Eng Ru
Отправить письмо

Солнечные батареи и из чего они сделаны. Солнечные элементы


Солнечные элементы. Виды и работа. Применение и особенности

Фотогальванические полупроводниковые фотоэлементы преобразуют энергию электромагнитного излучения в электрическую. По принципу действия они являются фотодиодами, не требующими приложения внешнего напряжения, и создающими электродвижущую силу самостоятельно.

Первые такие элементы были разработаны в 1926 году, в качестве полупроводникового материала использовалась закись меди. Далее были разработаны селеновые фотоэлементы. В 1958 году в США и СССР были запущены спутники с использованием солнечных батарей.

В настоящее время используются в основном кремниевые фотоэлементы, преобразующие энергию солнечных лучей, и называются подобные ячейки обычно солнечными элементами. Полупроводниковый кремний широко распространен на земле в виде диоксида кремния (обычного песка, или кремнезема).

Путем последовательного и параллельного соединения элементов создаются солнечные батареи мощностью до нескольких киловатт.

Виды солнечных элементов

Кремниевые солнечные элементы выпускаются 4 видов:

  • поликристаллические;
  • монокристаллические;
  • тонкопленочные;
  • гибридные.

Все эти виды солнечных элементов производятся по разным технологиям.

Производство солнечных элементов

Для производства поликристаллических элементов прежде всего, путем медленного охлаждения расплава кремния, выращиваются призматические заготовки квадратного сечения, разрезаемые далее на тонкие квадратные пластинки. Поверхность ячеек темного (черного) оттенка с неоднородной структурой.

Неоднородность вызывается тем, что заготовка не представляет собой единого кристалла, а состоит из большого количества кристалликов случайной ориентации.

Выращивание поликристаллов требует меньших затрат, чем производство монокристаллов, что удешевляет поликристаллические солнечные элементы в сравнении с другими типами.

Монокристаллические солнечные элементы производятся из монокристаллов кремния высокой чистоты с не более чем 0,01% примесей, и они отличаются более высокой стоимостью и эксплуатационными характеристиками, чем поликристаллические элементы.

Монокристаллы кремния выращиваются при температуре 1300 °С в виде призмы с поперечным сечением в виде многоугольника, соответственно ячейки этого типа имеют форму квадрата со скошенными углами, либо многоугольника. Монокристалличность заготовки определяет однородный характер поверхности элементов. Самый верхний слой ячейки выполнен из антиотражающего материала, придающего элементу яркий синий цвет.

Тонкопленочные солнечные элементы называют также «гибкими панелями». Производятся подобные ячейки напылением в вакууме при температуре 300 °С полупроводникового аморфного кремния на тонкую гибкую подложку из стекла, пластика или металла. Кристаллы кремния при этом осаждаются на подложке неравномерно и направлены своими осями в разные стороны случайным образом.

Как альтернатива, взамен кремния напыляются теллурид кадмия или селенид меди-индия. Слой полупроводникового материала покрывается сверху защитной пленкой. Технологии производства подобных элементов непрерывно совершенствуются. Тонкопленочные солнечные элементы отличаются минимальной толщиной (около 1 мкм) и малыми затратами на изготовление.

При производстве гибридных солнечных элементов над кристаллическим полупроводниковым материалом располагается тонкий слой аморфного полупроводника.

Принцип действия солнечных элементов

В основе работы фотоэлементов лежит давно открытое явление фотоэффекта – испускания веществом электронов под действием света или любого другого электромагнитного изучения.

Солнечный элемент представляет собой p-n переход, это по сути два соприкасающихся полупроводника разной проводимости с разделяющим слоем между ними. В p-полупроводнике электронов недостаток, а в n-полупроводнике напротив, избыток. В сторону источника излучения направлен n-полупроводник (внешний электрод), он располагается на подложке поверх p-полупроводника (внутреннего электрода). При попадании на элемент солнечных лучей электроны n-полупроводника выбиваются с атомных орбит и переходят в лежащий ниже p-полупроводник. Образуется направленный поток электронов, который можно замкнуть на внешнюю нагрузку с протеканием в ней непрерывного электрического тока.

Такой элемент является некоторым аналогом батареи с катодом (отводом от n-полупроводника) и анодом (отводом от p-полупроводника). Отрицательным полюсом этой «батареи» является внешний электрод (сетка поверх n-полупроводника), а положительным – внутренний (подложка с нанесенным p-полупроводником).

Солнечные элементы как источники питания

Освещенный светом солнечный элемент создает на своих выводах некоторую электродвижущую силу (ЭДС), значение которой зависит от интенсивности падающего на ячейку света. С увеличением освещенности ЭДС возрастает, но лишь до определенного предела (для кремниевых элементов до 0,6 В), т.е. зависимость ЭДС от освещенности нелинейная. От размеров элементов ЭДС не зависит, но она снижается примерно на 2 мВ при нагреве элемента на 1 С.

Для получения более высокой ЭДС устройства соединяют последовательно. Отдаваемый элементом ток зависит от вида элемента и падающего светового потока, в свою очередь определяемого освещенностью и площадью ячейки. Элемент с коэффициентом полезного действия (КПД) 17% размером 156 х 156 мм выдает при коротком замыкании ток 9 А. Максимальную мощность элемент выдает при просадке напряжения под нагрузкой до 0,47-0,5 В, такой режим работы элемента наиболее оптимален. Поскольку площадь ячейки ограничивается технологией изготовления (ячейка – поперечный срез кристалла ограниченных размеров), для повышения отдаваемой мощности отдельные элементы соединяют также и параллельно.

При подключении к элементу или батарее нагрузки напряжение падает, а поскольку оно зависит и от высоты солнца, состояния неба и атмосферы (в пасмурную погоду мощность световых панелей падает в 15-20 раз), солнечные электростанции снабжаются автоматическими регуляторами и буферными аккумуляторами, сглаживающими пики потребления электроэнергии и изменения интенсивности падающего светового потока.

Особенности солнечных элементов разных видов

Солнечным элементам свойственны как общие свойства, так и отличные в зависимости от их вида и технологии изготовления.

Поликристаллические элементы

Поскольку в элементах этого типа кристаллики кремния ориентированы случайно, их эффективность снижается при прямом падении солнечного света, но, в порядке некоторой компенсации, снижается незначительно при наклонном падении света. Их характеристики незначительно зависят от угловой высоты солнца и его положения на небосводе. КПД таких элементов невысок и составляет 17-20%.

Монокристаллические элементы

КПД монокристаллических элементов выше КПД поликристаллических элементов и доходит до 25%, и даже до 44% в элементах, предназначенных для космической отрасли. Эти элементы более критичны к углу падения солнечных лучей, и их целесообразно ориентировать на Солнце с изменением положения в течение дня. Хорошо работают они и при высокой облачности, а также при отрицательных температурах.

Аморфные элементы

КПД элементов из кремния низок (около 7-10%), для элементов из современных материалов он достигает 15-20%. К достоинствам этих элементов относится возможность монтажа их на изогнутых конструкциях, они хорошо работают при рассеянном освещении. К недостатку можно отнести большие размеры – вследствие низкого КПД они требуют при равенстве мощности вдвое большей установочной площади в сравнении с кристаллическими элементами. Также со временем слой аморфного кремния постепенно деградирует, и батарея теряет эффективность, примерно на 20% мощности за первые 2 года эксплуатации.

Гибридные элементы

Поскольку кристаллический кремний и аморфный кремний наиболее эффективно работают каждый в своей области солнечного спектра, при освещении солнечным светом смешанного состава общий КПД солнечного элемента повышается.

Применение солнечных элементов

Поскольку ЭДС одного элемента составляет 0,6 В, для получения достаточного напряжения их соединяют последовательно. Батарея из соединенных последовательно 36 элементов будет обладать ЭДС 0,6 х 36 = 21,6 В, а при оптимальной нагрузке будет выдавать напряжение порядка 17-18 В. Чтобы заряжать таким напряжением аккумулятор с номинальным напряжением 12 В, необходим контроллер заряда, избавляющий аккумулятор от перезаряда, а батарею от перегрузки. Подобный контроллер позволяет путем автоматического снижения напряжения увеличивать снимаемый ток, а тем самым постоянно поддерживать элементы в режиме съема максимальной в данных условиях мощности.

Изначально предполагалось, что устройства будут применяться в основном в космической промышленности и в военных целях. Солнечные батареи – основные источники питания на космических аппаратах, особо эффективны такие устройства при полетах от Земли в сторону Солнца, где мощность батарей значительно возрастает. Очень выгодно использование солнечных элементов для питания автоматических метеостанций.

В тропических и субтропических регионах с большим количеством часов солнечного сияния в году солнечные батареи позволяют решить проблемы энергоснабжения жилых домов и дач, при этом батареи размещают на крышах. В городах батареи на солнечных элементах используются для подзарядки автомобилей, а также для уличного освещения (накопленная в светлое время суток энергия расходуется в темное). Сфера применения солнечных элементов и батарей непрерывно расширяется по мере их удешевления и совершенствования характеристик.

Похожие темы:

 

electrosam.ru

Солнечные элементы: фотоэлементы для солнечных батарей

Солнечные элементы – это части батарей, которые генерируют электрический ток. Появились они сравнительно недавно, в XIX веке, и только сейчас их начали использовать в качестве недорогого, но эффективного способа добычи энергоресурсов. Принцип работы солнечных батарей довольно прост. Ими можно оснастить жилое или нежилое помещения. Существуют различные виды данных элементов питания. Разберем их более подробно.

Элементы солнечных батарей

Зачастую энергия солнечной панели используется для дома и его нужд. Вырабатываемого электрического тока достаточно для двухэлементной бойлерной системы, холодильника, телевизора и прочих бытовых приборов.

Солнечные лучи – это экологически чистое «топливо». Ведь в процессе работы модуль солнечной батареи не выделяет обилие вредных выхлопов, углекислый газ и не расходует невосполнимые природные ископаемые.

Стоит понимать, что солнечные батареи складываются из множества модулей. И то, что мы видим на крыше зданий или на стенах, является только частью системы.

Подключение системы

Из чего состоит солнечная система электроснабжения:

  1. Солнечные ячейки, складывающиеся в панели. Это те видимые нам батареи, которые крепятся на крышу или стены.
  2. Аккумулятор. Данный элемент в системе необходим для накапливания лишней энергии, например, в ясный день. В пасмурную погоду, когда батареи работают не на полную мощность, ток на бытовые нужды берется из АКБ.
  3. Контроллер регулирует заряд аккумулятора, подсказывает владельцу системы, что заряда недостаточно или слишком много. Излишнее напряжение губительно для аккумулятора.
  4. Преобразователь постоянного тока в переменный (инвертор) необходим для работоспособности бытовых приборов. Ведь не все из них способны работать на постоянном потоке заряженных частиц.

Подключая солнечные модули, необходимо уже изначально определиться с местом их расположения, видом, количеством бытовой техники, необходимостью контролера АБК.

Стоит понимать, что такая системы является наборной, и вы с легкостью можете установить еще не один солнечный модуль.

Принцип работы солнечных батарей

Человечество научилось получать энергию из ископаемых, потоков воды и порывов ветра, дошли и до применения световых лучей. Существуют даже солнечные модули, которые поглощают невидимый инфракрасный спектр и работают ночью. Всепогодные батареи эффективны в пасмурную погоду, туман, дождь.

Принцип работы любой батареи – преобразование лучей солнца в электрический импульс.

Принцип работы

Зачастую солнечные модули работают на кристаллах кремния, и этому есть объяснение. Данный металл чувствителен к воздействию лучей, он недорог в добыче, а КПД батарей составляет 17-25%. Кристалл кремния при попадании на него солнечных лучей образует направленное движение электронов. При средней площади батареи 1-1,5 м² можно достичь на выходе напряжение в 250 Вт.

В настоящее время применяется не только кремний, но и соединения селена, меди, иридия и полимеров. Но широкого распространения они не получили, даже несмотря на КПД в 30-50%. Все потому, что они очень дороги. Для электрификации обычного дачного или загородного дома отлично подойдет кремниевая фотоэлектрическая панель.

Виды солнечных батарей

Такие аккумуляторы постоянно видоизменяются. Эта область модифицируется и подвергается инновационным решениям.

Именно поэтому существует много видов солнечных панелей.

Монокристаллические

Данные батареи обладают хорошим КПД. Каждая ячейка являет собой отдельный кристалл кремния. Поверхность батареи слегка выпуклая, насыщенного синего цвета. Фотоэлектрические панели этого типа имеют самую высокую цену, которая обуславливается сложностью технологии. Ведь все кристаллы развернуты в одном направлении.

Монокристаллическая

Необходимо будет дополнительное оборудование, которое будет разворачивать комплекс панелей в зависимости от положения Солнца на горизонте. Из-за необходимости прямых лучей такие элементы устанавливают на хорошо освещенных участках или возвышенностях.

Средний срок эксплуатации – 25 лет.

Поликристаллические (multi-Si)

Солнечные модули данного вида обладают неравномерно насыщенным синим цветом из-за разной направленности кристаллов кремния. Они дешевле монокристаллических аналогов, обладают хорошим КПД, их не нужно разворачивать к солнцу. В пасмурную погоду или облачность они показывают лучшие результаты, нежели вышеописанный вид.

Поликристаллическая

Средний срок эксплуатации без потери качеств – 15-20 лет.

Аморфные (полимерные солнечные батареи)

В данном случае используются не цельные кристаллы, а гидрид кремния. Его наносят на твердую или гибкую подложку. Преимуществами является низкая стоимость. К тому же, полимерный солнечный элемент можно нанести на любую гибкую подложку. Значит, вы можете по максимуму использовать скат крыши, неровные поверхности.

Аморфная

Фотоэлектрическая структура полимерного кремния позволяет поглощать свет даже рассеянный. Аморфные солнечные батареи выгодно ставить в условиях севера, короткого светового дня, в областях с агрессивными атмосферными условиями.

Существуют и другие, более редкие разновидности.

Органические

Эти солнечные батареи только изучаются. Активные разработки появились в последнем десятилетии, поэтому достоверных данных насчет гарантированного срока эксплуатации у производителей нет. Солнечный элемент использует органическую основу – соединения углерода.

Органическая

Некоторые виды солнечных панелей данного строения обладают хорошим КПД, они пластичны, экологичны, просты в утилизации и значительно дешевле кремниевых аналогов.

Безкремниевые

Изготовлены на основе редких металлов. Вместо кремния применяются соединения теллура, селена, меди, индия. Данные металлы редкие и дорогие, поэтому стоимость батарей очень высокая. Однако панели этого типа могут работать в широком температурном диапазоне.

Сравнение КПД батарей разного типа

Разновидность панели Максимальное значение КПД
Монокристаллические 20-25%
Поликристаллические 15-20%
Аморфные 6-7% (в некоторых случаях до 15%)
Органические 12-15%
На основе редких металлов 10-20%, в зависимости от применяемого металла. Некоторые панели могут выдавать до 40%

Как подобрать солнечную панель?

Как видите, типы солнечных батарей различны.

Подбирать устройство необходимо, исходя из многих факторов:

  • степени освещенности территории;
  • климата;
  • площади помещения;
  • количества бытовых приборов;
  • финансового бюджета;
  • площади крыши;
  • возможности пользования стационарными электросетями;
  • отдаленности от населенного пункта.

Естественно, если вы собираетесь поставить солнечные панели на дачу, где проводите время только летом, стоит побеспокоиться о безопасности вашего имущества.

Если у вас длинный световой день, хорошо освещаемая территория, то отдайте предпочтение моно- и поликристаллическим моделям. В холодных широтах приобретайте поликристаллические или полимерные фотоэлементы.

Установленные на крыше солнечные элементы

Читайте также:

Характеристики солнечных батарей

Виды подключения

Вы уже купили фотоэлементы для солнечных батарей, АКБ и все остальные составляющие. Осталось определиться с типом электроснабжения вашего жилища. Они бывают:

  1. Автономные. В данном случае ваш дом питается только от солнечных батарей и никак не связан с общей электрификацией.
  2. Смежные. Панели подключаются в общую сеть. Если бытовые приборы потребляют небольшое количество энергии, то стационарная сети не используется, ток берется из аккумулятора. В случае превышения потребностей электричество расходуется и из общей сети. Стоит учитывать, что без сети сами по себе батареи работать не будут.
  3. Комбинированные похожи на смежные. Но в данном случае излишек электроэнергии, получаемый панелями, идет не в аккумулятор, а в общую сеть.

Какую систему и панели выбрать, решать только вам. Перед покупкой проконсультируйтесь у нескольких специалистов, ведь такие системы приобретаются не на один год. При правильном подключении они будут радовать вас долгое время.

batteryk.com

Солнечные элементы. Принципы работы солнечных батарей. Материалы для солнечных элементов



Основные принципы работы солнечных батарей

Конструкция солнечного элемента

Рис.1. Конструкция солнечного элемента

Простейшая конструкция солнечного элемента (СЭ) – прибора для преобразования энергии солнечного излучения – на основе монокристаллического кремния показана на рис.1. На малой глубине от поверхности кремниевой пластины p-типа сформирован p-n-переход с тонким металлическим контактом. На тыльную сторону пластины нанесен сплошной металлический контакт.

Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электрон-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой (рис.2а). В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой – положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение (рис.2б).

Отрицательному полюсу источника тока соответствует n-слой, а p-слой – положительному.

Зонная модель разомкнутого p-n-перехода

Рис.2. Зонная модель разомкнутого p-n-перехода:а) - в начальный момент освещения;б) - изменение зонной модели под действиемпостоянного освещения и возникновение фотоЭДС

Величина установившейся фотоЭДС при освещении перехода излучением постоянной интенсивности описывается уравнением вольт-амперной характеристики (ВАХ) (рис.3):

U = (kT/q)ln((Iph-I)Is/+1)

где Is– ток насыщения, а Iph – фототок.

ВАХ поясняет эквивалентная схема фотоэлемента (рис.4), включающая источник тока

Iph=SqNoQ

где S – площадь фотоэлемента, а коэффициент собирания Q – безразмерный множитель (

Вольт-амперная характеристика солнечного элемента

Рис.3. Вольт-амперная характеристика солнечного элемента

Уравнение ВАХ справедливо и при освещении фотоэлемента светом произвольного спектрального состава, изменяется лишь значение фототока Iph. Максимальная мощность отбирается в том случае, когда фотоэлемент находится в режиме, отмеченном точкой а (см. рис. 3).

Эквивалентная схема солнечного элемента

Рис.4. Эквивалентная схема солнечного элемента

Максимальная мощность, снимаемая с 1 см2, равна

P = Iph*U = x*Iкз*Uхх,

где x – коэффициент формы или коэффициент заполнения вольт-амперной характеристики, Iкз – ток короткого замыкания, Uхх – напряжение холостого хода.

Материалы для солнечных элементов

Для эффективной работы солнечных элементов необходимо соблюдение ряда условий:

  • оптический коэффициент поглощения (a) активного слоя полупроводника должен быть достаточно большим, чтобы обеспечить поглощение существенной части энергии солнечного света в пределах толщины слоя;
  • генерируемые при освещении электроны и дырки должны эффективно собираться на контактных электродах с обеих сторон активного слоя;
  • солнечный элемент должен обладать значительной высотой барьера в полупроводниковом переходе;
  • полное сопротивление, включенное последовательно с солнечным элементом (исключая сопротивление нагрузки), должно быть малым для того, чтобы уменьшить потери мощности (джоулево тепло) в процессе работы;
  • структура тонкой пленки должна быть однородной по всей активной области солнечного элемента, чтобы исключить закорачивание и влияние шунтирующих сопротивлений на характеристики элемента.

Производство структур на основе монокристаллического кремния, удовлетворяющих данным требованиям, – процесс технологически сложный и дорогостоящий. Поэтому внимание было обращено на такие материалы, как сплавы на основе аморфного кремния (a-Si:H), арсенид галлия и поликристаллические полупроводники.

Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С): можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

Пока максимальный КПД экспериментальных элементов на основе а-Si:Н – 12% – несколько ниже КПД кристаллических кремниевых СЭ (~15%). Однако не исключено, что с развитием технологии КПД элементов на основе а-Si:Н достигнет теоретического потолка – 16 %.

Наиболее простые конструкции СЭ из а-Si:Н были созданы на основе структуры металл – полупроводник (диод Шотки) (рис. 6). Несмотря на видимую простоту, их реализация достаточно проблематична – металлический электрод должен быть прозрачным и равномерным по толщине, а все состояния на границе металл/а-Si:Н – стабильными во времени. чаще всего солнечные элементы на основе а-Si:Н формируют на ленте из нержавеющей стали или на стеклянных подложках, покрытых проводящим слоем.

Конструкция фотоэлемента с барьером Шотки

Рис.5. Конструкция фотоэлемента с барьером Шотки

При использовании стеклянных подложек на них наносят прозрачную для света проводящую оксидную пленку (ТСО) из SnO2, In2O3 или SnO2+In2O3 (ITO), что позволяет освещать элемент через стекло. Поскольку у нелегированного слоя электронная проводимость выражена слабо, барьер Шотки создается за счет осаждения металлических пленок с высокой работой выхода (Pt, Rh, Pd), которая обуславливает образование области положительного объемного заряда (обедненного слоя) в а-Si:Н.

При нанесении аморфного кремния на металлическую подложку образуется нежелательный потенциальный барьер а-Si:Н/металлическая подложка, высоту которого необходимо уменьшать. Для этого используют подложки из металлов с малой работой выхода (Mo, Ni, Nb). Перед нанесением аморфного кремния желательно осадить на металлической подложке тонкий слой (10–30 нм) а-Si:Н, легированный фосфором. Не рекомендуется использовать в качестве материалов электродов легко диффундирующие в аморфный кремний металлы (например, Au и Al), а также Cu и Ag, поскольку а-Si:Н обладает плохой адгезией к ним. Отметим, что Uxx солнечных элементов с барьером Шотки на основе а-Si:Н обычно не превышает 0,6 В.

Более высокой эффективностью обладают СЭ на основе аморфного кремния с p-i-n-структурой (рис.6). В этом “заслуга” широкой нелегированной i-области a-Si:H, поглощающей существенную долю света. Но возникает проблема – диффузионная длина дырок в a-Si:H очень мала (~100 нм), поэтому в солнечных элементах на основе a-Si:H носители заряда достигают электродов в основном только благодаря внутреннему электрическому полю, т.е. за счет дрейфа носителей заряда. В СЭ на основе кристаллических полупроводников носители заряда, имея большую диффузионную длину (100 – 200 мкм), достигают электродов и в отсутствие электрического поля. Поскольку в простом p-n-переходе в a-Si:H область сильного электрического поля очень узка и диффузионная длина носителей заряда мала, в большей части СЭ не происходит эффективного разделения носителей заряда, генерируемых при поглощении света.

Следовательно, для получения эффективных СЭ на основе p-i-n-сруктуры аморфного гидрогенизированного кремния необходимо добиться во всей i-области однородного мощного внутреннего электрического поля, достаточного для достижения длины дрейфа носителей, соизмеримого с размерами области поглощения (см. рис.6).

Энергетическая зонная диаграмма p-i-n-структуры и расчетное распределение электрического поля

Рис.6. Энергетическая зонная диаграмма p-i-n-структуры (а)и расчетное распределение электрического поля (б)

Данная задача решается, если при изготовлении p-i-n-структуры первым формировать p-слой (рис.7). Для его создания необходимо небольшое количество бора (

р-i-n-Структура на стеклянной и стальной подложке

Рис.7. р-i-n-Структура на стеклянной (а) и стальной (б) подложке

В то же время, если первым осаждать n-слой, то наличие остаточного фосфора изменяет свойства i-слоя. Формирование p-слоя на поверхности прозрачного проводящего электрода обеспечивает с ним хороший электрический контакт. Однако толщина p-слоя должна быть мала (10 нм), чтобы основная часть света поглощалась в i-области.

Используется и другая p-i-n-структура СЭ на основе a-Si:H с подложкой из металлической фольги, в частности из нержавеющей стали. Свет попадает со стороны прозрачного электрода, контактирующего с n-областью. В результате возрастает плотность тока короткого замыкания благодаря отражающей способности металлической подложки и меньшему оптическому поглощению света легированными фосфором пленками a-Si:H (n-область) по сравнению с легированными бором р-слоями.

Солнечная батарея с поперечным переходом

Рис.8. Солнечная батарея с поперечным переходом

Проблема с применением рассмотренных p-i-n-элементов в том, что их можно оптимизировать только в одном измерении. Значительно больше возможностей в этом плане предоставляет СЭ с поперечным переходом [4]: на изолирующей подложке перпендикулярно к поверхности формируется p-i-n-структура a-Si:H (рис.8). Такой СЭ не требует прозрачного проводящего оксида в качестве контакта и широкозонного p-слоя для создания прозрачного оконного слоя, его можно изготовить посредством стандартных технологий микроэлектроники.

Один из наиболее перспективных материалов для создания высокоэффективных солнечных батарей — арсенид галлия. Это объясняется таким его особенностями, как:

  • почти идеальная для однопереходных солнечных элементов ширина запрещенной зоны 1,43 эВ;
  • повышенная способность к поглощению солнечного излучения: требуется слой толщиной всего в несколько микрон;
  • высокая радиационная стойкость, что совместно с высокой эффективностью делает этот материал чрезвычайно привлекательным для использования в космических аппаратах;
  • относительная нечувствительность к нагреву батарей на основе GaAs;
  • характеристики сплавов GaAs с алюминием, мышьяком, фосфором или индием дополняют характеристики GaAs, что расширяет возможности при проектировании СЭ

Главное достоинство арсенида галлия и сплавов на его основе —широкий диапазон возможностей для дизайна СЭ. Фотоэлемент на основе GaAs может состоять из нескольких слоев различного состава. Это позволяет разработчику с большой точностью управлять генерацией носителей заряда, что в кремниевых СЭ ограничено допустимым уровнем легирования. Типичный СЭ на основе GaAs состоит из очень тонкого слоя AlGaAs в качестве окна.

Основной недостаток арсенида галлия – высокая стоимость. Для удешевления производства предлагается формировать СЭ на более дешевых подложках; выращивать слои GaAs на удаляемых подложках или подложках многократного использования.

Поликристаллические тонкие пленки также весьма перспективны для солнечной энергетики.

Чрезвычайно высока способность к поглощению солнечного излучения у диселенида меди и индия (CuInSe2) – 99 % света поглощается в первом микроне этого материала (ширина запрещенной зоны – 1,0 эВ) [2,5]. Наиболее распространенным материалом для изготовления окна солнечной батареи на основе CuInSe2 является CdS. Иногда для улучшения прозрачности окна в сульфид кадмия добавляют цинк. Немного галлия в слое CuInSe2 увеличивает ширину запрещенной зоны, что приводит к росту напряжения холостого хода и, следовательно, повышению эффективности устройства. Один из основных способов получения CuInSe2 — электрохимическое осаждение из растворов CuSO4, In2(SO4)3 и SeO2 в деионизованной воде при соотношении компонентов Cu:In:Se как 1:5:3 и pH 1,2–2,0.

Структура солнечного элемента на основе CdTe

Рис.9. Структура солнечного элемента на основе CdTe

Еще один перспективный материал для фотовольтаики — теллурид кадмия (CdTe). У него почти идеальная ширина запрещенной зоны (1,44 эВ) и очень высокая способность к поглощению излучения. Пленки CdTe достаточно дешевы в изготовлении. Кроме того, технологически несложно получать разнообразные сплавы CdTe c Zn, Hg и другими элементами для создания слоев с заданными свойствами.

Подобно CuInSe2, наилучшие элементы на основе CdTe включают гетеропереход с CdS в качестве оконного слоя. Оксид олова используется как позрачный контакт и просветляющее покрытие. Серьезная проблема на пути применения CdTe – высокое сопротивление слоя p-CdTe, что приводит к большим внутренним потерям. Но она решена в p-i-n-структуре с гетеропереходом CdTe/ZnTe (рис.9).

Наиболее ответственный этап формирования СЭ на основе CdS/CdTe – осаждение поглощающего слоя CdTe толщиной 1,5–6 мкм. Для этого используют различные способы: сублимацию/конденсацию, электрохимическое осаждение, трафаретную печать, химическое осаждение из газовой фазы и распыление. Пленки CdTe, полученные данными методами, обладают высокой подвижностью носителей заряда, а СЭ на их основе – высокими значениями КПД, от 10 до 16%.

CuGaSe2 также весьма интересен как тонкопленочный элемент солнечных батарей. Благодаря запрещенной зоне шириной 1,68 эВ он используется как верхний элемент тандемной солнечной батареи с нижним элементом из CuInSe2. Слои CuGaSe2 формируют путем последовательного осаждения термическим испарением тонких слоев Ga, Se и Cu на поверхность стеклянной подложки, покрытой слоем молибдена толщиной 1 мкм (рис.10). Далее из полученной структуры в установке быстрого термического отжига в течение пяти минут при температуре 550°С получают соединение CuGaSe2.

Получение пленок CuGaSe2

Рис.10. Получение пленок CuGaSe2

Одним из перспективных материалов для дешевых солнечных батарей благодаря приемлемой ширине запрещенной зоны (1,4–1,5 эВ) и большому коэффициенту поглощения 104 см-1 является Cu2ZnSnS4. Его главное достоинство в том, что входящие в него компоненты широко распространены в природе и нетоксичны. Однако пока достигнута эффективность преобразования всего в 2,3% при использовании гетероперехода Cu2ZnSnS4 и CdS/ZnO.

Среди СЭ особое место занимают батареи, использующие органические материалы. В частности, КПД СЭ на основе диоксида титана, покрытого органическим красителем, весьма высок – ~11 %. Немаловажно, что подложками в таких элементах могут выступать полимерные пленки.

Основа СЭ данного типа – широкозонный полупроводник, обычно TiO2, покрытый монослоем органического красителя, как правило – цис-(NCS)2бис(4,4’-дикарбокси-2,2’бипиридин)-рутением (II) (рис.11). Фотоэлектрод такого устройства представляет собой нанопористую пленку TiO2 толщиной 1 мкм, осажденную на ТСО на стекле. Отражающим электродом служит тонкий слой Pt, осажденный на TCO на стекле. Пространство между двумя электродами заполняют электролитом, обычно содержащим иодид/трииодид (I-/I3-).

Принцип работы элемента основан на фотовозбуждении красителя и быстрой инжекции электрона в зону проводимости TiO2. При этом молекула красителя окисляется, через элемент идет электрический ток и на платиновом электроде происходит восстановление трииодида до иодида. Затем иодид проходит через электролит к фотоэлектроду, где восстанавливает окисленный краситель.

Для солнечной батареи на эффекте Шотки используют фталоцианин – органический полупроводник p-типа. В нем наиболее привлекают высокая фотопроводимость в видимой области спектра и термическая стабильность. Основной недостаток – низкое время жизни носителей вследствие большого числа ловушек. Для повышения времени жизни фталоцианин легируют фуллеренами или 2-, 4-, 7-тринитрофлуореноном, создающими акцепторные уровни.

Солнечная батарея на основе органических материалов

Рис.11. Солнечная батарея на основе органических материалов

Фуллерены (С60) также весьма перспективны для органических солнечных батарей на основе гетероструктур С60/p-Si в связи с их способностью к сильному поглощению в коротковолновой области солнечного спектра. Поликристаллический фуллерен С60 толщиной ~1 мкм осаждают на кремниевую подложку в глубоком вакууме. Далее на слой С60 наносят алюминиевые контакты. В качестве заднего контакта используется сплав GaxIny на позолоченной подложке.

Схема термофотоэлектрического солнечного элемента

Рис.12. Схема термофотоэлектрического солнечного элемента

Термофотовольтаическое производство электроэнергии, т.е. преобразование длинноволнового (теплового) излучения посредством фотовольтаических ячеек было открыто в 1960 году и вызывает все больший интерес, особенно в связи с современными достижениями в области создания узкозонных полупроводников.

В термофотовольтаической ячейке (рис.12) тепло преобразуется в электроэнергию посредством селективных эмиттеров из оксидов редкоземельных элементов – эрбия и иттербия. Эти вещества поглощают инфракрасное излучение и вновь излучают его в узком энергетическом диапазоне. Излучение может быть эффективно преобразовано с помощью фотовольтаической ячейки с соответствующей шириной запрещенной зоны. В качестве материала для фотоэлектрической ячейки более всего подходит InxGa1-xAs, поскольку он позволяет добиться необходимой ширины запрещенной зоны.

Проблемы нахождения и использования конструкций и материалов для солнечных элементов

Большинство современных СЭ обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позвляют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Поскольку они работают со значительно большей частью солнечного спектра, эффективность фотоэлектрического преобразования у них выше.

В типичном многопереходном солнечном элементе (рис.13) одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией. Пропущенные верхним слоем фотоны проникают в следующий элемент с меньшей шириной запрещенной зоны и т.д.

Принцип построения многопереходного солнечного элемента

Рис.13. Принцип построения многопереходного солнечного элемента

Основное направление исследований в области каскадных элементов связано с использованием арсенида галлия в качестве одного или нескольких компонентов. Эффективность преобразования подобных СЭ достигает 35 %. Кроме того в каскадных элементах широко применяются аморфный кремний, сплавы на его основе (a-Si1-xCx:H, a-Si1-xGex:H), а также CuInSe2.

Каскадный элемент

Рис.14. Каскадный элемент

На рис.14 изображена каскадная батарея, в которой верхним элементом служит структура на основе GaInP c n-AlInP в качестве окна, далее следует туннельный диод на GaAs для прохождения носителей между элементами и нижний элемент из GaAs.

Трехкаскадный солнечный элемент на основе сплавов a-SiGe:H

Рис.15. Трехкаскадный солнечный элемент на основе сплавов a-SiGe:H

Весьма перспективны каскадные батареи, состоящие из трех элементов с различной шириной запрещенной зоны (рис.15). Верхний слой, поглощающий коротковолновую область солнечного спектра, сформирован из сплава на основе a-Si:H с шириной оптической щели 1,8 эВ. Для серединного элемента в качестве слоя i-типа использован сплав a-SiGe:H с содержанием германия ~10–15%. Ширина оптической щели данного слоя (1,6 эВ) идеальна для поглощения зеленой области солнечного спектра. Нижняя часть СЭ поглощает длинноволновую часть спектра, для этого используется i-слой a-SiGe:H с концентрацией германия 40–50%. Непоглощенный свет отражается от заднего контакта на основе Ag/ZnO. Все три элемента каскадной солнечной батареи связаны между собой сильнолегированными слоями, образующими туннельные переходы между соседними элементами.



www.gigavat.com

Из чего сделаны солнечные батареи: их разновидности, принцип работы

С того момента, когда в далеком 1839 году французский ученый Александр Беккерель случайно наткнулся на непонятное явление, связанное с воздействием света на некоторые материалы, произошло много событий. И наткнувшись на старую публикацию в физическом журнале, немецкий физик Генрих Герц уже не случайно проводит опыты, облучая ультрафиолетовым светом цинковые разрядники резонатора.

Его исследования привели к открытию того, что сейчас называется «внешний фотоэффект». Далее эстафету принял русский ученый Александр Столетов, который, исследуя это явление, сделал несколько важнейших открытий и вывел первый закон фотоэффекта. В начале ХХ века Альберт Эйнштейн, взяв за основу гипотезу Макса Планка, дал принципиальное объяснение фотоэффекта.

С тех пор многие выдающиеся ученые занимались изучением фотоэффекта, надеясь найти этому явлению практическое применение. И решение было найдено. Вначале итальянец Джакомо Луджи Чамичан создает прототип, а уже в 1954 году американская компания Bell Laboratories объявила о том, что ее специалистами создана первая в мире солнечная батарея, вырабатывающая электрический ток под воздействием солнечного света. Это и был фотоэффект в действии.

Так что же это такое, из чего сделаны солнечные батареи, как они работают.

Как правило, когда говорят «солнечная батарея», подразумевают, что это один или несколько фотопреобразователей, которые, будучи облучены солнечным светом, преобразовывают его в электричество. Главный элемент преобразования солнечного излучения в электричество – это, конечно же, материал, который, будучи освещенным, преобразовывает поток света в электроэнергию. Материал этот – полупроводник.

В электротехнике, электронике используются, как правило, два полупроводника – германий (Ge) и кремний (Si). В фотовольтаике в большинстве своем используется кремний как наиболее распространенный и дешевый. Германий – редкий элемент, дорогой, поэтому он используется в исключительных случаях.

СтруктураСтруктура солнечной батареи

Для изготовления солнечных фотопреобразователей используются два вида кремния – монокристаллический и поликристаллический. Как уже явствует из характеристик, монокристаллические фотопреобразователи изготавливаются из кристаллов кремния, выращенных искусственно.

Эти кристаллы затем по специальной технологии нарезаются на тонкие пластины, из которых изготавливаются сами фотопреобразователи. Нарезанные пластины тщательнейшим образом проверяются на точность нарезки, толщину самой пластины, отсутствие физических дефектов.

Этот контроль необходим для последующей сборки самого солнечного модуля, так как малейшее отклонение параметров хотя бы одного элемента влечет за собой значительные потери мощности всего солнечного модуля. Пластины монокристаллического кремния окрашены в равномерный темно-серый цвет – это естественный цвет кристаллов кремния.

Кремниевые фотоэлементыКремниевые фотоэлементыПоликристаллический (слева), монокристаллический (справа)

В отличие от монокристаллов, поликристаллические фотопреобразователи изготавливаются методом литья. Такие фотопреобразователи более просты и доступны. Если солнечные элементы из монокристаллического кремния представляют собой восьмиугольники строго выдержанного размера (допуск ± несколько микрометров), то поликристаллические элементы – как правило, прямоугольной формы с голубовато-синим отливом. К кремнию для получения особых свойств добавляют определенное количество мышьяка (As) и бора (B).

Преобразование света в электричество

Это и есть практическое применение фотоэффекта – прямое преобразование энергии света в энергию электрическую. Собственно, реакция материала на облучение светом зависит от кристаллической структуры полупроводника. Структурно каждый фотоэлемент состоит из двух слоев. Один слой в кристаллической решетке имеет переизбыток электронов и называется областью электронов.

Второй слой, соответственно испытывает недостаток электронов и называется дырочной областью (в электронике места, в которых должны быть электроны, но они там отсутствуют, называются дырками). Граница между этими слоями называется электронно-дырочный p-n переход. В зависимости от типа полупроводника свойства перехода могут быть другими. Тогда он называется дырочно-электронный n-p переход.

Принцип работы Принцип работы фотоэлемента

Под воздействием света эти два слоя начинают взаимодействовать, электроны из одного слоя начинают замещать дырки в другом слое. При этом возникает электродвижущая сила, превращая, по сути, эти два слоя в электроды обычной батарейки.

Теперь, чтобы использовать эту электрическую энергию, остается только подпаять к поверхности каждого слоя тонкие проводники и подключить нагрузку. Следует отметить, что этот процесс не вызывает никаких химических реакций в полупроводнике, а, следовательно, солнечная батарея, набранная из таких фотопреобразователей, может служить очень долго.

Во многих странах, в исследовательских центрах проводятся работы, которые призваны решить проблему повышения эффективности солнечных батарей. Пробуются комбинации различных материалов для использования их в качестве фотоэлементов. В тонкослойные кремниевые элементы добавляют в различных пропорциях галлий, мышьяк, медь, кадмий. Причем эти присадки могут быть как в чистом виде, так и в комбинациях материалов, например, арсенид галлия (GaAs).

Кроме того, на эффективность солнечных батарей большое влияние оказывает если не совпадение, то максимальная схожесть как физических (размеры), так и электрических (вольт-амперные характеристики) элементов, входящих в один солнечный модуль. В процессе эксплуатации солнечных батарей может возникнуть ситуация, при которой один или несколько фотопреобразователей могут быть затенены.

Таким образом, они на какой-то промежуток времени исключаются из рабочей конфигурации модуля. Но, будучи включенными в общую цепь, они могут разогреваться и, как следствие, выйти из строя. Отвод тепла от фотопреобразователей, постоянно облучаемых солнцем, также является достаточно серьезной проблемой, над решением которой работают многие ученые.

Разновидности солнечных батарей

Существуют несколько наиболее широко распространенных типов солнечных батарей. В первую очередь это, конечно же, солнечные панели, собранные на базе кремниевых фотопреобразователей. Наиболее высокая эффективность у модулей, изготовленных на базе монокристаллического кремния.

Монокристаллический модульМонокристаллический модуль

Коэффициент полезного действия таких модулей по последним данным в некоторых случаях может достигать 23%. В среднем же достигается значение эффективности, равное 18%. Более дешевые панели собраны на базе поликристаллического кремния.

Эффективность таких фотопреобразователей ниже и средний показатель ее не превышает 16%. Однако за счет того, что поликристаллические элементы имеют прямоугольную форму, они более полно заполняют корпус модуля. Поэтому значения мощностей, вырабатываемых модулями на базе монокристаллического и поликристаллического кремния, будут отличаться друг от друга на весьма незначительную величину.

Поликристаллический модульПоликристаллический модуль

Наиболее дешевые гелиевые батареи выполнены на базе аморфного кремния. Эти модули имеют наименьшую эффективность – порядка 8%, но и стоимость производимого электричества у этих устройств также самая низкая.

Модуль на базе аморфного кремнияМодуль на базе аморфного кремния

Следует также отметить гелиевые панели на базе теллурида кадмия (CdTe), выполненные по тонкопленочной технологии. Пленка толщиной в несколько сотен микрометров из этого полупроводника наносится на панель. Производство этих панелей является наименее вредоносным по сравнению с производством панелей других видов. Эффективность этих батарей достигает 12%.

Модуль на базе теллурида кадмияМодуль на базе теллурида кадмия

В последнее время получают распространение гелиевые модули на основе полупроводникового соединения, в состав которого входят индий, галлий, медь и селен (CIGS). Эти модули, как и модули из теллурида кадмия, изготавливаются по тонкопленочной технологии. Их эффективность достигает 15%.

Модуль на базе CIGSМодуль на базе CIGS

Разумеется, потребителю вовсе не обязательно знать, как устроена и работает его домашняя солнечная электростанция. Ведь никого не интересует, как устроен, скажем, телевизор. Мы просто смотрим передачи. Но, покупая телевизор, мы уже знаем его характеристики, знаем фирму, которая его выпускает, слышали отзывы о нем.

А вот, чтобы выбрать себе оборудование для домашней электростанции, нужно иметь хотя бы приблизительное представление о том, что именно вы собираетесь приобрести и как это будет работать. И нет сомнений в том, что элементарные знания об устройстве тех или иных элементов помогут вам сделать правильный выбор.

solarb.ru

Устройство и принцип работы солнечных элементов

Наверное многим интересно как солнечные батареи преобразуют световую энергию солнца в электрическую. На самом деле это довольно сложный процесс, который рассматривается в таком разделе физики как квантовая механика. Но мы постараемся разобраться в этом.

В основу солнечных батарей заложены полупроводниковые материалы. Это своего рода особый класс, который нельзя отнести ни к изоляторам, ни к проводникам. Если сравнить удельное сопротивление полупроводников при комнатной температуре, то оно может колебаться в пределах 10-3 – 109 Ом . см. Это меньше чем сопротивление изоляторов (свыше 109  Ом . см), но и больше чем проводников (меньше чем 10-3 Ом . см). Для изготовления солнечных элементов, как правило используют элементы, чье сопротивление лежит в пределах 10-3 – 102 Ом . см.

Полупроводники делятся на два типа: р и n. Наиболее часто используемым в солнечных элементах полупроводником является кремний (Si). Его получают из различного рода химических соединений, содержащих его, а также удаляют из него практически все примеси.

После очистки его плавят и получают монокристалл Si. Процесс этот имеет название выращивание искусственных кристаллов методом Чохральского.

При изготовлении Si для солнечных элементов производят легирование – добавляют определенное число примесей в расплавленный кремний.  Элементы n – типа получают добавляя в качестве примеси элементы V группы таблицы Менделеева, например фосфор. У фосфора есть пять электронов на внешней оболочке. Поэтому при попадании в расплавленный кремний (а у Si есть только 4 электрона на внешней оболочке) занимает место атома Si в кристаллической решетке и передает ей дополнительный электрон. Из-за этого элементы V группы получили названия донорных.

При изготовлении Si р – типа для солнечных батарей проделывают точно такой же процесс что и для n – типа. Но вместо элементов V группы добавляют III группы, например бор. Он имеет три электрона на внешней оболочке и при добавлении его в расплавленный Si он забирает 1 электрон у кремния. В результате чего образовывается положительный заряд (из-за отсутствия электрона) который называется дыркой. Исходя из этого примеси данного типа получили названия акцепторных.

Дырки и электроны свободно передвигаются по объему полупроводника. Происходит процесс рекомбинации – когда электрон занимает место дырки. Однако после этого на месте где он был, возникнет новая дырка. Если к данной структуре приложить внешнее электрическое поле, то дырки начнут двигаться в одну сторону, а электроны в противоположную.

Для более ясного представления об устройстве солнечных элементов рассмотрим его схематически на рисунке ниже:

Схема солнечного элемента

Где: а — фотоны А я В создают электронно-дырочные пары аа’ я bb’. Электрон с и дырка с’, которые образовались предыдущим фотоном, двигаются к контактам солнеч­ного элемента. Электроны d, e, f и g двигаются по внешней цепи, таким образом получается протекание тока; b —дырка, образованная в следствии воздействия фотона А. прошла через переход и двигается к положительному контакту. Электрон, появившийся в следствии воздействия фото­на В. тоже прошел через переход и продолжает движение к отрицательному контакту. Электрон с перешел из полупроводника в проводник. Электрон d перешел в по­лупроводник и рекомбинировал с дыркой с’.

Как же работает солнечный элемент? Представим что солнечная батарея (структура на рисунке выше) освещается солнечным светом. Фотоны, попадающие на поверхность солнечной батареи с различной энергией, будут поглощаться в полупроводниковом элементе. Фотоны А и В попав на поверхность солнечной установки выбили электрона из произвольных атомов, соответственно на месте них образовались дырки. Таким образом образовались электронно-дырочные пары. Теперь под влиянием электрических полей, образованных р – n переходом, дырки и электроны могут двигаться по материалу полупроводника. Соответственно n область притягивает электроны, р область дырки. На поверхности раздела электрон занимает место дырки. Это явление называется рекомбинацией. Причем после рекомбинации электрон становится нейтральным, пока следующий фотон не выбьет его и не нарушит электрическое равновесие.

Для подключения солнечных элементов к нагрузке их снабжают металлическими контактами. Неосвещенный солнечный элемент может проводить ток, который поступает от внешнего источника, только в одну сторону. Таким образом можно определить полярность полупроводниковым  устройством источника питания.

elenergi.ru

Строение и принцип работы солнечного элемента

В солнечных элементах и панелях (батареях) солнечных элементов для получения электрического тока используется энергия Солнца - мощность потока солнечного излучения на один квадратный метр составляет примерно 1350 Ватт.

Принцип действия солнечного элемента

Строение простого солнечного элемента и основной принцип его действия следующие. Берется обычный полупроводник - две пластины, присоединенные друг к другу. Они изготовлены из кремния с добавлением в каждую из них определенных примесей, благодаря которым получаются элементы с нужными свойствами: первая пластина имеет избыток валентных электронов, у второй же, наоборот, их недостаточно. В итоге, в полупроводнике есть слой отрицательно заряженный и слой положительно заряженный, т.е. слои «n» и «p».

Строение_солнечного_элемента

На самой границе соприкосновения этих пластин находится зона запирающего слоя. Этот слой препятствует переходу избыточных электронов из слоя «n» в слой «p», где электронов не хватает (места с отсутствующими электронами называют дырками). Если подключить к подобному полупроводнику внешний источник питания («+» к «p» и «-» к «n»), то внешнее электрическое поле заставит электроны преодолеть замыкающую зону и через проводник потечет ток.

Нечто подобное происходит и при действии солнечного излучения на солнечный элемент. Когда фотон света влетает в слои «n» и «p», он передает свою энергию высвобождаемым электронам (находящимся на внешней оболочке атомов), а на их месте появляется дырка. Электроны с полученной энергией свободно преодолевают запирающий слой полупроводника и переходят из слоя «p» в слой «n», а дырки, наоборот, переходят из слоя «n» в слой «p».

Этому переходу электронов их области «p» в область «n» и дырок из области «n» в область «p» также способствуют электрические поля положительных зарядов, находящийся в зоне «n» проводника и отрицательных - в зоне «p», которые будто втягивают в себя, одни - электроны, другие - дырки. В итоге, слой «n» приобретает дополнительный отрицательный заряд, а «p» - положительный. Результатом этого явления будет появление в полупроводнике разности потенциалов (напряжения) между двумя пластинами близкой к 0.5 В.

Сила электрического тока, который может генерировать солнечный элемент, изменяется пропорционально количеству захваченных поверхностью фотоэлемента фотонов. Этот показатель, в свою очередь, также зависит от множества дополнительных факторов: интенсивности светового излучения, площади фотоэлемента, времени эксплуатации, КПД устройства, зависит от температуры (при ее повышении, проводимость фотоэлемента значительно падает).

Вот почему нужно помнить о следующем: солнечные элементы (фотоэлементы, батареи) не способны быть очень мощными, они не могут работать в непрерывном режиме (через естественную смену дня и ночи), для стабилизации основных параметров - силы тока и напряжения - появляется необходимость в использовании дополнительных устройств (стабилизаторы, аккумуляторы и т.д.).

Но как дополнительный источник электроэнергии они прекрасно могут использоваться в тех местах, где требуются небольшие мощности и нет возможности подключится к городской электромагистрали. При совмещении работы солнечного элемента и электрического аккумулятора, получается полностью автономная система электроснабжения, которую можно использовать в районах с хорошей солнечной освещенностью и потребностью в малых электрических мощностях.

Строение солнечного элемента

 

Строение_солнечного_элемента

На изображении, показанном выше, можно видеть, что верхний слой p-n перехода, который имеет избыток электронов, соединен с металлическими пластинами, которые выполняют роль положительного электрода, пропуская свет и добавляя элементу дополнительную жесткость. Нижний слой в конструкции солнечного элемента имеет недостаток электронов, к нему приклеена сплошная металлическая пластина, выполняющая функцию отрицательного электрода.

Считается, что в идеале солнечная батарея имеет близкий к 20% КПД. Однако на практике и по данным специалистов сайта www.sun-battery.biz он примерно равен всего 10%, при том, что для некоторых солнечных батарей он больше, для некоторых меньше. В основном это зависит от технологии, по которой выполнен pn переход. Наиболее применяемыми и имеющими наибольший процент КПД, продолжают быть солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все более распространенными.

К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. Монокристаллические имеют исключительно черно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи изготавливаются методом литья, они оказались дешевле в производстве. Однако и в поли-, и в монокристаллических пластин есть один недостаток - конструкции солнечных батарей на их основе не имеют гибкости, которая в некоторых случаях нужна.

Ситуация изменилась с появлением в 1975 году солнечного элемента на основе аморфного кремния, активный элемент которого имеет толщину от 0,5 до 1 мкм и обеспечивает ей гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на свойство аморфного кремния поглощать свет, которая примерно в 20 раз выше, чем у обычного кремния, эффективность солнечных батарей такого типа не превышает 12%. Для моно-и поликристаллических вариантов он может достигать 17% и 15% соответственно.

Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей.

Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве добавок для изготовления пластины, которая производит положительный заряд, используется бор, а для отрицательно заряженных пластин - мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря им солнечные батареи становятся менее чувствительными к перепадам окружающих температур.

Большинство солнечных батарей могут накапливать энергию, представляя собой так называемые системы. Учитывая, что солнечные элементы производят электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически ненужными. С системами на солнечных батареях все по-другому. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его производит, а ночью накопленный заряд может отдаваться потребителям.

radiofishka.in.ua

Типы солнечных элементов и их характеристики

Батареи на солнечных элементах начинают набирать популярность среди населения. Их устанавливают на крыши домов, транспортных средств. Некоторые из них приспособили даже для электроники, в наручные часы. На данный момент они стали полноценной альтернативой электрической энергии либо выступают в качестве дополнения.

Как работают?

Солнечные модули являются самым главным элементом в фотоэлектрической системе. Они представляют собой панель, в которую входят солнечные элементы, изготовленные из кремния.

Для получения электричества все эти компоненты собираются в блоки, которые после этого обтягиваются ламинированной пленкой – это необходимо для герметизации. После чего все помещается в каркас. Устройство достаточно простое, но вот собрать в домашних условиях будет проблематично. Самостоятельно невозможно собрать фотоэлектрический элемент, чего нельзя сказать о панели.

элементы солнечных батарей

Виды

Батареи на солнечных элементах делятся на несколько видов. Среди них можно выделить три:

  • Монокристаллический. В процессе его изготовления используется материал в виде чистого кремния. Такая основа позволяет получать больше эффективности от работы. КПД в данном случае варьируется от 15 до 20 %.
  • Аморфно-кремниевый. В момент производства используется система – испарительная фаза. Кремний при этом покрывают защитным слоем. К ряду преимуществ кремниевых солнечных элементов можно отнести приемлемую стоимость, которая получается из-за простой технологии, применяемой в производстве. Такие системы имеют большие размеры по площади. КПД изменяется в районе от 5 % до 8 %.
  • Поликристаллический. Данный солнечный элемент производится на аморфно-кремниевой основе. В процессе изготовления не подвергается вытягиванию. Имеет невысокую стоимость. Может использоваться не только в быту, но и в промышленности. КПД составляет от 10 до 14 %.
солнечный элемент своими руками

Плюсы и минусы солнечной батареи

Панели солнечных элементов состоят из фотоэлементов, которые в процессе работы преобразовывают энергию от солнца в электричество.

К ряду преимуществ можно отнести следующие моменты:

  1. Вся конструкция батареи достаточно простая, в ней полностью отсутствуют подвижные детали. Работа осуществляется стабильно и без перебоев, уровень надежности высокий.
  2. Монтажные работы не вызывают сложности. Не требуется использовать дорогостоящего обслуживания системы.
  3. Энергия от солнца сразу же преобразуется в электричество, дополнительного времени для этого не требуется.
  4. Энергия вырабатывается на протяжении всего дня, пока присутствует солнце. В некоторых случаях можно получать электричество в пасмурное время, но при этом эффективность работы уменьшается.
  5. Срок эксплуатации большой, он измеряется не годами, а десятками лет.
  6. В процессе производства используются экологически чистые материалы, что считается очень важным в современном обществе, где присутствует сложная обстановка с экологией.

Несмотря на все преимущества, в работе могут встречаться и отрицательные моменты:

  1. Полупроводники, которые изготавливаются из кремния, имеют высокую стоимость. Данный материал считается основным элементов во всей системе. Он оказывает влияние как на стоимость самой панели, так и на стоимость получаемой энергии.
  2. КПД низкий. На сегодняшний день мощность от работы батареи на 1 квадрат составляет примерно 120 Ватт. Данный показатель настолько незначителен, что полностью отсутствует возможность использовать полученное электричество для осветительных приборов небольшого помещения.
  3. Получение электричества зависит от продолжительности светового дня, погодных условий и сезонов. Например, зимой уровень получаемой энергии значительно уменьшается. Это обусловлено пасмурным небом, туманами и коротким световым днем.
солнечные элементы питания

Где можно использовать?

Данные панели широко используются не только в быту, в процессе жизнедеятельности, но и в промышленности, и в производстве:

  • от них заряжают аккумуляторы бытовых электрических приборов;
  • осуществляется подзарядка электрического автомобиля;
  • с их помощью можно обеспечить электрической энергией целые здания;
  • в некоторых случаях возможно использование в отдельных населенных пунктах;
  • от них можно получать энергию даже в космосе.

Вся энергия, которая вырабатывается в течение светового дня, сохраняется в батареях, после чего приборы могут работать даже в темное время суток.

кремниевые солнечные элементы

Какой принцип работы и устройства?

Элементы солнечных батарей работают по тому же принципу, что и в момент первой разработки. Данный принцип знаком каждому, так как его изучали в школьной программе, проводя физические опыты. Транзистор, у которого отсутствовала верхняя крышка, способствовал попаданию света на переходы p и n.

После того, как подключался вольтметр, можно было увидеть, что в момент попадания солнечных лучей выделялось небольшое количество энергии. Раньше ученые проводили эксперименты в работе, увеличивали площадь для переходов. В результате этого появились солнечные батареи.

Конструкция солнечной системы элементов содержит в себе:

  • Поверхность, изготовленную из прозрачного стекла. Именно на нее попадают лучи солнца.
  • Стекла прикрепляются к жестким ребрам панели. Они представляют собой пластины, сделанные из металла, при этом одновременно выполняют функцию положительных электродов.
  • Солнечный химический элемент. Тип кремния p.
  • Тип кремния n.
  • Нижняя подложка из металла, которая предназначена выполнять функцию отрицательных электродов.

Стоит знать, что энергию от солнца невозможно получать на протяжение всего дня. Батареи не способны функционировать в ночное время. В зимнее время световой день уменьшается. В такие моменты основному устройству требуется дополнение в виде накопителя энергии.

В большинстве случаев используют электрический аккумулятор. Он подсоединяется к панели и накапливает вырабатываемую энергию, в результате чего осуществляется работа в вечернее время.

Уровень КПД полностью зависит от используемого материала. Например, при использовании монокристаллического кремния он равен почти 20 %, поликристаллический кремний уменьшает этот показатель на 10 %. На уровень КПД может влиять гладкость поверхности, температурный режим воздуха, расположение батарей к солнцу.

В чем заключается актуальность использования?

На сегодняшний день использование экологически чистых материалов наиболее актуально. Электричество, которое получается на электростанциях – атомных, водных, тепловых, постоянно дорожает. Это обусловлено дорогим производством. В тот момент, когда используется солнечная батарея, человек по праву может считать себя независимым, даже от государства, которое предлагает электричество к использованию по завышенной стоимости.

Если один раз потратить определенную сумму средств, то можно полностью забыть о коммунальных счетах, о счетчиках, коммунальных службах. В момент, когда устанавливаются данные панели, осуществляется перевод всего дома. Сюда входит не только свет, но и отопление, водопровод – горячая вода.

Излучение солнечных лучей – это отличный источник для получения электричества. А самое главное – этот источник является бесплатным, экологически чистым и неиссякаемым.

характеристики солнечных элементов

Этапы производства элементов на основе монокристалла

Большая часть солнечных элементов производится с использованием поликристаллического и монокристаллического кремния. Процесс производства требует много времени, сил и средств.

К основным этапам производства на основе монокристаллического кремния относится:

  1. Производство кремния. Для того чтобы получить кремний, используют кварцевый песок, который содержит большое количество кремниевого диоксида. Такой песок проходит несколько ступеней очистки, что позволяет полностью исключить кислород. Это происходит благодаря плавлению при высокой температуре с использованием химических веществ.
  2. Получение кристалла. После очистки кремний становится прозрачным. Кристаллы начинают выращивать для упорядочивания структуры. Процесс выглядит следующим образом: кремниевые куски помещают в тигель, раскаляют и подвергают плавлению. В расплавленную массу добавляют кристальные образцы, которые равномерно распределяются по всей поверхности и начинают нарастать слоями. Данный процесс требует много времени, в результате чего получается однородный кристалл большого размера.
  3. Процесс обработки. Этот процесс начинается с измерения и дальнейшей обработки кристалла для придания требуемой формы. При выходе из тигля кристалл имеет круглую форму, которая неудобна для дальнейшего использования. Для использования он должен иметь форму квадрата. После того, как готовый материал обработали стальными нитями, с помощью проволоки его режут на одинаковые пластины. Размер пластин варьируется от 0,25 до 0,3 сантиметров. После этого они подлежат очистке, проверке на брак и уровень энергии, которая может вырабатываться.
  4. Разработка фотоэлектрического элемента. Для того чтобы кремний имел возможность вырабатывать электрическую энергию, в него добавляют бор с фосфором. После обработки фосфор - свободный электрон типа n, а сторона с бором не содержит эти электроны и имеет тип p. Таким образом, между двумя сторонами появляется переход.
  5. Процесс сборки. Изначально пластинки соединяются в цепь, а после - в блок. Одна пластина в среднем имеет мощность в 2 V и 0,6 W напряжения. Мощность батареи полностью зависит от количества ячеек. Уровень напряжения получают от последовательности подключений. Все элементы и модули подключаются параллельно друг к другу. Все ячейки покрываются специальной пленкой, переносятся на поверхность стекла и помещаются в рамку с прямоугольной формой. После того, как модуль готов, он проходит проверку. После полной проверки он готов к использованию.

Солнечные батареи могут соединяться между собой параллельно, последовательно либо параллельно последовательно. Выбор полностью зависит от того, какой уровень напряжения необходимо получить в процессе работы.

Процесс производства поликристаллического кремния

Процесс производства модуля на основе поликристаллического кремния осуществляется таким же способом, что и при монокристаллическом кремнии. Отличие присутствует только в выращивании кристаллов. Для этого предусмотрено несколько методов, но на данный момент популярность приобрел лишь один – Сименс-процесс. Вся суть способа заключается в том, что изначально восстанавливают силан и осаждают свободный кремний. Это осуществляется при взаимодействии со специальной смесью, которая содержит в составе элементы водорода и силана с использованием температурного режима, колеблющегося от 600 до 1350 градусов тепла.

Именно таким образом происходит процесс производства солнечных батарей.

Как изготовить солнечную батарею в домашних условиях?

Многие склонны предполагать, что батареи с солнечными элементами своими руками собираются достаточно сложно, даже практически невозможно. На деле все обстоит иначе. Приложить усилий понадобится много, но сам процесс не трудный, как кажется первоначально. Основная трудность, с которой можно столкнуться в процессе работы – это сбор солнечного элемента своими руками. Если удастся создать подобный механизм самостоятельно, то можно будет задуматься не только об отказе от уплаты за коммунальные услуги, но и за реализацию собственного бизнеса. На данный момент солнечные батареи очень актуальны для продажи энергии, воспроизводимой ими. Самое главное – оплата производится в одной из наиболее стабильных валют – евро. Неужели производство солнечных элементов не стоит внимания?

Для того чтобы работать с фотоячейками, требуется иметь навыки и опыт в данной сфере. Первым делом это касается пайки, а также бережного отношения ко всем элементам. Для работы нужно иметь хороший паяльный инструмент, который подходит для тонких работ. Создать самостоятельно моно- и поликристаллы не выйдет. Для этого можно использовать готовые заготовки.

солнечные элементы производство

Фотоячейки

Первым этапом в работе является выбор необходимых фотоячеек. Для работы батареи можно использовать кремний с поли- и моноячейками. Самое главное – учесть уровень производительности и нюанс при работе. Например, в моноячейках КПД выше, а вот в полиячейках теряется значительная энергия в пасмурное время.

Все ячейки разделаются на классы. Всего их выделяют четыре. Класс А имеет самое лучше качество с отсутствием дефектов. Такой класс используют в работе солидные и крупные организации, компании. Характеристики при работе высокие, но и стоимость будет соответствующей.

Когда производство батареи осуществляется самостоятельно, то можно выбрать класс В. Эффективность ниже, чем у предыдущих элементов, при этом, стоимость значительно отличается. Некоторые организации используют данный класс при изготовлении батарей на реализацию, что объясняет низкую эффективность работы.

Некоторые люди покупают все необходимое через интернет магазины. Если обратиться в специализированный магазин, то можно купить сразу все составляющие. Тогда не придется ждать доставки.

Наборы

Для сбора солнечного элемента будет недостаточно только ячеек, так как они должны каким-то образом соединяться друг с другом по схеме. Для этого понадобится использование проводников и дополнительных материалов. Именно поэтому некоторые производители предлагают к покупке готовый набор, где уже присутствует весь материал, который понадобится при работе.

В такой набор может входить до 72 элементов, проводники, шины, диоды для схемы, а также карандаш, в состав которого входит специальная кислота для спайки.

Некоторые наборы могут содержать готовые фотоячейки, к которым припаяны проводники. Для сбора достаточно будет только собрать все согласно схеме и соединить. Этот вариант самый оптимальный, когда солнечные элементы для сборки солнечных батарей соединяются вручную. Материал очень маленький и хрупкий, что вызывает ряд проблем в процессе работы.

Пайка

В том случае, если весь материал – элементы и проводники - приобретались по отдельности, то весь процесс пайки солнечных элементов будет выглядеть по следующей схеме:

  1. Проводники разрезаются на нужную длину. Лучше всего эту работу делать по шаблону.
  2. Проводники аккуратно накладываются на фотоэлемент.
  3. На место припаивания наносят кислоту и припой. Для избежания смещения можно на один конец положить тяжелый предмет.
  4. Проводник требуется пропаять тщательно. Так как ячейки достаточно хрупкие, то не рекомендуется на них воздействовать силой.

Такая работа очень кропотливая, не факт, что получится все сделать правильно с первого раза, может понадобиться повторить весь процесс несколько раз. Если изучить нормы, то можно понять, что напыление проводников из серебра рассчитано на три цикла пайки. Бывают случаи, когда на проводниках заранее нанесен припой, о чем производитель предупреждает сразу. Но лучше всего нанести его дополнительно. В процессе работы запрещено ставить солнечные элементы питания друг на друга, так как можно повредить их из-за большого давления.

Герметизация

Заключительным этапом работы является герметизация всех элементов. Но перед тем как к этому приступить нужно обратить внимание на надежность спайки. Для этого используется мультиметр. Проверку проводить можно после окончания всех работ либо в течение всего процесса, после припаивания каждого отдельного элемента.

Для процесса герметизации зачастую используется силиконовый герметик. Первым делом он наносится на стыки элементов, а после этого на всю панельную поверхность. Для такой работы можно использовать кисть, но применять ее нужно только для стыков, так как возможно легко сдвинуть ячейки с места. После того, как все высохло, можно закрывать крышку.

Выбор батареи в дом

На данный момент можно встретить батареи с двумя типами солнечных элементов: монокристаллические, поликристаллические.

Каждый тип имеет плюсы и минусы в работе, о которых нужно знать заранее, до момента совершении покупки.

солнечные элементы

Возможности рынка и производства не стоят на месте, регулярно появляются новинки, в процессе изготовления которых используются различные технологии. Перед тем как сделать выбор, рекомендуется обратить внимание на характеристики солнечных элементов: на уровень КПД, на наличие аккумулятора, который способен накапливать энергию в течение светового дня и вырабатывать ее в темное время суток. Все эти данные заранее предоставляет производитель, с ними можно ознакомиться в специализированном магазине. Лучше всего предварительно найти в Интернете информацию или же обсудить со специалистами, какой вариант будет наилучшим.

fb.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта