Солнечные ячейки: Solar cell | Definition, Working Principle, & Development

Солнечная батарея | Определение, принцип работы и разработка

схема структуры солнечного элемента

Посмотреть все СМИ

Ключевые люди:
Роджер Энджел
Похожие темы:
тонкопленочный солнечный элемент
задний соединительный слой
кремниевый солнечный элемент
концентратор солнечной батареи
верхний соединительный слой

Просмотреть весь связанный контент →

Сводка

Прочтите краткий обзор этой темы

солнечный элемент , также называемый фотогальваническим элементом , любое устройство, которое непосредственно преобразует энергию света в электрическую посредством фотогальванического эффекта. Подавляющее большинство солнечных элементов изготавливается из кремния — с повышением эффективности и снижением стоимости, поскольку материалы варьируются от аморфных (некристаллических) до поликристаллических и кристаллических (монокристаллических) форм кремния. В отличие от батарей или топливных элементов, солнечные элементы не используют химические реакции и не требуют топлива для производства электроэнергии, и, в отличие от электрических генераторов, они не имеют движущихся частей.

Солнечные элементы можно объединять в большие группы, называемые массивами. Эти массивы, состоящие из многих тысяч отдельных ячеек, могут функционировать как центральные электростанции, преобразовывая солнечный свет в электрическую энергию для распределения среди промышленных, коммерческих и бытовых пользователей. Солнечные элементы в гораздо меньших конфигурациях, обычно называемые панелями солнечных элементов или просто солнечными панелями, были установлены домовладельцами на крышах, чтобы заменить или увеличить их обычное электроснабжение. Панели солнечных батарей также используются для обеспечения электроэнергией во многих отдаленных наземных районах, где обычные источники электроэнергии либо недоступны, либо слишком дороги в установке. Поскольку у них нет движущихся частей, которые могли бы нуждаться в обслуживании, или топлива, которое требовало бы пополнения, солнечные элементы обеспечивают питание для большинства космических установок, от спутников связи и метеорологических спутников до космических станций. (Однако солнечной энергии недостаточно для космических зондов, отправленных к внешним планетам Солнечной системы или в межзвездное пространство, из-за распространения лучистой энергии на расстоянии от Солнца.) Солнечные элементы также использовались в потребительских товарах, таких как электронные игрушки, портативные калькуляторы и портативные радиоприемники. Солнечные элементы, используемые в устройствах такого типа, могут использовать искусственный свет (например, от ламп накаливания и люминесцентных ламп), а также солнечный свет.

Узнайте, как сделать солнечные элементы более эффективными, действенными и доступными

Посмотреть все видео к этой статье

Хотя общее производство фотоэлектрической энергии ничтожно мало, оно, вероятно, будет увеличиваться по мере сокращения запасов ископаемого топлива. Фактически, расчеты, основанные на прогнозируемом мировом потреблении энергии к 2030 году, показывают, что глобальные потребности в энергии будут удовлетворяться за счет солнечных панелей, работающих с эффективностью 20 процентов и покрывающих лишь около 496 805 квадратных километров (191 817 квадратных миль) поверхности Земли. Потребность в материалах будет огромной, но выполнимой, поскольку кремний является вторым наиболее распространенным элементом в земной коре. Эти факторы побудили сторонников солнечной энергетики представить себе будущую «солнечную экономику», в которой практически все потребности человечества в энергии удовлетворяются за счет дешевого, чистого, возобновляемого солнечного света.

Солнечные элементы, используемые в центральной электростанции, спутнике или калькуляторе, имеют одинаковую базовую структуру. Свет попадает в устройство через оптическое покрытие или просветляющий слой, который сводит к минимуму потери света при отражении; он эффективно улавливает свет, падающий на солнечный элемент, способствуя его передаче нижележащим слоям преобразования энергии. Антиотражающий слой обычно представляет собой оксид кремния, тантала или титана, который формируется на поверхности ячейки методом центрифугирования или методом вакуумного осаждения.

Три слоя преобразования энергии, расположенные ниже просветляющего слоя, — это верхний соединительный слой, поглощающий слой, составляющий ядро ​​устройства, и задний соединительный слой. Два дополнительных электрических контактных слоя необходимы для передачи электрического тока на внешнюю нагрузку и обратно в ячейку, таким образом замыкая электрическую цепь. Слой электрического контакта на лицевой стороне ячейки, куда проникает свет, обычно представляет собой некоторую сетку и состоит из хорошего проводника, такого как металл. Поскольку металл блокирует свет, линии сетки настолько тонкие и широко расставлены, насколько это возможно без ухудшения сбора тока, производимого ячейкой. Задний электрический контактный слой не имеет таких диаметрально противоположных ограничений. Он должен просто функционировать как электрический контакт и, таким образом, покрывать всю заднюю поверхность клеточной структуры. Поскольку задний слой также должен быть очень хорошим электрическим проводником, он всегда изготавливается из металла.

Поскольку большая часть энергии солнечного и искусственного света находится в видимом диапазоне электромагнитного излучения, поглотитель солнечного элемента должен эффективно поглощать излучение на этих длинах волн. Материалы, сильно поглощающие видимое излучение, относятся к классу веществ, известных как полупроводники. Полупроводники толщиной около одной сотой сантиметра или меньше могут поглощать весь падающий видимый свет; поскольку формирующий переход и контактный слои намного тоньше, толщина солнечного элемента практически равна толщине поглотителя. Примеры полупроводниковых материалов, используемых в солнечных элементах, включают кремний, арсенид галлия, фосфид индия и селенид меди-индия.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Когда свет падает на солнечный элемент, электроны в поглощающем слое возбуждаются из низкоэнергетического «основного состояния», в котором они связаны с определенными атомами в твердом теле, в более высокое «возбужденное состояние», в котором которые они могут перемещать через твердое тело. В отсутствие слоев, образующих переход, эти «свободные» электроны находятся в хаотическом движении, поэтому не может быть направленного постоянного тока. Однако добавление слоев, образующих переход, индуцирует встроенное электрическое поле, которое создает фотоэлектрический эффект. По сути, электрическое поле вызывает коллективное движение электронов, которые текут мимо электрических контактных слоев во внешнюю цепь, где они могут выполнять полезную работу.

Материалы, используемые для двух слоев, образующих соединение, должны отличаться от материалов поглотителя, чтобы создавать встроенное электрическое поле и проводить электрический ток. Следовательно, это могут быть разные полупроводники (или один и тот же полупроводник с разными типами проводимости), а могут быть металл и полупроводник. Материалы, используемые для создания различных слоев солнечных элементов, в основном те же, что и для производства диодов и транзисторов твердотельной электроники и микроэлектроники (9).0047 см. также электроника: оптоэлектроника). Солнечные элементы и микроэлектронные устройства используют одну и ту же базовую технологию. Однако при производстве солнечных элементов стремятся создать устройство с большой площадью, поскольку производимая мощность пропорциональна освещаемой площади. В микроэлектронике цель, конечно, состоит в том, чтобы создавать электронные компоненты все меньших размеров, чтобы увеличить их плотность и скорость работы в полупроводниковых чипах или интегральных схемах.

Фотогальванический процесс имеет некоторое сходство с фотосинтезом — процессом, посредством которого энергия света в растениях преобразуется в химическую энергию. Поскольку солнечные элементы, очевидно, не могут производить электроэнергию в темноте, часть энергии, которую они вырабатывают при освещении, во многих приложениях сохраняется для использования, когда свет недоступен. Одним из распространенных способов хранения этой электрической энергии является зарядка электрохимических аккумуляторных батарей. Эта последовательность преобразования энергии света в энергию возбужденных электронов, а затем в накопленную химическую энергию поразительно похожа на процесс фотосинтеза.

Солнечная батарея | Определение, принцип работы и разработка

схема структуры солнечного элемента

Посмотреть все СМИ

Ключевые люди:
Роджер Энджел
Похожие темы:
тонкопленочный солнечный элемент
задний соединительный слой
кремниевый солнечный элемент
концентратор солнечной батареи
верхний соединительный слой

Просмотреть весь связанный контент →

Сводка

Прочтите краткий обзор этой темы

солнечный элемент , также называемый фотогальваническим элементом , любое устройство, которое непосредственно преобразует энергию света в электрическую посредством фотогальванического эффекта. Подавляющее большинство солнечных элементов изготавливается из кремния — с повышением эффективности и снижением стоимости, поскольку материалы варьируются от аморфных (некристаллических) до поликристаллических и кристаллических (монокристаллических) форм кремния. В отличие от батарей или топливных элементов, солнечные элементы не используют химические реакции и не требуют топлива для производства электроэнергии, и, в отличие от электрических генераторов, они не имеют движущихся частей.

Солнечные элементы можно объединять в большие группы, называемые массивами. Эти массивы, состоящие из многих тысяч отдельных ячеек, могут функционировать как центральные электростанции, преобразовывая солнечный свет в электрическую энергию для распределения среди промышленных, коммерческих и бытовых пользователей. Солнечные элементы в гораздо меньших конфигурациях, обычно называемые панелями солнечных элементов или просто солнечными панелями, были установлены домовладельцами на крышах, чтобы заменить или увеличить их обычное электроснабжение. Панели солнечных батарей также используются для обеспечения электроэнергией во многих отдаленных наземных районах, где обычные источники электроэнергии либо недоступны, либо слишком дороги в установке. Поскольку у них нет движущихся частей, которые могли бы нуждаться в обслуживании, или топлива, которое требовало бы пополнения, солнечные элементы обеспечивают питание для большинства космических установок, от спутников связи и метеорологических спутников до космических станций. (Однако солнечной энергии недостаточно для космических зондов, отправленных к внешним планетам Солнечной системы или в межзвездное пространство, из-за распространения лучистой энергии на расстоянии от Солнца.) Солнечные элементы также использовались в потребительских товарах, таких как электронные игрушки, портативные калькуляторы и портативные радиоприемники. Солнечные элементы, используемые в устройствах такого типа, могут использовать искусственный свет (например, от ламп накаливания и люминесцентных ламп), а также солнечный свет.

Узнайте, как сделать солнечные элементы более эффективными, действенными и доступными

Посмотреть все видео к этой статье

Хотя общее производство фотоэлектрической энергии ничтожно мало, оно, вероятно, будет увеличиваться по мере сокращения запасов ископаемого топлива. Фактически, расчеты, основанные на прогнозируемом мировом потреблении энергии к 2030 году, показывают, что глобальные потребности в энергии будут удовлетворяться за счет солнечных панелей, работающих с эффективностью 20 процентов и покрывающих лишь около 496 805 квадратных километров (191 817 квадратных миль) поверхности Земли. Потребность в материалах будет огромной, но выполнимой, поскольку кремний является вторым наиболее распространенным элементом в земной коре. Эти факторы побудили сторонников солнечной энергетики представить себе будущую «солнечную экономику», в которой практически все потребности человечества в энергии удовлетворяются за счет дешевого, чистого, возобновляемого солнечного света.

Солнечные элементы, используемые в центральной электростанции, спутнике или калькуляторе, имеют одинаковую базовую структуру. Свет попадает в устройство через оптическое покрытие или просветляющий слой, который сводит к минимуму потери света при отражении; он эффективно улавливает свет, падающий на солнечный элемент, способствуя его передаче нижележащим слоям преобразования энергии. Антиотражающий слой обычно представляет собой оксид кремния, тантала или титана, который формируется на поверхности ячейки методом центрифугирования или методом вакуумного осаждения.

Три слоя преобразования энергии, расположенные ниже просветляющего слоя, — это верхний соединительный слой, поглощающий слой, составляющий ядро ​​устройства, и задний соединительный слой. Два дополнительных электрических контактных слоя необходимы для передачи электрического тока на внешнюю нагрузку и обратно в ячейку, таким образом замыкая электрическую цепь. Слой электрического контакта на лицевой стороне ячейки, куда проникает свет, обычно представляет собой некоторую сетку и состоит из хорошего проводника, такого как металл. Поскольку металл блокирует свет, линии сетки настолько тонкие и широко расставлены, насколько это возможно без ухудшения сбора тока, производимого ячейкой. Задний электрический контактный слой не имеет таких диаметрально противоположных ограничений. Он должен просто функционировать как электрический контакт и, таким образом, покрывать всю заднюю поверхность клеточной структуры. Поскольку задний слой также должен быть очень хорошим электрическим проводником, он всегда изготавливается из металла.

Поскольку большая часть энергии солнечного и искусственного света находится в видимом диапазоне электромагнитного излучения, поглотитель солнечного элемента должен эффективно поглощать излучение на этих длинах волн. Материалы, сильно поглощающие видимое излучение, относятся к классу веществ, известных как полупроводники. Полупроводники толщиной около одной сотой сантиметра или меньше могут поглощать весь падающий видимый свет; поскольку формирующий переход и контактный слои намного тоньше, толщина солнечного элемента практически равна толщине поглотителя. Примеры полупроводниковых материалов, используемых в солнечных элементах, включают кремний, арсенид галлия, фосфид индия и селенид меди-индия.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Когда свет падает на солнечный элемент, электроны в поглощающем слое возбуждаются из низкоэнергетического «основного состояния», в котором они связаны с определенными атомами в твердом теле, в более высокое «возбужденное состояние», в котором которые они могут перемещать через твердое тело. В отсутствие слоев, образующих переход, эти «свободные» электроны находятся в хаотическом движении, поэтому не может быть направленного постоянного тока. Однако добавление слоев, образующих переход, индуцирует встроенное электрическое поле, которое создает фотоэлектрический эффект. По сути, электрическое поле вызывает коллективное движение электронов, которые текут мимо электрических контактных слоев во внешнюю цепь, где они могут выполнять полезную работу.

Материалы, используемые для двух слоев, образующих соединение, должны отличаться от материалов поглотителя, чтобы создавать встроенное электрическое поле и проводить электрический ток. Следовательно, это могут быть разные полупроводники (или один и тот же полупроводник с разными типами проводимости), а могут быть металл и полупроводник. Материалы, используемые для создания различных слоев солнечных элементов, в основном те же, что и для производства диодов и транзисторов твердотельной электроники и микроэлектроники (9).0047 см. также электроника: оптоэлектроника). Солнечные элементы и микроэлектронные устройства используют одну и ту же базовую технологию. Однако при производстве солнечных элементов стремятся создать устройство с большой площадью, поскольку производимая мощность пропорциональна освещаемой площади. В микроэлектронике цель, конечно, состоит в том, чтобы создавать электронные компоненты все меньших размеров, чтобы увеличить их плотность и скорость работы в полупроводниковых чипах или интегральных схемах.

Фотогальванический процесс имеет некоторое сходство с фотосинтезом — процессом, посредством которого энергия света в растениях преобразуется в химическую энергию.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *