вносят положительную реактивную мощность.

Поскольку более высокая реактивная мощность соответствует более высокому напряжению, слишком большая положительная реактивная мощность в одной части сети может вызвать резкое падение напряжения. Чтобы компенсировать реактивное сопротивление линий электропередач, трансформаторов и индуктивных приборов, необходимо обеспечить достаточную подачу отрицательной реактивной мощности. Эта услуга может быть оказана электростанциями, хотя и за счет реального производства электроэнергии и ограничена пропускной способностью. В качестве альтернативы отрицательная реактивная мощность может быть использована ниже по потоку для улучшения потока мощности. Например, конденсаторы, размещенные рядом с трансформаторами и индуктивными нагрузками, можно использовать для уменьшения падений напряжения там, где это наиболее необходимо. Некоторые электрические устройства, такие как интеллектуальные инверторы, также могут локально стабилизировать реактивную мощность.

Регулирование реактивной мощности в системе распределения электроэнергии

Хотя реактивная мощность необходима для стабильности напряжения при передаче, слишком большая положительная реактивная мощность в системе распределения влияет на энергоэффективность. Возвращаясь к примеру с лошадью и дрезиной, увеличение угла тяги снижает реальную мощность, прикладываемую к дрезине. В 2011 году Consolidated Edison в Нью-Йорке ввела плату за реактивную мощность, чтобы наказать крупных потребителей электроэнергии с неэффективным индукционным оборудованием. Коммунальное предприятие рекомендует крупным потребителям устанавливать конденсаторы рядом с индуктивными нагрузками, зацикливать работу индуктивного оборудования и модернизировать свои предприятия более эффективным оборудованием, чтобы поддерживать их коэффициент мощности выше 9.5%.

Реактивная мощность — задержка между напряжением и током в данной точке — зависит от ограничений передачи. В результате часто приходится производить реактивную мощность вблизи того места, где она необходима. Кроме того, некоторым приборам, таким как электродвигатели, для правильной работы магнитов требуется отрицательная реактивная мощность. Таким образом, локальная подача реактивной мощности намного эффективнее, чем ее производство издалека. Именно здесь распределенные энергетические ресурсы могут принести значительные преимущества в регулировании реактивной мощности.

Согласно SDG&E, интеллектуальные инверторы могут эффективно регулировать реактивную мощность с небольшими дополнительными затратами. В январе 2014 года Комиссия по коммунальным предприятиям Калифорнии выпустила технический отчет, в котором рекомендуются стандарты для возможностей интеллектуальных инверторов. PJM также выступила с решительным заявлением в поддержку интеллектуальных инверторов для регулирования реактивной мощности. Согласно документам рабочей группы IEEE 1547, «результаты […] моделирования показывают, что реальный и реактивный встречный поток не является серьезной проблемой и что нет необходимости вносить какие-либо существенные изменения в работу фидера». 0109 при высоком уровне проникновения [интеллектуальных] инверторов ». В апреле 2014 года FERC опубликовала отчет персонала, в котором изложены методологии компенсации реактивной мощности в качестве вспомогательной услуги. С добавлением новых возможностей «умной сети», таких как автоматизация, прогнозная аналитика и местная координация, реактивная мощность может стать единственной лошадью, которую мы можем приручить.

Понимание коэффициента мощности | www.electriceasy.com

Энергия нужна и используется во всем мире. С точки зрения удобства, эффективности и экономии, лучше всего, чтобы мы генерировали, передавали и распространяли его в электрической форме до того, как он будет преобразован в требуемую форму с помощью подходящего оборудования. По тем же соображениям экономии и эффективности мы используем переменный ток, а не постоянный. Практически мы производим, передаем и распределяем энергию почти исключительно в форме переменного тока. Постоянный ток используется либо в приложениях постоянного тока (машины постоянного тока и электронные схемы), либо в линиях передачи постоянного тока высокого напряжения.

Везде, где используется мощность переменного тока, возникает вопрос коэффициента мощности.

Коэффициент мощности

  • Определяется как ‘ косинус угла между напряжением и током ‘.
  • В цепи переменного тока напряжение и ток идеально совпадают по фазе.
  • Но на практике между ними существует разность фаз.
  • Косинус этой разности фаз называется коэффициентом мощности.
  • Его можно определить и математически представить следующим образом:

Из рис. (а) выше, можно четко отметить, что существует разность фаз угла ɸ между вектором напряжения и вектором тока.
Коэффициент мощности = cosɸ

На рис. (b) называется треугольником мощности
Здесь VI sinɸ = реактивная мощность (в ВАр)
          VI cosɸ = активная мощность (в ваттах)
          VI = полная мощность (в ВА)
PF = cosɸ = активная мощность ( Вт) / Полная мощность (ВА)

На рис. (c) называется Треугольник импеданса
Здесь, R = сопротивление, X = реактивное сопротивление, Z = импеданс отставание, опережение или единство.

Отстающий коэффициент мощности

  • Когда ток отстает от напряжения, коэффициент мощности цепи называется «отстающим»
  • Когда цепь индуктивная, коэффициент мощности отстает.
  • Нагрузки, такие как асинхронные двигатели, катушки, лампы и т. д., являются индуктивными и имеют отставание pf.

Опережающий коэффициент мощности

  • Когда ток опережает напряжение (или напряжение отстает от тока), коэффициент мощности цепи называется опережающим.
  • Если цепь емкостная, коэффициент мощности опережает.
  • Емкостные нагрузки, такие как синхронные конденсаторы, конденсаторные батареи и т. д., потребляют опережающий ток. Такие схемы имеют опережающий коэффициент мощности.

Единица Коэффициент мощности

  • Коэффициент мощности равен единице (т. е. 1) для идеальных цепей.
  • Когда ток и напряжение совпадают по фазе, PF = 1
  • Коэффициент мощности не может быть больше единицы.
  • На практике оно должно быть как можно ближе к единице.

Если коэффициент мощности низкий, возникают следующие проблемы:

Влияние низкого коэффициента мощности

  1. Ток нагрузки
    Мощность в цепи переменного тока может быть определена как: P = VI cosɸ
    Следовательно, cosɸ = P / VI
    I ∝ 1 / cosɸ
    Аналогичное соотношение может быть получено для 3 фаз схема тоже. Мы видим, что ток обратно пропорционален pf.

    Например, предположим, что мы хотим передать мощность 10 кВА при 100 В
    Если PF = 1,
    I = P / (V cosɸ) = 10000 / (100 x 1) = 100 А
    Если PF = 0,8 ,
    I = P / (V cosɸ) = 10000 / (100 x 0,8) = 125 A
    Следовательно, потребляемый ток выше при низком коэффициенте мощности.

  2. Потери: Как указано выше, при низком коэффициенте мощности потребляемый ток велик. Следовательно, потери в меди (потери I 2 R) также будут высокими. Это снижает эффективность оборудования.
  3. Перегрев оборудования: I 2 R потери выделяют тепло (закон Джоуля). Следовательно, повышение температуры будет относительно большим при низком коэффициенте мощности, что еще больше увеличит нагрузку на изоляцию.
  4. Сечение проводника: Низкий коэффициент мощности приводит к более высокому току нагрузки. Если ток нагрузки увеличивается, размер требуемого проводника также увеличивается. Это еще больше увеличит стоимость проводника.
  5. кВА мощность машины: Машины не рассчитываются в кВт при производстве, потому что коэффициент мощности источника неизвестен. Вместо этого они оцениваются в кВА.
    Согласно определению, Cosɸ = Активная мощность (кВт) / Полная мощность (кВА)
    Следовательно, номинальная мощность в кВА = 1 / cosɸ
    Следовательно, для низкого коэффициента мощности необходимо оборудование с большей номинальной мощностью в кВА. Но больший рейтинг кВА означает больший размер оборудования. Если размер увеличивается, стоимость также увеличивается.
  6. Регулирование напряжения: Определяется как разница между передающим и принимающим конечным напряжением на единицу передающего конечного напряжения. Когда мощность передается от одного конца к другому, напряжение падает по нескольким причинам. Это падение напряжения должно находиться в допустимых пределах.
    P = VI cosɸ , поэтому I ∝ 1 / V
    При низком коэффициенте мощности ток будет больше, и, следовательно, падение напряжения будет больше. Следовательно, регулирование напряжения при низком коэффициенте мощности плохое.
  7. Активная и реактивная мощность (мощность передачи мощности): Активная и реактивная мощности передаются по линии вместе. Активная мощность необходима для питания нагрузки. Реактивная мощность необходима для поддержания напряжения в линии. Но если реактивная мощность больше, то передаваемая активная мощность уменьшается.

Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *