Eng Ru
Отправить письмо

Солнечные элементы электрические. Устройство солнечной батареи. Солнечные батареи рисунок


Схема подключения солнечных батарей: основные элементы

Как подключать солнечные батареи

В связи с повышением стоимости энергоносителей, люди все больше интересуются солнечной энергетикой. Экологически чистая и бесплатная энергия солнца практически неисчерпаема и имеется в предостаточном количестве. Задача человечества заключается в эффективном преобразовании солнечной энергии в другой вид, например, в тепловую или электрическую. Получение последней стало возможным благодаря изобретению солнечной батареи, принцип работы которой основан на свойствах полупроводника вырабатывать электрический ток под воздействием света.

Солнечные батареи

Солнечные батареи являются эффективным средством преобразования экологически чистой и бесплатной энергии солнца, которая является практически неисчерпаемой, в электрическую.

Для правильной работы всей системы должна быть корректно составлена схема подключения солнечных батарей.

Устройство и принцип работы

Общий вид солнечной батареи

Рисунок 1 — Общий вид солнечной батареи.

Основными составляющими солнечной батареи являются фотогальванические ячейки, сделанные из пластин кремния. Панель состоит из алюминиевой рамы, в которую вставлено закаленное, ударопрочное сверхпрозрачное стекло. На стекло в виде матрицы укладываются ячейки, которые соединяются последовательно методом пайки. Общий вид солнечной батареи приведен на рисунке 1, а типичная схема соединения ее ячеек — на рисунке 2. Количество ячеек может быть разное в зависимости от требуемой мощности. В результате этого у собранной батареи получаются два вывода — «+» и «-«. Далее этот набор ячеек подвергается инкапсуляции, то есть тщательно герметизируется специальной пленкой или заливается двухкомпонентным компаундом — веществом, похожим на эпоксидную смолу.

Под воздействием света на кремниевых элементах возникает разность потенциалов, которая в итоге суммируется, так как ячейки соединены последовательно. Напряжение солнечной батареи будет меняться, в зависимости от интенсивности освещения. Чтобы эффективно использовать полученную электроэнергию, солнечную батарею нужно правильно подключать в схему взаимодействия с другими устройствами.

Вернуться к оглавлению

Схема подключения

Типичная схема соединения ячеек солнечной батареи

Рисунок 2 — Типичная схема соединения ячеек солнечной батареи.

Типичная схема фотоэлектрической системы приведена на рисунке 3. Основные ее элементы — это одна или несколько солнечных батарей, соединенных параллельно, контроллер заряда-разряда аккумулятора, аккумуляторные батареи, инвертор и потребители электроэнергии. Самыми распространенными являются 12-вольтовые системы с преобразованием в 220 вольт переменного напряжения (при необходимости). Чтобы лучше понять, как работает такая схема, следует рассмотреть все ее элементы поподробнее.

Первым элементом в схеме подключения солнечных батарей является диод Шоттки. Обычно на схемах эта деталь не показана, так как она, как правило, изначально вмонтирована в солнечную панель. Диоды Шоттки защищают элементы от выхода из строя в те моменты, когда часть батареи или вся панель с наступлением ночи затеняется и перестает генерировать электрический ток. В этом случае элементы становятся потребителями тока от аккумуляторных батарей, и именно диод Шоттки препятствует обратному протеканию тока. Это проиллюстрировано на рисунке 4.

Следующий элемент — это контроллер заряда АКБ. Он представляет собой электронное устройство, которое автоматически управляет процессами заряда и разряда аккумулятора, а также защищает его от чрезмерного заряда и разряда, ведь эти факторы могут вывести АКБ из строя. Это работает следующим образом. Днем, когда аккумулятор заряжается от солнечной батареи, контроллер следит за напряжением на клеммах аккумулятора, и, как только оно достигает верхнего предельного значения (более 14 вольт для 12-вольтной системы), процесс зарядки прекращается, ток перенаправляется к нагрузке. Ночью солнечная панель не работает и питание системы осуществляется только от заряженного за день аккумулятора. Как только напряжение на его клеммах достигает предельно низкого значения (около 11 вольт), контроллер отключает работу схемы. Помимо указанных функций, контроллер также защищает элементы схемы от короткого замыкания и от грозы.

Схема фотоэлектрической системы

Рисунок 3 — Схема фотоэлектрической системы.

Аккумуляторная батарея служит в этой схеме накопителем электроэнергии, которая вырабатывается солнечной батареей в течение дня, чтобы в темное время суток питать подключенные устройства. К аккумулятору подключается одна из пар выводов контроллера. Для этой системы можно использовать и автомобильный аккумулятор, но только вне помещений, так как он выделяет вредные вещества. Гораздо лучше применять специальные необслуживаемые аккумуляторы. Хотя они и стоят дороже автомобильных, их срок службы в разы выше, они безопасны и специально предназначены для многократных частых циклов заряда-разряда.

Схема подключения работает таким образом, что на выходе контроллера поддерживается постоянное напряжение 12 вольт. Для работы светодиодного освещения и приборов с соответствующим напряжением питания этого вполне достаточно. Но если схема будет содержать еще и инвертор, то на выходе можно получить переменное напряжение 220 вольт. Это и есть основная функция инвертора — преобразование из 12 вольт постоянного напряжения в 220 вольт переменного. Для бытового применения вполне подходят автомобильные инверторы, но в тех случаях, где требуется большая мощность и более правильная синусоида переменного напряжения, применяются более дорогие инверторы.

Схема защиты от обратного протекания тока

Рисунок 4 — Схема защиты от обратного протекания тока.

Следует учитывать еще один нюанс, который иногда вызывает путаницу. Если измерить напряжение на выходе солнечной батареи, не подключая ее в схему, то вольтметр покажет около 18 вольт. Но почему такая батарея считается 12-вольтовой? Дело в том, что при подключении фотогальванической панели к нагрузке происходит просадка напряжения, и оно приблизится к 12 вольтам. А то, что показывает вольтметр на клеммах солнечной батареи без нагрузки, — это напряжение холостого хода. Если требуется большая мощность, то в схему нужно подключить параллельно несколько солнечных панелей и, соответственно, аккумуляторов.

Солнечные панели монтируются на открытых участках под углом 45 градусов к горизонту с направлением на юг. Именно в таком положении будет выработано наибольшее количество электроэнергии. Однако это количество можно еще увеличить, если поместить панель на поворотное устройство, которое в течение дня от восхода до заката автоматически медленно поворачивается, направляя панель строго на солнце.

Вернуться к оглавлению

Каковы перспективы

Приведенная схема описывает простую фотогальваническую систему, которая может быть реализована в своем доме или на даче. Для серьезных солнечных электростанций схема получается сложнее в связи с большим количеством солнечных панелей и необходимостью подключения системы к линии электропередач. Солнечная энергетика пока является недешевым удовольствием, но в ее развитие вкладываются огромные средства во всем мире. Это подчеркивает хорошую перспективу данного направления. Ученые совершенствуют технологии, благодаря которым снижается стоимость солнечных батарей и они становятся более доступными.

1poteply.ru

Стоковые векторные изображения Батареи солнечные

Альтернативное энергетическое понятие — стоковый векторКомплект солнечных батарей логотипы — стоковый векторПлоские солнечные батареи — стоковый вектор

JuliaMusdotter

4375 x 4379

Лампочка с солнечными батареями — стоковый векторКрасочные батареи иконы, переработка концепции — стоковый векторЧерный вектор энергии иконы set — стоковый векторВекторные иконки набор черный солнечной энергии — стоковый вектор
Значок батареи солнечные — стоковый векторЭнергии Иконки векторные линии 1 — стоковый векторЗнак логотипа компании, строительство — стоковый векторВекторная иллюстрация эко инфографики — стоковый векторЭнергия и символ ресурса установлены — стоковый вектор
Иконка Зеленый окружающей среды — стоковый векторНабор этикеток и элементов для зеленой технологии — стоковый векторЭнергия и символ ресурса установлены — стоковый векторЭнергии схема панели солнечных батарей — стоковый вектор
Солнечной энергии, солнечной энергии, панели, линии иконы на круглой формы 3d — стоковый векторПанель солнечной энергии — стоковый векторВласть, энергия и символы электричества — стоковый векторЗарядка аккумулятора — стоковый векторИнфографика получения, обработки, накопления и потребления солнечной электроэнергии — стоковый векторСолнечная батарея. Панели солнечных батарей. Вектор — стоковый вектор

serdiuk.igor.gmail.com

4000 x 4000

Набор поколения баннер энергии линии — стоковый векторЗеленая планета — стоковый векторПанели солнечных батарей, вектор — стоковый векторСимвол экологии установлен — стоковый векторГазовый котел в коттедже. Солнечная батарея. Панели солнечных батарей. Зеленый СВ — стоковый вектор

serdiuk.igor.gmail.com

4000 x 4000

Природа Иконки набор. Горный пейзаж, городской пейзаж, энергии тема, я — стоковый векторИнфографика естественной энергии — стоковый векторЭнергосберегающая система отопления набор. Набор включает в себя-Теплоаккумулятор — стоковый вектор

serdiuk.igor.gmail.com

4167 x 4167

Логотип электрической энергии дома свет яркий символ вектор — стоковый векторЗначок батареи солнечные — стоковый векторГородов и деревни пейзаж набор. Экология, экологические защитн — стоковый векторСолнечная батарея. Ветровой генератор. Зеленая энергия. Вектор — стоковый вектор

serdiuk.igor.gmail.com

4000 x 4000

Значок эмблемы 3D современные солнечные батареи — стоковый векторСимвол экологии установлен — стоковый векторПрирода Иконки набор. Горный пейзаж, городской пейзаж, энергии тема, я — стоковый векторСолнечная батарея — стоковый векторАльтернативная энергия просто значки — стоковый векторСолнечная батарея — стоковый векторНабор элементов вектора солнечной технологии — стоковый векторЛоготип электрической энергии дома свет яркий символ вектор — стоковый векторЭко энергии Солнечная Солнечная альтернативная энергетика — стоковый векторЭлектричество значок плоская линия — стоковый векторНабор иконок природы для вашего дизайна. Тема экологии, в — стоковый векторЗеленый город инфографики. Эко города фон городской пейзаж — стоковый векторЭнергосберегающая система отопления набор. Набор включает в себя-Тепл

ru.depositphotos.com

Солнечные элементы электрические. Устройство солнечной батареи.

 

 

 

Тема: что собой представляют солнечные элементы, батареи, их устройство.

 

Различные солнечные элементы (фотоэлементы) представляют собой электрические устройства, которые способны преобразовывать часть солнечного излучения (электромагнитного) в электрический ток. Несколько объединённых вместе фотоэлементов (фотоэлектрических преобразователей) будут составлять уже солнечную батарею, что может выдавать определённое напряжение и ток.

 

Работа солнечных элементов основана на явлении внутреннего фотоэффекта, что впервые был исследован в 1839 г. учёным по имени Эдмон Беккерель. Данное открытие продолжило своё развитие в 1873г., во время, когда Уиллоуби Смит обнаружил подобный эффект при облучении светом селеновой пластины. И лишь в 20-ом веке (начало 50-х г.) солнечные элементы достигли довольно высокого уровня своего совершенства благодаря открытию новых материалов.

 

Устройство солнечной батареи (простейшего фотоэлемента) и основные принципы действия таковы: у нас имеется обычный полупроводник, а именно —  две пластины присоединенные друг к другу. Они сделаны из кремния с добавлением в каждую из них определённых примесей. Это позволяет получить элементы с нужными свойствами, то есть — первая пластина обладает избытком валентных электронов, вторая же, наоборот, их недостатком. В итоге, слои «n» и «p».

 

На самой границе соприкосновения данных пластин существует зона запирающего слоя. Эта зона противодействует своими электрическими полями переходу избыточных электронов из слоя «n» в слой «p», где данных электронов не хватает (места с отсутствующими электронами называют дырками). Если подключить к подобному полупроводнику внешний источник питания («+» к «p» и «-» к «n»), то внешнее электрическое поле заставит электроны преодолеть запирающую зону и через проводник потечёт ток.

 

 

Нечто подобное происходит и при воздействии солнечного излучения на наш полупроводник. Когда фотон света влетает в слои «n» и «p», он передаёт свою энергию электронам (находящихся на внешней оболочке атомов), тем самым разбивая атом на электроны и протоны (в которых порождается дырка — место отсутствующего электрона). Далее, электроны с полученной энергией свободно преодолевают запирающий слой полупроводника и переходят из слоя «p» в слой «n», а дырки, наоборот, переходят их «n» в слой «p».

 

Этому переходу электронов их области «p» в область «n» и дырок из области «n» в область «p», также способствуют электрические поля (положительных зарядов, что находится в запирающей зоне «n» проводника и отрицательных — в зоне «p»), которое как бы втягивает в себя, одни — электроны, другие — дырки. В итоге, слой «n» приобретает дополнительный отрицательный заряд, а «p» – положительный. Результатом этого явления будет появление в полупроводнике разности потенциалов между двумя пластинами равной около 0.5 В.

 

Сила электрического тока в солнечном элементе будет меняться пропорционально количеству захваченных поверхностью фотоэлемента фотонов. Этот показатель, в свою очередь, также будет зависеть от множества дополнительных факторов — это интенсивность светового излучения, площадь, что имеет фотоэлемент, времени эксплуатации, КПД устройства, что зависит от температуры (при её повышении, проводимость фотоэлемента значительно падает).

 

Исходя из вышесказанного можно утверждать следующее: солнечные элементы (фотоэлементы, батареи) не способны выдавать сверхбольшие мощности (занимая при этом малые площади для своей работы), они не могут работать в беспрерывном режиме (из-за естественной смены дня и ночи), для поддерживания необходимых и постоянных значений (стабилизации) основных параметров — силы тока и напряжения, появляется необходимость в использовании дополнительных устройств (стабилизаторы, аккумуляторы т.д.).

 

Но на роль дополнительного источника электроэнергии, они вполне годятся. Они прекрасно могут использоваться в тех местах, где нужны небольшие мощности и нет возможности подключится к городской электромагистрали. При объединении принципа работы солнечного элемента и электрического аккумулятора, получается полностью автономная система электроснабжения, которую можно использовать в районах с хорошей освещённостью и потребностью с малыми электрическими мощностями.

 

P.S. Так, для справки: мощность потока солнечного излучения на один квадратный метр (не учитывая атмосферную потерю), будет составлять примерно 1350 Вт.

electrohobby.ru

Из серии «Как это делается» | Солнечные батареи для космоса

Это фотоэлектрические преобразователи — полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре — на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.

1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» — один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли — гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь — на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки — около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. — всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента — как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).

6a

6b

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей — так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

9a

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей — еще одна часть работы завода «Сатурн».

На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

10a

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка — это положительные и отрицательные электроды, разделённые сепараторной бумагой — в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления. В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность — неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора — очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см2, при испытаниях разрыв произошел при давлении 148 кг·с/см2.

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

17a

17b

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

18a

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами — одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении — всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.

Фотографии: © drugoi

P.S. Блог вице-президента по маркетингу компании «Очаково» Инны Кочетовой в ЖЖ находится здесь: http://inna-kochetova.livejournal.com/

drugoi.livejournal.com

Вам текст или картинку? Новый формат солнечной батареи / Солнечная …

Ученые из финского университета Аалто создали бюджетную солнечную батарею, которая может выглядеть как текст или картинка. Если у вас есть гаджеты или устройствами с низкой энергопотреблением, то такая батарея поможет вам их заряжать и послужит декором. Ученые уже сравнили эффективность и долговечность разработки с ранее созданными органическими красителями для солнечных аккумуляторов, сообщает Ecotown.

Солнечная энергия, солнечные фермы, модули, панели, батареи: Вам текст или картинку? Новый формат солнечной батареи В испытаниях новинка дала те же показатели, что и традиционные фотоэлементы. Так во время испытания она «пережила» 1154 часа естественного освещения и 1000 часов ускоренного старения при искусственном свете. Никаких признаков уменьшения производительности не зафиксировано.

Для создания такой батареи используется струйная печать и концентрат раствора красителя. Печатается же все на пленке-электролите из окиси титана. Финны лишь усовершенствовали разработку швейцарцев из политехнической школы Лозанны, использовав ее в формате солнечных батарей как графический файл с элементами разной прозрачности и насыщенности. В итоге разработка выглядит как красочная картинка или текст, способная производить энергию, и в то же время хранить информацию.

Солнечная энергия, солнечные фермы, модули, панели, батареи: Вам текст или картинку? Новый формат солнечной батареи По словам разработчиков, основной проблемой являлся поиск показателей принтера, который давал бы равномерное нанесение краски и высокую точность печати, а также поиск подходящего растворителя для краски.

Тесты напечатанных клеток доказывают, что «распечатки» сохраняют 6,4% эффективности даже в сложных условиях многочасовых испытаний светом.

rodovid.me

Солнечная батарея своими руками | Альтернативные источники энергии

Представляю вашему вниманию детальное пошаговое руководство по самостоятельной сборке самодельной солнечной батареи. Данная статья – вольный перевод статьи Майкла Дэвиса о постройке недорогой солнечной батареи.

Пару лет назад я купил удаленный участок в Аризоне. Я астроном, и мне нужно было удаленное от крупных городов место для астрономических наблюдений. Я нашел такое место. Проблема в том, что из-за удаленности на участке нет никакого электроснабжения. Ну, на самом деле для меня это не проблема. Нет электричества – нет ночной засветки неба. Тем не менее, хорошо бы иметь хоть какое-то электроснабжение, т.к. жизнь в ХХI веке сильно от него зависит.

Я построил ветрогенератор для электрообеспечения дома. Он работает хорошо, когда ветер дует. К сожалению, мне нужно больше энергии. И эта энергия должна быть более стабильна. А то такое ощущение, что у меня на участке ветер дует всегда, но только не тогда когда мне нужна энергия. В Аризоне более 300 солнечных дней в году, поэтому солнечная батарея кажется очевидным дополнением к ветрогенератору. К сожалению, солнечные батареи недешевы, поэтому я решил сделать все сам. Использовал самые обычные инструменты и недорогие и распространенные материалы, чтобы сделать солнечную батарею своими руками конкурирующую с коммерческими образцами по мощности, но не оставляющую им никакого шанса по цене.

Итак, что же такое солнечная батарея, панель (СБ)? По существу, это контейнер, содержащий массив солнечных элементов. Солнечные элементы, это те штуки, которые на самом деле делают всю работу по преобразованию солнечной энергии в электричество. К сожалению, для получения мощности, достаточной для практического применения, солнечных элементов надо достаточно много. Также, солнечные элементы ОЧЕНЬ хрупкие. Поэтому их и объединяют в СБ. Батарея содержит достаточное количество элементов для получения высокой мощности и защищает элементы от повреждения. Звучит не слишком сложно. Я уверен, что смогу сделать это сам.

Я начал свой проект, как обычно, с поиска в сети информации по самодельным СБ и был шокирован как же ее мало. Тот факт, что мало кто сделал свои собственные солнечные батареи, заставлял меня думать, что это должно быть очень сложно. Задумка была отложена в долгий ящик, но я никогда не переставал думать о ней.

Спустя какое-то время, я пришел к следующим умозаключениям:

  • главное препятствие в постройке СБ это приобретение солнечных элементов за разумную цену
  • новые солнечные элементы очень дороги и их сложно найти в нормальном количестве за любые деньги
  • дефектные и поврежденные солнечные элементы есть в наличии на eBay и других местах гораздо дешевле
  • солнечные элементы «второго сорта» возможно, могут быть использованы для изготовления солнечной батареи

Когда до меня дошло, что я могу использовать дефектные элементы, чтобы сделать свою СБ, я взялся за работу. Начал с покупки элементов на eBay.

Купил несколько блоков монокристаллических солнечных элементов размером 3х6 дюйма. Чтобы сделать СБ, необходимо соединить последовательно 36 таких элементов. Каждый элемент генерирует порядка 0,5В. 36 элементов, соединенных последовательно дадут нам около 18В, которые будут достаточны для зарядки батарей на 12В. (Да, такое высокое напряжение действительно необходимо для эффективной зарядки 12В аккумуляторов). Солнечные элементы этого типа тонкие как бумага, хрупкие и ломкие как стекло. Их очень легко повредить.

Продавец этих элементов окунул наборы из 18 шт. в воск для стабилизации и доставки без повреждений. Воск – это головная боль при его удалении. Если у вас есть возможность, ищите элементы, не покрытые воском. Но помните, что они могут получить больше повреждений при транспортировке. Заметьте, что мои элементы уже имеют припаянные проводники. Ищите элементы с уже припаянными проводниками. Даже с такими элементами вам нужно быть готовым много поработать паяльником. Если же вы купите элементы без проводников, приготовьтесь работать паяльником раза в 2-3 больше. Короче, лучше переплатить за уже припаянные провода.

Также я купил пару наборов элементов без заливки воском у другого продавца. Эти элементы пришли упакованные в пластиковую коробку. Они болтались в коробке и немного обкололись по бокам и углам. Незначительные сколы не имеют особого значения. Они не смогут снизить мощность элемента настолько, чтобы об этом надо было беспокоиться. Купленных мной элементов должно хватить на сборку двух СБ. Я знаю, что возможно сломаю парочку при сборке, поэтому купил чуть больше.

Солнечные элементы продаются самого широкого спектра форм и размеров. Вы можете использовать более крупные или мелкие, чем мои 3х6 дюймов. Просто помните:

  • Элементы одного типа производят одинаковое напряжение независимо от их размера. Поэтому для получения заданного напряжения всегда потребуется одинаковое количество элементов.
  • Большие по размеру элементы могут генерировать бОльший ток, а меньшие по размеру, соответственно – меньший ток.
  • Общая мощность вашей батареи определяется как ее напряжение умноженное на генерируемый ток.

Использование больших по размеру элементов позволит получить большую мощность при том же напряжении, но батарея получится крупнее и тяжелее. Использование меньших элементов позволит уменьшить и облегчить батарею, но не сможет обеспечить такую же мощность. Также стоит отметить, что использование в одной батарее элементов разных размеров – плохая идея. Причина в том, что максимальный ток, генерируемый вашей батареей, будет ограничен током самого маленького элемента, а более крупные элементы не будут работать в полную силу.

Солнечные элементы, на которых я остановил выбор, имеют размер 3х6 дюйма и способны генерировать ток примерно 3 ампера. Я планирую соединить последовательно 36 таких элементов, чтобы получить напряжение чуть больше 18 вольт. В результате должна получиться батарея, способная выдавать мощность порядка 60 ватт на ярком солнце. Звучит не сильно впечатляюще, но все же это лучше чем ничего. При чем, это 60Вт каждый день, когда светит солнце. Эта энергия будет идти на зарядку аккумулятора, который будет использоваться для питания светильников и небольшой аппаратуры всего несколько часов после наступления темноты. Просто когда я иду спать, мои энергетические потребности сводятся к нулю. Короче, 60 Вт это вполне достаточно, особенно учитывая, что у меня есть ветрогенератор, который тоже производит энергию, когда дует ветер.

После того как вы купите свои солнечные элементы спрячьте их в безопасное место, где они не разобьются, не попадут детям для игр и не будут съедены вашей собакой до тех пор, пока вы не будете готовы установить их в вашу СБ. Элементы очень хрупкие. Грубое обращение превратит ваши дорогие солнечные элементы в маленькие синенькие блестящие и ни для чего непригодные осколочки.

Итак, солнечная батарея это просто неглубокий ящик. Я начал с постройки такого ящика. Я сделал его неглубоким, чтобы борта не затеняли солнечные элементы, когда солнце светит под углом. Сделан он из фанеры толщиной 3/8 дюйма с бортиками из реек толщиной 3/4 дюйма. Бортики приклеены и привинчены на место. Батарея будет содержать 36 элементов размером 3х6 дюймов. Я решил разделить их на две группы по 18 шт. просто для того, чтобы их было проще паять в будущем. Отсюда и центральная планка посередине ящика.

Вот небольшой набросок, показывающий размеры моей СБ. Все размеры в дюймах (простите меня, поклонники метрической системы). Бортики толщиной 3/4 дюйма идут вокруг всего листа фанеры. Такой же бортик идет по центру и делит батарею на две части. В общем, я решил сделать так. Но в принципе, размеры и общий дизайн не критичны. Можете свободно все варьировать в своем эскизе. Размеры же тут я приводу для тех людей, которые постоянно ноют, чтобы я включил их в свои эскизы. Я всегда поощряю народ экспериментировать и изобретать что-то свое, нежели слепо следовать инструкциям, написанным мной (или кем-то еще). Возможно, у вас получится лучше.

Вид одной из половин моей будущей батареи. В этой половине будет размещена первая группа из 18 элементов. Обратите внимание на небольшие отверстия в бортиках. Это будет нижняя часть батареи (на фото верх находится внизу). Это вентиляционные отверстия, предназначенные для выравнивания давления воздуха внутри и снаружи СБ и служащие для удаления влаги. Эти отверстия должны быть только внизу батареи, иначе дождь и роса попадут внутрь. Такие же вентиляционные отверстия должны быть сделаны в центральной разделительной планке.

Далее я вырезал два подходящих по размеру куска ДВП. Они будут служить подложками, на которых будут собираться солнечные элементы. Они должны свободно помещаться между бортиками. Не обязательно использовать именно перфорированные листы ДВП, просто у меня оказались такие под рукой. Пойдет любой тонкий, жесткий и не проводящий ток материал.

Чтобы защитить батарею от погодных неприятностей, лицевую сторону закрываем оргстеклом. Эти два куска оргстекла были вырезаны, чтобы закрывать всю батарею полностью. У меня не было одного достаточно большого куска. Стекло тоже можно использовать, но стекло бьется. Град, камни и летящий мусор могут разбить стекло, а от оргстекла просто отскочат. Как видите, начинает вырисовываться картинка, как солнечная батарея будет выглядеть в итоге.

Упс! На фото два листа оргстекла соединенные на центральной перегородке. Я сверлил отверстия вокруг кромки, чтобы посадить оргстекло на шурупы. Будьте осторожны, сверля отверстия возле кромки оргстекла. Будете сильно давить – сломается, что у меня и произошло. В итоге, я просто приклеил отломавшийся кусок и просверлил недалеко новое отверстие.

После этого, я окрасил все деревянные части солнечной батареи несколькими слоями краски, чтобы защитить их от влаги и воздействия окружающей среды. Ящик я покрасил внутри и снаружи. При выборе типа краски и ее цвета был использован научный подход. Я взболтал всю краску из остатков, имеющихся у меня в гараже, и выбрал ту банку, в которой краски хватит, чтобы сделать всю работу.

Подложки тоже были окрашены в несколько слоев с обеих сторон. Убедитесь, что вы хорошо все прокрасили, иначе дерево может покоробиться от влаги. А это может повредить солнечные элементы, которые будут приклеены к подложкам.

Теперь, когда у меня есть основа для СБ, самое время подготовить солнечные элементы.

Как я говорил раньше, удаление воска с солнечных элементов – это настоящая головная боль. После нескольких проб и ошибок я все-таки нашел неплохой способ. Но я по-прежнему рекомендую покупать элементы у того, кто не заливает их воском.

Первый шаг, это «купание» в горячей воде, чтобы растопить воск и отделить элементы друг от друга. Не дайте воде закипеть, иначе пузырьки пара будут сильно бить элементы один о другой. Кипящая вода также может быть слишком горячей, в элементах могут быть нарушены электрические контакты. Я также рекомендую погружать элементы в холодную воду, а потом медленно их нагревать, чтобы исключить неравномерный нагрев. Пластиковые щипцы и лопатка помогут отделить элементы, когда воск растает. Постарайтесь сильно не тянуть за металлические проводники – могут порваться. Я обнаружил это, когда пробовал разделить свои элементы. Хорошо, что я купил их с запасом.

Тут показана финальная версия «установки» которую я использовал. Моя подруга спросила, что это я готовлю. Вообразите ее удивление, когда я ответил: «Солнечные элементы». Первая «горячая ванна» для растапливания воска находится на заднем плане справа. На переднем плане слева – горячая мыльная вода, а справа – чистая горячая вода. Температуры во всех кастрюлях ниже температуры кипения воды. Сначала в дальней кастрюле растапливаем воск, переносим элементы по одному в мыльную воду, чтобы удалить остатки воска, после чего промываем в чистой воде. Выкладываем элементы для просушки на полотенце. Вы можете менять мыльную воду и воду для промывки почаще. Только не сливайте использованную воду в канализацию, т.к. воск затвердеет и засорит сток. Этот процесс удалил практически весь воск с солнечных элементов. Только на некоторых остались тонкие пленки, но это не помешает пайке и работе элементов. Промывка растворителем, возможно, удалит остатки воска, но это может быть опасно и зловонно.

Несколько разделенных и очищенных солнечных элементов сушатся на полотенце. После разделения и удаления защитного воска из-за своей хрупкости они стали удивительно сложными в обращении и хранении. Я рекомендую оставить их в воске до тех пор, пока вы не будете готовы установить их в вашу СБ. Это позволит вам не разбить их до того, как вы сможете их использовать. Поэтому постройте сначала основу для батареи. У меня же пришло уже время установить их.

Я начал с отрисовки сетки на каждой основе, для упрощения процесса установки каждого элемента. Потом я выложил элементы по этой сетке обратной стороной вверх, так их можно спаять вместе. Все 18 элементов для каждой половины батареи должны быть соединены последовательно, после чего обе половины также должны быть соединены последовательно для получения требуемого напряжения.

Спаивать элементы между собой поначалу сложно, но я быстро приловчился. Начинайте только с двух элементов. Разместите соединительные проводники одного из них так, чтобы они пересекали точки пайки на обратной стороне другого. Также нужно убедиться, что расстояние между элементами соответствует разметке.

Я использовал маломощный паяльник и прутковый припой с сердцевиной из канифоли. Также перед пайкой я смазывал флюсом точки пайки на элементах при помощи специального карандаша. Не давите на паяльник! Элементы тонкие и хрупкие, нажмете сильно – сломаете. Я был неаккуратен пару раз – пришлось выбросить несколько элементов.

Повторять пайку пришлось до тех пор, пока не получилась цепочка из 6-ти элементов. Соединительные шины от сломанных элементов я припаял к обратной стороне последнего элемента цепочки. Таких цепочек я сделал три, повторив процедуру еще дважды. Всего 18 элементов для первой половины батареи.

Три цепочки элементов должны быть соединены последовательно. Поэтому среднюю цепочку поворачиваем на 180 градусов по отношению к двум другим. Ориентация цепочек получилась правильной (элементы все еще лежат обратной стороной вверх на подложке). Следующий шаг – приклеивание элементов на место.

Приклеивание элементов потребует некоторой сноровки. Наносим небольшую каплю силиконового герметика в центре каждого из шести элементов одной цепочки. После этого переворачиваем цепочку лицевой стороной вверх и размещаем элементы по разметке, которую нанесли раньше. Легонько прижмите элементы, надавливая по центру, чтобы приклеить их к основе. Сложности возникают в основном при переворачивании гибкой цепочки элементов. Вторая пара рук тут не повредит.

Не наносите слишком много клея и не приклеивайте элементы нигде кроме центра. Элементы и подложка, на которой они смонтированы, будут расширяться, сжиматься, гнуться и деформироваться при изменении температуры и влажности. Если вы приклеите элемент по всей площади, он со временем сломается. Приклеивание только в центре дает элементам возможность свободно деформироваться отдельно от основы. Элементы и основа могут деформироваться по-разному и элементы не сломаются.

Вот полностью собранная половина батареи. Я использовал медную оплетку от кабеля для соединения первой и второй цепочки элементов.

Можно использовать специальные шины или даже обычные провода. Просто у меня под рукой была медная оплетка от кабеля. Такое же соединение делаем с обратной стороны между второй и третьей цепочкой элементов. Каплей герметика я прикрепил провод к основанию, чтобы он не «гулял» и не гнулся.

Тест первой половины солнечной батареи на солнце. При слабом солнце в дымке эта половина генерирует 9,31В. Ура! Работает! Теперь мне нужно сделать еще одну такую же половину батареи.

После того как обе основы с элементами будут готовы, я смогу установить их на место в подготовленную коробку и соединить.

Каждая из половин помещается на свое место. Я использовал 4 небольших шурупа для крепления основы с элементами внутри батареи.

Провод для соединения половин батареи я пропустил через одно из вентиляционных отверстий в центральном бортике. Тут тоже пара капель герметика поможет закрепить провод на одном месте и предотвратить его болтание внутри батареи.

Каждая солнечная панель в системе должна быть снабжена блокирующим диодом, соединенным последовательно с батареей. Диод нужен для предотвращения разряда аккумуляторов через батарею ночью и в пасмурную погоду. Я использовал диод Шоттки на 3,3А. Диоды Шоттки имеют гораздо более низкое падение напряжения, чем обычные диоды. Соответственно, будут меньше потери мощности на диоде. Я купил набор из 25 диодов марки 31DQ03 на eBay всего за пару баксов. У меня останется еще много диодов для моих будущих СБ.

Сначала я планировал присоединить диод снаружи батареи. Но после того как посмотрел технические характеристики диодов, решил поместить их внутри батареи. У этих диодов падение напряжения уменьшается с ростом температуры. Внутри моей батареи будет высокая температура, диод будет работать более эффективно. Используем еще немного силиконового герметика чтобы закрепить диод.

Я просверлил отверстие в днище батареи ближе к верху, чтобы вывести провода наружу. Провода завязаны на узел, чтобы предотвратить их вытягивание из батареи, и закреплены все тем же герметиком.

Важно дать герметику высохнуть до того, как мы будем крепить оргстекло на место. Советую, опираясь на предыдущий опыт. Испарения из силикона могут образовать пленку на внутренней поверхности оргстекла и элементов, если вы не дадите силикону высохнуть на открытом воздухе.

И еще немного герметика для герметизации выходного отверстия.

На выходной провод я прикрутил двухконтактный разъем. Розетка этого разъема будет присоединена к контроллеру заряда аккумуляторов, который я использую для своего ветрогенератора. Таким образом, солнечная батарея сможет работать с ним параллельно.

Вот как выглядит законченная СБ с прикрученным экраном из оргстекла. Оргстекло пока еще не герметизировано. Я сначала не производил герметизацию стыков. Провел сначала небольшое тестирование. По результатам тестов мне потребовался доступ к внутренностям батареи, там обнаружилась проблема. У меня на одном из элементов отошел контакт. Может быть, это произошло из-за перепада температур или из-за неаккуратного обращения с батареей. Кто знает? Я разобрал батарею и заменил этот поврежденный элемент. С тех пор проблем не было. В будущем, возможно, я герметизирую стыки под оргстеклом при помощи герметика или закрою их алюминиевой рамкой.

Вот результаты тестирования напряжения законченной батареи на ярком зимнем солнце. Вольтметр показывает 18,88В без нагрузки. Это в точности как я и рассчитывал.

А вот тест по току в тех же условиях (яркое зимнее солнце). Амперметр показывает 3,05А – ток короткого замыкания. Это как раз недалеко от расчетного тока элементов. Солнечная батарея прекрасно работает!

Солнечная батарея в работе. Я перемещаю ее пару раз в день для сохранения ориентации на солнце, но это не такая уж и большая сложность. Возможно, когда-нибудь я построю автоматическую систему слежения за солнцем.

Итак, сколько же все это стоило? Я сохранил все чеки от всех своих покупок для этого проекта. Ну и конечно многое уже было у меня в мастерской. Всякие куски дерева, провода и прочие полезные вещи (кто-то скажет, мусор) валяются также у меня вокруг мастерской. Короче, много чего уже было под рукой. Поэтому ваши подсчеты могут отличаться. Учитывая, что стоимость элементов купленых на eBay $74, общая стоимость солнечной панели обошлась в $105.

Не так уж и плохо! Это лишь малая часть стоимости серийной СБ такой же мощности. И это очень просто! Так что смотрите каталог проектов коттеджей и приступайте к изготовлению бесплатного электричества. У меня уже есть план построить еще несколько солнечных батарей, чтобы увеличить мощность.

{social}

ecoenergy.org.ua

Солнечная энергетика | Печатная электроника

Солнечная батарея состоит из набора фотоэлементов. Фотоэлемент представляет собой полупроводниковое устройство, которое преобразует энергию солнца в электрический ток, представлен на рисунке ниже.

Гибкий полимерный фотоэлемент

Полимерные гибкие солнечные батареи, выполненные по печатной технологии – это пленка, которая состоит из активного слоя (полимера), электродов из алюминия и прозрачного ITO, гибкой органической подложки и защитного слоя. Достоинством таких фотоэлементов можно считать компактность, легкость и гибкость. Основным недостатком, как уже отмечалось, является их низкий КПД. Максимальное значение КПД полимерных элементов, которого удалось добиться при освещенности 0,2 ватта на см2 это 6,5%. У лучших кремниевых элементов это значение достигает более 40%. Но такая оценка верна лишь отчасти. Указанные значения преобразования солнечной энергии для кремниевых элементов достижимы для малых партий и лабораторных образцов. Предлагаемые на рынке изделия имеют коэффициент преобразования солнечного света в пределах 15%. Разница в 2 раза довольно существенна, но динамика развития «классических» элементов замедляется, а гибкие печатные солнечные батареи продолжают активно совершенствоваться. Совсем недавно появилась новость, что одна из фирм изготовила органическую солнечную ячейку с коэффициентом преобразования солнечной энергии 12%, пример этой ячейки приведен на рисунке. Это позволяет надеяться на то, что в ближайшие годы коэффициент преобразования гибких печатных фотоэлементов станет соизмерим с аналогичными параметрами кремниевых элементов и такие изделия станут доступны на рынке.

Органический солнечный элемент. Источник: Heliatek

В сравнении с кремниевыми батареями, гибкость полимерных батарей является одним из преимуществ, позволяющих говорить о больших перспективах для их применения. Пример подобной батареи приведен на рисунке. Такие батареи могут наноситься на различные поверхности – от крыш и окон домов, до ткани одежды и сумок. При этом, как показано на рисунке ниже, такую батарею можно не только изгибать, но и складывать как гармошку. Описанные технологии, в комплексе с возможностями складывания, создают широкие возможности для использования данных изделий в космической и портативной аппаратуре питания. 

Гибкие солнечные батареи (в процентах указана величина деформации относительно исходного размера)

Основная задача для широкого внедрения гибких фотоэлементов – это создание технологии массового производства солнечных батарей с минимизацией их стоимости и увеличением КПД преобразования солнечной энергии. Для изготовления печатных солнечных батарей в массовом производстве оптимальной является рулонная технология (Roll-to-roll). Блок-схема технологического процесса изготовления гибких солнечных элементов по рулонной технологии представлена на рисунке. Пример одной из секций такой установки приведен на рисунке ниже.

Схема рулонного технологического процесса изготовления печатного солнечного элемента

Одна из секций устройства рулонной печати

В результате рулонной печати солнечной батареи будет сформирована фотопреобразующая структура на основании с защитным (инкапсулирующим) слоем. Реализация одной из таких батарей на алюминиевом основании приведена на рисунке. Суммарная толщина слоев, нанесенных на алюминиевое основание, не превышает 2 мкм. 

Пример структуры солнечного элемента, реализованного по рулонной технологии (CIGS – соединение меди, индия, галия и селенида; ФВ пленка – фотовольтаическая пленка)

Технология позволяет изготавливать опытные и серийно выпускаемые на рынок образцы солнечных батарей, примеры некоторых из них приведены на рисунке ниже. Это не крупносерийное производство, как в случае с «классическими» кремниевыми элементами. Но технология развивается и стоит надеяться на скорую доступность солнечных батарей, выполненных по рулонной печатной технологии.

Примеры печатных солнечных батарей

Гибкие печатные солнечные батареи должны в ряде применений стать заменой кремниевым кристаллическим элементам и существенно уменьшить массо-габаритные характеристики панелей, упростить процесс создания и эксплуатации таких изделий. Возможность формирования в одном процессе целиком солнечного элемента позволяет расчитывать на создание в ближайшем будущем изделий с независимым энергопитанием. В комплекте с гибкими печатными батареями возможности технологии существенно увеличиваются. 

printed-electronics.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта