Солнечная энергетика. Солнечная энергия это энергияСолнечная энергия - это... Использование солнечных батарейВ последние годы ученых особенно интересуют альтернативные источники энергии. Нефть и газ рано или поздно закончатся, поэтому подумать о том, как мы будем выживать в этой ситуации, приходится уже сейчас. В Европе активно используются ветряки, кто-то пытается извлечь энергию из океана, а мы поговорим о солнечной энергии. Ведь звезда, которую мы практически каждый день видим в небе, может помочь нам сберечь невозобновляемые ресурсы и улучшить экологическую обстановку. Значение солнца для Земли трудно переоценить – оно дает тепло, свет и позволяет функционировать всему живому на планете. Так почему бы не найти ему еще одно применение? Немного историиВ середине 19 века физик Александр Эдмон Беккерель открыл фотогальванический эффект. А к концу столетия Чарльз Фриттс создал первый прибор, способный перерабатывать солнечную энергию в электричество. Для этого использовался селен, покрытый тонким слоем золота. Эффект был слабым, но именно это изобретение зачастую связывают с началом эры солнечной энергии. Некоторые ученые не согласны с такой формулировкой. Они называют родоначальником эры солнечной энергии всемирно известного ученого Альберта Эйнштейна. В 1921 году он получил Нобелевскую премию за объяснение законов внешнего фотоэффекта. Казалось бы, солнечная энергия – это перспективный путь развития. Но существует немало препятствий для того, чтобы она вошла в каждый дом – в основном, экономических и экологических. Из чего складывается стоимость солнечных батарей, какой вред они могут нанести окружающей среде и какие еще существуют способы получения энергии, узнаем ниже. Способы накопленияСамой актуальной задачей, связанной с приручением энергии солнца, является не только ее получение, но и аккумуляция. И именно это является самым сложным. В настоящее время учеными было разработано только 3 способа полноценного приручения солнечной энергии. Первый основан на использовании параболического зеркала и немного напоминает игру с лупой, которая всем знакома с детства. Сквозь линзу свет проходит, собираясь в одной точке. Если в этом месте положить кусочек бумаги, она загорится, поскольку температура скрещенных солнечных лучей невероятно высока. Параболическое зеркало представляет собой вогнутый диск, напоминающий неглубокую чашу. Это зеркало, в отличие от лупы, не пропускает, а отражает солнечный свет, собирая его в одной точке, которая обычно направлена на черную трубу с водой. Такой цвет используют потому, что он лучше всего поглощает свет. Вода в трубе под действие солнечных лучей нагревается и может использоваться для получения электричества или для отопления небольших домов. Видео по темеПлоский нагревательВ этом способе используется совсем другая система. Приемник солнечной энергии выглядит как многослойная конструкция. Принцип его работы выглядит так. Проходя через стекло, лучи попадают на затемненный металл, который, как известно, лучше поглощает свет. Солнечная радиация превращается в тепловую энергию и нагревает воду, которая находится под железной пластиной. Далее все происходит как в первом способе. Нагретую воду можно использовали либо для отопления помещений, либо для получения электрической энергии. Правда, эффективность такого метода не настолько высока, чтобы использовать его повсеместно. Как правило, полученная таким образом солнечная энергия – это тепло. Для получения электричества гораздо чаще используют третий способ. Солнечные элементыБольше всего мы знакомы именно с таким способом получения энергии. Он подразумевает использование различных батарей или солнечных панелей, которые можно встретить на крышах многих современных домов. Такой способ сложнее ранее описанных, но является намного более перспективным. Именно он дает возможность преобразования энергии солнца в электричество в промышленных масштабах. Специальные панели, предназначенные для улавливания лучей, делают из обогащенных кристаллов кремния. Солнечный свет, попадая на них, сбивает электрон с орбиты. На его место тут же стремится другой, таким образом получается непрерывная подвижная цепочка, которая и создает ток. Он при необходимости сразу используется для обеспечения приборов или накапливается в виде электроэнергии в специальных аккумуляторах. Популярность этого способа обоснована тем, что он позволяет получить более 120 Вт всего с одного квадратного метра солнечной батареи. При этом панели имеют сравнительно небольшую толщину, что позволяет размещать их практически везде. Типы кремниевых панелейСуществует несколько видов солнечных батарей. Первые выполнены с использованием монокристаллического кремния. Их коэффициент полезного действия составляет примерно 15%. Такие панели солнечной батареи являются наиболее дорогими. КПД элементов, изготовленных из поликристаллического кремния, достигает 11%. Стоят они меньше, поскольку материал для них получают по упрощенной технологии. Третий тип является наиболее экономичным и отличается минимальным КПД. Это панели из аморфного кремния, то есть некристаллического. Кроме низкой эффективности, они имеют еще один существенный недостаток – недолговечность. Некоторые производители для увеличения КПД задействуют обе стороны панели солнечной батареи – тыльную и фронтальную. Это позволяет улавливать свет в больших объемах и увеличивает количество получаемой энергии на 15-20%. Отечественные производителиСолнечная энергия на Земле получает все большее распространение. Даже в нашей стране заинтересованы в изучении этой отрасли. Несмотря на то что в России не очень активно идет развитие альтернативной энергетики, определенных успехов удалось добиться. В настоящее время созданием панелей для получения солнечной энергии занимаются несколько организаций – в основном это научные институты различной направленности и заводы по производству электрооборудования.
Это только небольшая часть предприятий, принимающих активное участие в развитии альтернативной энергетики в России. Влияние на окружающую средуОтказ от угольных и нефтяных источников энергии связан не только с тем, что эти ресурсы рано или поздно закончатся. Дело в том, что они сильно вредят окружающей среде – загрязняют почву, воздух и воду, способствуют развитию заболеваний у людей и снижению иммунитета. Именно поэтому альтернативные источники энергии должны быть безопасны с экологической точки зрения. Кремний, который используется для производства фотоэлементов, сам по себе безопасен, поскольку является природным материалом. Но после его очистки остаются отходы. Именно они могут нанести вред человеку и окружающей среде при неправильном использовании. Кроме того, на участке, полностью заставленном солнечными батареями, может нарушиться естественное освещение. Это приведет к изменениям в существующей экосистеме. Но в целом влияние на окружающую среду устройств, предназначенных для преобразования солнечной энергии, минимально. ЭкономичностьСамые большие затраты по производству солнечных батарей связаны с дороговизной сырья. Как мы уже выяснили, специальные панели создаются с использованием кремния. Несмотря на то что этот минерал широко распространен в природе, с его добычей связаны большие проблемы. Дело в том, что кремний, который составляет более четверти массы земной коры, не подходит для производства солнечных батарей. Для этих целей пригоден только чистейший материал, получаемый промышленным способом. К сожалению, из песка получить чистейший кремний крайне проблематично. По цене данный ресурс сравним с ураном, использующимся на АЭС. Именно поэтому стоимость солнечных батарей в настоящее время остается на довольно высоком уровне. Современные технологииПервые попытки приручить солнечную энергию появились достаточно давно. С тех пор многие ученые активно заняты поисками максимально эффективного оборудования. Оно должно быть не только экономически выгодным, но также компактным. Его КПД должен стремиться к максимуму. Первые шаги к идеальному прибору для получения и преобразования солнечной энергии были сделаны с изобретением кремниевых батарей. Конечно, цена достаточно высока, но зато панели могут быть размещены на крышах и стенах домов, где они никому не будут мешать. А эффективность таких батарей неоспорима. Но лучший способ увеличить популярность солнечной энергии – сделать ее более дешевой. Немецкие ученые уже предложили заменить кремний синтетическими волокнами, которые могут быть интегрированы в ткань или другие материалы. КПД такой солнечной батареи не очень высок. Но рубашка с вкраплением синтетических волокон сможет, по крайней мере, обеспечить электроэнергией смартфон или плеер. Активно ведутся работы и в области нанотехнологий. Вероятно, именно они позволят солнцу стать наиболее популярным источником энергии уже в этом столетии. Специалисты компании Scates AS из Норвегии уже заявили, что нанотехнологии позволят сократить стоимость солнечных панелей в 2 раза. Солнечная энергия для домаО жилье, которое само себя будет обеспечивать, наверняка мечтают многие: нет зависимости от централизованного отопления, сложностей с оплатой счетов и вреда для окружающей среды. Уже сейчас во многих странах активно строится жилье, потребляющее только энергию, полученную из альтернативных источников. Яркий пример – так называемый солнечный дом. В процессе строительства он потребует больших вложений, чем традиционный. Но зато после нескольких лет эксплуатации все затраты окупятся – не придется платить за отопление, горячую воду и электричество. В солнечном доме все эти коммуникации привязаны к специальным фотоэлектрическим панелям, размещенным на крыше. Причем полученные таким образом энергетические ресурсы не только расходуются на текущие нужды, но и накапливаются для использования в ночное время и при пасмурной погоде. В настоящее время строительство таких домов ведется не только в странах, приближенных к экватору, где добывать солнечную энергию проще всего. Их возводят также и в Канаде, Финляндии и Швеции. Плюсы и минусыРазвитие технологий, позволяющих повсеместно использовать солнечную энергию, могло бы вестись более активно. Но существую определенные причины, по которым это все еще не является приоритетной задачей. Как мы уже говорили выше, при производстве панелей вырабатываются вредные для окружающей среды вещества. Кроме того, готовое оборудование содержит в своем составе галлий, мышьяк, кадмий и свинец. Немало вопросов вызывает и необходимость утилизации фотоэлектрических панелей. Через 50 лет работы они станут непригодными для службы, и их придется каким-то образом уничтожать. Не нанесет ли это колоссальный вред природе? Стоит также учитывать, что солнечная энергия – это непостоянный ресурс, эффективность получения которого зависит от времени суток и погоды. А это является существенным недостатком. Но и плюсы, конечно, есть. Солнечную энергию можно добывать практически в любой точке Земли, а оборудование для ее получения и преобразования может быть настолько маленьким, что поместится на тыльной стороне смартфона. Что еще немаловажно, это возобновляемый ресурс, то есть количество солнечной энергии будет оставаться неизменным еще как минимум тысячи лет. ПерспективыРазвитие технологий в области солнечной энергетики должно привести к снижению затрат на создание элементов. Уже сейчас появляются стеклянные панели, которые могут быть установлены на окнах. Развитие нанотехнологий позволило изобрести краску, которая будет напыляться на солнечные батареи и сможет заменить кремниевый слой. Если стоимость солнечной энергии действительно снизится в несколько раз, ее популярность также вырастет многократно. Создание маленьких панелей для индивидуального применения позволит людям в любых условиях использовать солнечную энергию – дома, в машине или даже за городом. Благодаря их распространению снизится нагрузка на централизованные электросети, поскольку люди смогут самостоятельно зарядить мелкую электронику. Специалисты компании Shell полагают, что к 2040 году около половины энергии в мире будет создаваться за счет возобновляемых ресурсов. Уже сейчас в Германии потребление солнечной энергии активно растет, а мощность батарей составляет более 35 Гигаватт. Япония также активно развивает эту отрасль. Две эти страны – лидеры потребления солнечной энергии в мире. Вероятно, скоро к ним присоединятся и Соединенные Штаты. Другие альтернативные источники энергииУченые не перестают ломать голову над тем, что еще можно использовать для получения электричества или тепла. Приведем примеры наиболее перспективных альтернативных источников энергии. Ветряки сейчас можно встретить практически в любой стране. Даже на улицах многих российских городов устанавливают фонари, которые сами обеспечивают себя электричеством за счет энергии ветра. Наверняка их себестоимость выше средней, но зато со временем они эту разницу возместят. Достаточно давно была придумана технология, позволяющая получать энергию, используя разницу температур воды на поверхности океана и на глубине. Китай активно собирается развивать это направление. В ближайшие годы у берегов Поднебесной собираются построить крупнейшую электростанцию, работающую по этой технологии. Существуют и другие способы использования моря. Например, в Австралии планируют создать электростанцию, генерирующую энергию из силы течений. Есть и многие другие способы получения электричества или тепла. Но на фоне многих других вариантов солнечная энергия – это действительно перспективное направление развития науки. Источник: fb.ruКомментарии Идёт загрузка...Похожие материалы Бизнес Производство солнечной батареи: технология и оборудованиеЧеловечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство солнечной батареи является... Домашний уют Батарея для солнечной батареи: обзор, виды, характеристикиИспользование энергии солнца – это альтернатива невосполняемым источникам энергии. Современные технологии позволяют использовать солнечные батареи для уличного освещения, отопления и освещения небольших домов. С... Домашний уют Принцип работы солнечной батареи и ее устройствоОтносительно недавно считалась фантастической сама идея обеспечивать частные дома электричеством автономно. Сегодня это объективная реальность. В Европе солнечные батареи используются уже продолжительное время, ведь э... Домашний уют Как выбрать аккумулятор для солнечной батареи? Внешний аккумулятор с солнечной батареейКакая бы ни была система автономного электроснабжения, которая питается от энергии солнца, она включает в себя некоторые обязательные составляющие, среди них - батареи, или солнечные панели, инвертор, контролер разряд... Домашний уют Светильник на солнечной батарее - украшение вашего садаКаждый владелец частного дома непременно задумывается о преображении своего... Домашний уют Простые солнечные батареи своими руками.Солнечной батареей называют универсальное устройство для круглосуточного преобразования солнечной энергии в электрическую энергию. Сейчас, огромное количество таких приборов можно купить в соответствующих магазинах. Т... Технологии Как выбрать контроллер для солнечных батарей? Контроллер для солнечной батареи своими рукамиПереход на альтернативные источники энергии продолжается уже довольно много лет, охватывая разные сферы. Несмотря на привлекательность концепции получения бесплатной энергии, на практике ее реализовать непросто. Возни... Технологии Инвертор для солнечных батарей: виды, схема, назначение. Солнечная электростанция для домаБольшое количество людей заинтересовано в солнечных батареях. С целью преобразования переменного тока в устройствах применяются инверторы. Современные электростанции отличаются по мощности, а также частотности. В связ... Технологии Комплект солнечной батареи для дачи. Установка солнечных батарейПо мере развития автономных источников энергии становится все более популярной и экономически обоснованной установка на даче и дома солнечных батарей. В наше время появились технологии, позволяющие получать от солнца ... Технологии Садовый фонарь на солнечной батарееЛето, дачный участок, стрекот сверчков и тысячи звезд на темном небосклоне! Эта романтическая картина может стать более комфортной, если ее дополнят садовые фонари на солнечной батарее. Они не только украсят сад, но с... monateka.com Солнечная энергия - это... Что такое Солнечная энергия? Солнечная энергияWikimedia Foundation. 2010.
Смотреть что такое "Солнечная энергия" в других словарях:
biograf.academic.ru Солнечная энергия — WiKi
Со́лнечная эне́ргия — энергия от Солнца в форме радиации и света. Эта энергия в значительной мере управляет климатом и погодой, и является основой жизни. Технология, контролирующая солнечную энергию называется солнечной энергетикой. Солнечная энергия и ЗемляВ верхние слои атмосферы Земли постоянно поступает 174 PW солнечного излучения (инсоляции)[1]. Около 6 % инсоляции отражается атмосферы, 16 % поглощается ею. Средние слои атмосферы в зависимости от погодных условий (облака, пыль, атмосферные загрязнения) отражают до 20 % инсоляции и поглощают 3 %. Атмосфера не только уменьшает количество солнечной энергии, достигающей поверхности Земли, но и дифузує около 20 % с того что поступает, и фильтрует часть его спектра. После прохождения атмосферы около половины инсоляции находится в видимой части спектр. Вторая половина находится преимущественно в инфракрасной части спектра. Только незначительная часть этой инсоляции приходится на ультрафиолетовое излучение[2][3]. Солнечное излучение поглощается поверхностью суши, океанами (покрывают около 71 % поверхности земного шара) и атмосферой. Абсорбция солнечной энергии через атмосферную конвекцию, испарение и конденсация водяного пара является движущей силой круговорота воды и управляет ветрами. Солнечные лучи абсорбоване океаном и сушей поддерживает среднюю температуру на поверхности Земли, что ныне составляет 14 °C[4]. Благодаря фотосинтезу растений солнечная энергия может превращаться в химическую, которая хранится в виде пищи, древесины и биомассы, которая в конце концов превращается в ископаемое топливо[5]. Перспективы использованияСолнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах. Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 ексаджоулів (Эдж) в год[6]. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год[7][8]. Фотосинтез забирает около 3 000 Эдж в год на производство биомассы[9]. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд[10].
Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования. Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.[15] Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши[15]. Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить. Активные солнечные технологии используют фотовольтаику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии[16]. 2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 Эдж на год "(см. таблицу ниже)"[15].
В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца. Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %. Тепловая энергияТехнологии, которые используют тепловую энергию солнца, можно применять для нагрева воды, обогрева помещений, охлаждения помещений и генерации технологической теплоты[17]. В 1897 году Франк Шуман, американский изобретатель, инженер и пионер по использованию солнечной энергии, построил небольшой демонстрационный солнечный двигатель, принцип работы которого заключался в том, что солнечный свет отражалось на квадратные контейнеры, заполненные эфиром, температура кипения которого меньше, чем воды. Внутри до контейнеров были пригнаны черные трубы, которые приводили в движение паровой двигатель. В 1908 году Шуман основал компанию Sun Power Company, которая должна была строить большие установки на солнечной энергии. Вместе со своим техническим советником А. С. Э Аккерманом и британским физиком Чарльзом Верноном Бойзом[18] Шуман разработал улучшенную систему, использовав систему зеркал, которые отражали солнечные лучи на коробки солнечных коллекторов, повышая эффективность нагрева до уровня, когда можно было вместо эфира использовать воду. Затем Шуман построил полномасштабный паровой двигатель, который работал на воде под низким давлением. Это дало ему возможность 1912 года запатентовать целую систему с солнечным двигателем. Между 1912 и 1913 годами Шуман построил первую в мире геотермальную электростанцию в городе Маади Египет. Шумановская электростанция использовала параболоцилиндрический концентратор, чтобы привести в движение двигатель мощностью 45 — 52 кВт, который перекачивал более 22 000 литров воды за минуту с реки Нил на близлежащие хлопковые поля. Хотя Первая мировая война, а также открытие дешевой нефти в 1930-х годах, и помешали дальнейшему продвижению солнечной энергии, но шумановское видение и базовый дизайн был возрожден в 1970-х годах на новой волне интереса к геотермальной энергии[19]. В 1916 году в прессе часто Цитировали слова Шумана, в которых он защищал использования солнечной энергии:
Нагревание водыСолнечные водонагреватели возвращены в Солнца, чтобы повысить эффективность.В низких географических широтах (ниже 40 градусов) от 60 до 70 % всей бытовой горячей воды температурой до 60 °C могут обеспечить солнечные системы для нагрева воды[21]. Наиболее распространенными типами солнечных водонагревателей являются: вакуумные трубные коллекторы (44 %) и плоские коллекторы (34 %), которые обычно используют для нагрева бытовой горячей воды; а также прозрачные пластиковые коллекторы (21 %), которые главным образом используют, чтобы подогревать плавательные бассейны[22]. По состоянию на 2007 год общая установленная мощность солнечных систем для нагрева воды составляла примерно 154 тепловых ГВт.[23] Китай является мировым лидером в этой области, установив по состоянию на 2006 год 70 ГВт тепловых и планируя к 2020 году достичь 210 ГВт тепловых[24]. Израиль и Кипр являются мировыми лидерами по использованию солнечных систем для подогрева воды на душу населения с 90 % домохозяйств, которые их установили[25]. В США, Канаде и Австралии солнечные водоподогреватели служат преимущественно для подогрева плавательных бассейнов, с установленной мощностью состоянию на 2005 год около 18 ГВт тепловых[16]. Обогрев, охлаждение и вентиляцияВ США на HVAC приходится 30 % (4.65 EJ/yr) энергии, которая используется в коммерческих зданиях и почти 50 % (10.1 EJ/yr) энергии, которая используется в жилых домах[26][27]. Системы солнечного обогрева, охлаждения и вентиляции можно использовать, чтобы компенсировать часть этой энергии. Тепловая масса — это любой материал, который можно применять, чтобы сохранять тепло, в частности солнечное. Среди материалов, которые могут выполнять функцию тепловой массы, камень, цемент и вода. На протяжении истории их применяли в засушливом или теплом климате, чтобы сохранить помещение прохладным, поскольку они впитывают солнечную энергию в течение дня и выпускают накопленное тепло ночью. Однако их можно применять и в прохладных регионах, чтобы сохранять тепло. Размер и расположение тепловой массы зависит от нескольких факторов, таких как климат, соотношение времени солнечной освещенности и пребывание в тени. Если тепловую массу правильно разместить, то она сохраняет температуру в помещении в комфортном диапазоне и уменьшает потребность в устройствах для дополнительного обогрева и охлаждения[28]. Солнечный дымоход (англ.) (или тепловой дымоход, в этом контексте) — это пассивная система солнечной вентиляции, состоящей из вертикального ствола, который соединяет внутреннюю и внешнюю стороны здания. Если дымоход нагревается, то воздух внутри также нагревается, вызывая вертикальный сквозняк (англ.) который протягивает воздух через дом. Его работу можно улучшить, если использовать непрозрачные материалы и тепловую массу[29] таким образом, который напоминает теплицу. Листопадные растения предложено как способ контролировать солнечное нагревание и охлаждение. Если они растут на южной стороне здания в северном полушарии или северной стороне здания в южном полушарии, то их листья обеспечивает тень в течение лета, тогда как голые стволы без препятствий пропускают солнечные лучи зимой[30]. Приготовление едыПараболическая тарелка вырабатывает пар для приготовления пищи, Ауровіль (Индия)Солнечные печи используют солнечный свет для приготовления пищи, сушки и пастеризации. Их можно разделить на три широких категории: коробчасті печи (англ. box cookers), панельные печи (англ. panel cookers) и отражательные печи (англ. reflector cookers)[31]. Простейшая солнечная печь — коробчаста, которую впервые построил Орас Бенедикт де Соссюр 1767 года[32]. Простая коробчаста печь состоит из изолированного контейнера с прозрачной крышкой. Она может эффективно применяться при частично закрытом облаками небе и обычно достигает температуры 90-150 °C[33]. Панельная печь использует отражающую панель, чтобы направить солнечные лучи на изолированный контейнер и достичь температуры, сравнимой с коробчастою печью. Отражательные печи используют различную геометрию отражателя (тарелку, корыто, зеркала Френеля), чтобы сфокусировать лучи на контейнер. Эти печи достигают температуры 315 °C, но требуют прямого луча и их нужно переставлять вместе с изменением положения Солнца[34]. Технологическое теплоШаблон:Перевод Системы концентрации солнечной энергии, такие как параболические тарелки, корыта и отражатели Шеффлера могут обеспечивать технологическое тепло для коммерческих и индустриальных нужд. Первой коммерческой системой был Total Solar Energy Project (англ.) (STEP) в Шенандоа, (Джорджия, США), где поле со 114 параболических тарелок обеспечило 50 % технологического тепла, вентиляции воздуха и потребностей в электроэнергии для швейной фабрики. Эта подключена к сети когенерационная установка обеспечила 400 Квт электроэнергии а также тепловую энергию в виде 401 Вт пара и 468 КВт охлажденной воды и обеспечивала хранение тепла с одногодинним пиковой нагрузкой[35]. Пруды-испарители — это мелкие бассейны, которые сконцентровують растворенные в воде твердые вещества с помощью испарение. Использование прудов-испарителей, чтобы добыть соль из морской воды, является одним из старейших применений солнечной энергии. Среди современных применений: повышение концентрации солей при добыче металлов методом выщелачивания, а также удаления твердых веществ из сточных вод[36]. При использовании шнуров (англ.), сушилки (англ.) и вешалок белье высыхает в процессе испарения под действием ветра и солнечных лучей без потребления электроэнергии и газа. В законах некоторых штатов даже специально прописан защита «права сушить» одежду[37]. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for ventilation air preheating. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of Шаблон:Convert/Dual/LoffAoffDbSoffT.[38] Короткий период возврата вложенных денег (от 3 до 12 лет) делает transpired collectors финансово выгоднее, чем glazed collection systems[38]. По состоянию на 2003 год более 80 систем с суммарной коллекторной площадью 35 000 м2 были установлены во всем мире, включая коллектор площадью 860 м2 в Коста-Рике для сушки кофейных бобов и коллектор площадью 1300 м2 в Коїмбатори (Индия) для высушивания marigolds[39]. Обработка водыСолнечное опреснение можно использовать, чтобы превратить соленую или солоноватую воду на питьевую. Впервые пример такого преобразования зафиксировали арабские алхимики XVI века[40]. Впервые масштабный проект из солнечного опреснения построили в 1872 году в чилийському шахтерском городке Лас-Салинас[41]. Завод, который имел площадь солнечного коллектора 4700 м2 мог производить до 22 700 л питьевой воды и оставался в работе на протяжении 40 лет[41]. Individual still designs include single-slope, double-slope (greenhouse or type), vertical, conical, inverted absorber, multi-wick, and multiple effect.[40]. Эти опреснители могут работать в пассивном, активном и гибридном режимах. Double-slope казани наиболее экономически выгодные для децентрализованных бытовых нужд, тогда как active multiple effect units более подходят для широкомасштабных проектов[40]. Для солнечной дезинфекции воду наливают в прозрачные бутылки с ПЭТ и помещают их на несколько часов под солнечные лучи[42]. Время дезинфекции зависит от климата и погодных условий, по крайней мере от 6 часов до 2 дней, если небо полностью покрыто облаками[43]. Этот способ рекомендовала Всемирная организация здравоохранения как доступный метод обработки бытовой воды и безопасного хранения[44]. Более 2 миллионов людей в странах, что развиваются, ежедневно применяют этот метод для обработки своей питьевой воды[43]. Солнечную энергию можно использовать в ставках-усереднювачах для обработки сточных вод без применения химикатов и затраты электроэнергии. Еще одним преимуществом для окружающей среды является то, что водоросли живут в таких прудах и потребляют диоксид углерода в процессе фотосинтеза, хотя они могут вырабатывать токсичные вещества, которые делают воду непригодной для употребления[45][46]. Производство электроэнергииСолнечная энергетика работает за счет преобразования солнечного света в электроэнергию. Это может происходить или непосредственно, с использованием фотовольтаики, или косвенно, с использованием систем концентрированной солнечной энергии (англ.), в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект. Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно[47]. Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ.) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ.) (150 МВт) и СЭС Андасол (англ.) (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці (англ.): Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии. Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети[48]. Архитектура и городское планированиеОсновные статьи: Пассивный солнечный дизайн зданий, Городской тепловой остров Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры[50]. Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом[51]. Среди общих характеристик пассивной солнечной архитектуры (англ.): благоприятная ориентация зданий относительно Солнца, компактные пропорции (малое отношение площади поверхности к объему), выборочное затемнение (навесы) и тепловая масса (англ.)[50]. Когда эти свойства удачно подобраны с учетом местного климата, то это обеспечивает хорошее освещение помещений и позволяет оставаться в комфортном диапазоне температур. Дом мегаронного типа Сократа — является классическим примером пассивной солнечной архитектуры[50]. На нынешнем этапе солнечного дизайна применяют компьютерное моделирование с помощью которой связывают между собой дневное освещение (англ.), а также системы солнечного обогрева и вентиляции в an integrated solar design package[52]. Активное солнечное оборудование, такое как насосы, вентиляторы и switchable windows может дополнить пассивный дизайн и улучшить показатели работы системы. Городской тепловой остров (МТО) — это городской район, где температура выше, чем в окружающих сельских местностях. Выше температуры является следствием применения таких материалов как асфальт и бетон, которые лучше впитывают солнечное излучение, поскольку имеют ниже альбедо и выше теплоемкость, чем в окружающей среде. Чтобы непосредственно противодействовать эффекту, здания красят в белое и насаживают на улицах деревья. Согласно проекту гипотетической программы «cool communities» в Лос-Анджелеси, используя эти методы городскую температуру можно снизить примерно на 3 °C. Стоимость проекта оценивается в US$1 млрд, а общая годовая выгода может составлять US$530 млн благодаря уменьшению затрат на вентиляцию и охрану здоровья[53]. Сельское хозяйство и растениеводствоСельское хозяйство и растениеводство ищут способ оптимизировать впитывание солнечной энергии для того, чтобы повысить продуктивность растений. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows и смешивания различных видов растений может повышать урожайность[54][55]. Обычно солнечный свет считают избыточным ресурсом и исключения из этого правила лишь подчеркивают важность солнечной энергии для сельского хозяйства. В течение коротких growing seasons Малого ледникового периода французские и английские (англ.) фермеры использовали фруктовые стены чтобы увеличить поступления солнечной энергии. Эти стены действовали как тепловая масса и ускоряли созревание by keeping plants warm. Ранние фруктовые стены строили перпендикулярно к поверхности земли и возвращенными на юг, но со временем появились наклонные стены, которые лучше использовали солнечный свет. 1699 года, Никола Фатіо где Дьюїльє (англ.) даже предложил применять tracking mechanism, которые мог бы возвращаться в направлении солнца[56]. Применение солнечной энергии в сельском хозяйстве кроме выращивания растений включает перекачки воды, высушивание урожая, выведение цыплят и высушивание птичьего помета[39][57]. В последнее время эту технологию стали применять виноделы, которые используют энергию от солнечных панелей, чтобы обеспечить энергией винодельческие прессы[58]. оранжерея превращают солнечный свет в тепло, обеспечивая круглогодичное выращивание растений, которые в природе не приспособлены для этого климата. Простейшие оранжереи использовали в римские времена, чтобы круглый год выращивать огурцы для императора Тиберия[59]. Самые современные оранжереи появились в Европе в XVI веке, чтобы хранить в них растения, которые привезли с исследовательских путешествий[60]. См. такжеПримечания
ru-wiki.org Энергия солнца
Сибайский городской отдел образования МОБУ Лицей № 9.
Исследовательская работа по физике на тему: «Энергия солнца»
Работу выполнил: Пантелей Павел Ученик 9 Б класса Научный консультант: Савельева Л. А., учитель физики.
Сибай, 2010 г.
Содержание. 1. Введение. 2. Цели. 3. Методы. 4. Роль солнечной энергии. 5. Историческая справка. 6. Виды электростанций. 7. Исследования зависимости мощности солнечных батарей от различных факторов. 8. Вывод. 9. Литература.
Оборудование: солнечная батарея, электродвигатель, аккумулятор, компьютер.
1. Введение. Газ, нефть, торф, уголь т.е. полезные ископаемые создавались природой миллионы лет, и уничтожаются за сто лет человеком. Добывая из этих ресурсов энергию, необходимую в нашем мире мы уничтожаем часть природы. 2. Цели. Цели: овладение знаниями энергосберегающих технологий, необходимыми для решения проблемы дефицита электроэнергии; повышение уровня культуры энергопотребления. Задачи: проанализировать традиционные методы генерации электроэнергии; разработать и предложить свои варианты добычи электроэнергии.
3. Методы 1. Изучение научной литературы. 2. Физический эксперимент. 4. Роль солнечной энергии Для обеспечения человечества на несколько веков энергией хватит и сотой доли той энергии, которая доходит от Солнца до Земли за один год. Солнечная энергия – это наименьшее количество загрязнения для планеты и наиболее неистощимый из всех известных источников энергии. Человечество только начинает выявлять и использовать ее потенциал. В некотором смысле вся энергия, которую мы используем, существует на Земле благодаря Солнцу. Это и нефть, и природный газ, и уголь. В то время как энергия, исходящая непосредственно от Солнца, всегда была доступна для человечества, мы не были в состоянии использовать ее так же эффективно, как и другие источники. Создание системы, которая обеспечивает надежный и эффективный, а главное рентабельный перевод солнечной энергии в электрическую, было и есть весьма трудной задачей. Сегодняшние солнечные системы уже рентабельны, надежны и просты в эксплуатации. Их использование набирает популярность в развитых странах. Это становится не только экономно, но и престижно. Правительства многих стран частично финансирует установку солнечных элементов в частных секторах и офисах. Владельцу «солнечного дома» гарантированы налоговые льготы, беспроцентные кредиты и другие подобные поощрения. Даже при нынешних ценах на солнечные элементы стоимость их установки при строительстве дома окупается за 7-10 лет. Поставщики электроэнергии покупают электроэнергию у частных лиц, которые установили на своих домах солнечные элементы. Когда у хозяев возникает излишек энергии, они продают его «электрокомпаниям» и зарабатывают на этом. В Германии есть несколько «солнечных ферм». Фермеры поменяли производство свинок на сбор солнечного электричества. В данный момент для фермеров это оказывается более выгодным.
В перспективе, использование солнечной энергии позволит снизить парниковый эффект, который представляет для человечества большую угрозу. Парниковый эффект – это таяние ледников, сильные ливни и бури, штормы и ураганы, засухи и грозы. Глобальное потепление связано с выбросами в атмосферу углекислого газа, который возникает при сжигании газа, нефти и угля. 5. Историческая справка. Рассмотрим кратко исторические этапы изучения и развития солнечной энергии: 1839 Александр Эдмон Беккерель (Alexandre-Edmond Becquerel) открыл фотогальванический эффект. 1883 Чарльз Фриттс (Charles Fritts) создает всемирный первый солнечный электрический модуль - это селен, покрытый очень тонким слоем золота. Такое сочетание элементов преобразовывает меньше чем один процент солнечного света в электричество. Можно сказать, что этим одним процентом было положено начало в солнечной энергетике. 1953 Джеральд Персон (Gerald Pearson)? проводя опыты в Bell Laboratories, случайно установил, что кремний, покрытый определенными примесями, намного более чувствителен к солнечному свету, чем селен. Можно сказать, что с этой даты и стартовали исследования по использованию солнечной энергии – была создана первая солнечная ячейка. “Нью-Йорк Таймс” комментирует, что это так - “начало эры, которая приведет, в конечном счете, к реализации одной главной мечты человечества - использование почти безграничной энергии Солнца для развития цивилизации”. 1957 СССР на орбиту Земли вывел первый искусственный спутник на солнечных батареях. В 1958 году это достижение повторили и США. Стоимость одного киловатт-часа энергии была $500. 1970 Стоимость за один киловатт-час была снижена до $100. На тот момент все спутники были оснащены солнечными батареями,
изготовленными на основе кремния. КПД на этот момент достиг 10%. И примерно два десятилетия держался на этой отметке. 1973 Стоимость за один киловатт-час была снижена до $50 благодаря использованию более дешевых кремниевых плат. Финансирование многих исследований в солнечной энергетике было свернуто, так как цена кремния на тот момент была непозволительной роскошью по сравнению с ценами на нефть. 1978 Для поддержки телекоммуникационных сетей в Австралии были построены наземные солнечные станции. 1985 На солнечной энергии работало порядка 30 000 телефонов-автоматов по всему Калифорнийскому шоссе. Были установлены уличные солнечные фонари – днем они аккумулировали энергию, а ночью освещали улицы. Также освещались с помощью солнечной энергии автобусные остановки. 1995 Стоимость за один кВтч солнечной электроэнергии снизилась до $15. Во всех развитых странах начались усиленные разработки в области солнечной электроэнергии. Правительства старались как можно быстрее снизить стоимость солнечной энергии до уровня обычного электричества. К этому моменту КПД солнечных элементов удалось поднять до 15%. 2004 Добывается 1 миллион киловатт электроэнергии. Доходы от солнечной энергии близки к 6,5 миллиардам долларов. Первые места в «солнечной гонке» занимают Япония, Германия и Соединенные Штаты Америки. 2005 Четыре из пяти солнечных модулей установлены в Германии, Японии и США. По сравнению с 2004 годом рынок в 2005 вырос на 35%. 2007 Достигается 40,0% эффективность преобразования солнечной энергии (на исследовательском уровне) для трехслойных ФЭП-ов (тип концентратора – 1100-кратная концентрация солнечных лучей). 2009 Запуск спутника GOSAT "Ibuki", оснащенного солнечными батареями Sharp с трехслойными ФЭП-ами.
2009 Достигается 35,8% эффективность преобразования солнечной энергии (на исследовательском уровне) для ФЭП на основе научных исследований и разработок, которые являются частью программы "NEDO” по инновационным Солнечным элементам. 6. Виды электростанций. Ветряные электростанции. Ветрогенераторы можно разделить на две категории: промышленные и домашние. Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт. АЭС АЭС - это по существу тепловые электростанции, которые используют тепловую энергию ядерных реакций. Один из основных элементов АЭС - реактор. Во многих странах мира, используют в основном ядерные реакции расщепления урана U-235 под действием тепловых нейтронов. Для их осуществления в реакторе, кроме топлива (U-235), должен быть замедлитель нейтронов и, естественно, теплоноситель, отводящий тепло из реактора. В реакторах типа ВВЭР (водо - водяной энергетический) в качестве замедлителя и теплоносителя используется обычная вода под давлением. В реакторах типа РБМК (реактор большой мощности канальный) в качестве теплоносителя
используется вода, а в качестве замедлителя — графит. Оба эти реактора находили в прежние годы широкое применение на АЭС в электроэнергетике. Принцип работы реактора В Самом реакторе расщиплят u-235 и достигает очень большую температуру нагревая тем самым воду вода испаряется м под давлением вращает турбину и потом охлаждается и по кругу ТЭС
Рассмотрим принципы работы ТЭС. Топливо и окислитель, которым обычно служит подогретый воздух, непрерывно поступают в топку котла. В качестве топлива используется уголь, торф, газ, горючие сланцы или мазут. Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. За счёт тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар поступает по паропроводу в паровую турбину. Назначение которой превращать тепловую энергию пара в механическую энергию. ГЭС На ГЭС для получения электроэнергии используется энергия водных потоков (рек, водопадов и т. д.). В настоящее время на ГЭС вырабатывается около 15 % всей электроэнергии. Более интенсивное строительство этого вида станций сдерживается большими капиталовложениями, большими сроками строительства и спецификой размещения гидроресурсов по территории страны. В этих установках используются параболические зеркала (лотки), которые концентрируют солнечный свет на приемных трубках, содержащих жидкость-теплоноситель. Эта жидкость нагревается почти до 400 C и прокачивается через ряд теплообменников; при этом вырабатывается перегретый пар, приводящий в движение обычный турбогенератор для производства электричества. Для снижения тепловых потерь приемную трубку может окружать прозрачная стеклянная трубка, помещенная вдоль фокусной линии цилиндра. Как правило, такие установки включают в себя одноосные или двуосные системы слежения за Солнцем. В редких случаях они являются стационарными. В 1990 г. в Харпер Лейк были построены “SEGS VIII и IX”, каждая мощностью 80 МВт. Оценки технологии показывают ее более высокую стоимость, чем у солнечных электростанций башенного и тарельчатого типа , в основном, из-за более низкой концентрации солнечного излучения, а значит, более низких температур и, соответственно, эффективности. Однако, при условии накопления опыта эксплуатации, улучшения технологии и снижения эксплуатационных расходов параболические концентраторы могут быть наименее дорогостоящей и самой надежной технологией ближайшего будущего. Этот вид гелиоустановки представляет собой батарею параболических тарелочных зеркал (схожих формой со спутниковой тарелкой), которые фокусируют солнечную энергию на приемники, расположенные в фокусной точке каждой тарелки. Жидкость в приемнике нагревается до 1000 градусов и непосредственно применяется для производства электричества в небольшом двигателе и генераторе, соединенном с приемником. В настоящее время в разработке находятся двигатели Стирлинга и Брайтона. Несколько опытных систем мощностью от 7 до 25 кВт работают в Соединенных Штатах. Высокая оптическая эффективность и малые начальные затраты делают системы зеркал/двигателей наиболее эффективными из всех гелиотехнологий. Системе из двигателя Стирлинга и параболического зеркала принадлежит мировой рекорд по эффективности превращения солнечной энергии в электричество. В 1984 году на Ранчо Мираж в штате Калифорния удалось добиться практического КПД 29% Вдобавок к этому, благодаря модульному проектированию, такие системы представляют собой оптимальный вариант для удовлетворения потребности в электроэнергии как для автономных потребителей (в киловаттном диапазоне), так и для гибридных (в мегаваттном), соединенных с электросетями коммунальных предприятий. В этих системах используется вращающееся поле отражателей-гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный на верху башни, который поглощает тепловую энергию и приводит в действие турбогенератор. Управляемая компьютером двуосная система слежения устанавливает гелиостаты так, чтобы отраженные солнечные лучи были неподвижны и всегда падали на приемник. Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину для выработки электроэнергии, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 538 до 1482 C. Первая башенная электростанция под названием “Solar One” близ Барстоу (Южная Калифорния) с успехом продемонстрировала применение этой технологии для производства электроэнергии. “Solar Two” - башенная электростанция мощностью 10 МВт в Калифорнии - это прототип крупных промышленных электростанций. Она впервые дала электричество в апреле 1996 г., что явилось началом 3-летнего периода испытаний, оценки и опытной выработки электроэнергии для демонстрации технологии расплавленных солей. Солнечное тепло сохраняется в расплавленной соли при температуре 550 C, благодаря чему станция может вырабатывать электричество днем и ночью, в любую погоду. Модули конструктивно реализуются в виде монолитного ламината спаянных монокристаллических элементов. Солнечные батареи - энергия будущего, которая доступна уже в настоящее время. Преобразовывая солнечный свет в электрический ток, который может использоваться непосредственно действующими нагрузками, так и накапливаться в аккумуляторных батареях. - Каркасная солнечная батарея выполнена в виде панели, заключенной в каркас из алюминиевого профиля. Панель представляет собой фотоэлектрический генератор, состоящий из стеклянной плиты c заламинированными на ней элементами. К внутренней стороне корпуса модуля прикреплен диодный блок, под крышкой которого размещены электрические контакты, предназначенные для подключения модуля. - Бескаркасные модули представляют собой ламинат на алюминии, стеклотекстолите, а также - без подложки. Солнечные элементы расположены между двумя слоями ламинирующей пленки ЭВА (этил-винил-ацетат). Лицевая сторона защищена оптически прозрачной пленкой типа ПЭТ (полиэтилентерефталат), а тыльная - либо подложкой (стеклотекстолит, алюминий), либо той же пленкой ПЭТ без дополнительных требований к оптическим характеристикам. Солнечные батареи сохраняют работоспособность: - в диапазоне температур -50 +75С; - атмосферном давлении 84-106,7кПа; - относительной влажности до 100 %; - дождя интенсивностью 5мм/мин; - снеговой или гололедно-ветровой нагрузки до 2000П
7. Исследования зависимости мощности солнечных батарей от различных факторов. Зависит от количества солнечных лучей попавшие на солнечную батарею.
8. Вывод. Развитие данного вида альтернативного способа получения энергии обусловлено, в первую очередь, осознанием многочисленных его преимуществ, потому как использование солнечных батарей простое и надежное. Так, солнечные батареи не нуждаются в каком-либо топливе и способны работать на внутренних ресурсах. Владельцу не нужно волноваться о сохранности прибора и постоянно поддерживать его сохранность. Солнечные батареи практически не боятся механического износа. Да и обслуживание им никакое не нужно.
В лучшем случае пользователь может протереть пыль на поверхности батареи. Также большое удобство представляет факт отсутствия промежуточных фаз преобразования получаемой энергии. Кроме того, в случае приобретения солнечной батареи проблема с получением энергии будет решена надолго. Обычно данные устройства способны прослужить не менее двадцати пяти лет. Не стоит забывать и об экологическом факторе. Применяемые технологии и материалы полностью соответствуют самым высоким экологическим нормам, солнечные батареи не производят выбросов вредных веществ в окружающую среду и абсолютно безопасны. Разумеется, не нужно забывать и о том, что применение альтернативных источников получения энергии вообще и использование солнечных батарей в частности позволяет сэкономить немалые финансовые средства. Ведь получение традиционных источников энергии сегодня становится всё более дорогим удовольствием и серьёзно бьёт как по карману простых потребителей, так и по бюджетам многих государств. В то же время солнечная энергия имеет ещё одно достаточно важное преимущество. В отличие от традиционных источников, этот тип ресурсов практически неиссякаем. Запасы нефти, угля и газа очень скоро закончатся, а Солнце, как уверяют учёные, будет светить ещё очень, очень долго. 10.Литература.
znakka4estva.ru Солнечная энергетика — WiKiКарта солнечного излученияСолнечная энергетика — направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемые источники энергии[1] и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой или солью для последующего использования нагретой воды для отопления, горячего водоснабжения или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP — Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч света. Этот луч используется как источник тепловой энергии для нагрева рабочей жидкости. Земные условияКарта солнечного излучения — ЕвропаПоток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в π раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше. Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли. Достоинства и недостаткиДостоинства
Недостатки
Солнечная электроэнергетика
В 1985 году все установленные мощности мира составляли 0,021 ГВт. В 2005 году Производство фотоэлементов в мире составляло 1,656 ГВт. На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии[7]. В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт. Крупнейшие производители фотоэлементов в 2012 году[8]:
В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт[9]. Лидером по установленной мощности является Евросоюз[10], среди отдельных стран — Китай. По совокупной мощности на душу населения лидер — Германия. В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии[11]. В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок[12]. В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт[13]. Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков — 80-мегаваттная электростанция Охотниково в Сакском районе Крыма. В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт[14]. Рабочие местаВ середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек[15]. Перспективы солнечной электроэнергетикиВ мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 %[16]. Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20—25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20—25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно[7]. Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей[17]. Тем не менее, по прогнозам, себестоимость генерации электроэнергии солнечными электростанциями к 2020 году снизится до себестоимости генерации с использованием ископаемого топлива и переход к использованию солнечных электростанций станет экономически выгодным[18]. Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость не линейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей[19]. Освещение зданийС помощью солнечного света можно освещать помещения в дневное время суток. Для этого применяются световые колодцы. Простейший вариант светового колодца — отверстие в потолке юрты. Световые фонари применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы, и т. д. Световой колодец диаметром 300 мм способен освещать площадь 8 м². Один колодец позволяет в европейских условиях предотвратить ежегодный выброс в атмосферу до 7,4 тонн СО2. Световые колодцы с оптоволокном разработаны в 2004 году в США. В верхней части такого колодца применяются параболические коллекторы. Применение солнечных колодцев позволяет сократить потребление электроэнергии, в зимнее время — сократить дефицит солнечного света у людей, находящихся в здании[20]. Солнечная термальная энергетикаСолнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии. В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—$0,05 к 2015—2020 г. В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа. На начало 2010 года общая мировая мощность солнечной термальной энергетики (концентраторных солнечных станций) достигла одного гигаватта[7]. К 2020 году страны Евросоюза планируют построить 26,3 ГВт солнечных термальных мощностей[21]. Солнечная кухняСолнечная жаровняСолнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С. Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства простейшей «солнечной кухни» составляет $3—$7. Традиционные очаги для приготовления пищи имеют термическую эффективность около 10 %. В развивающихся странах для приготовления пищи активно используются дрова. Использование дров для приготовления пищи приводит к массированной вырубке лесов и вреду для здоровья. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг дров. Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин. Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 г. Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн тонн в 2008—2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы. Использование солнечной энергии в химическом производствеСолнечная энергия может применяться в различных химических процессах. Например:
Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте. Солнечный транспортБеспилотный самолёт NASA Pathfinder Helios с фотоэлементами на крыльяхФотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т. д. Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства или для электродвигателя электрического транспорта. В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем. Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius. Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %. В 1981 году летчик Paul Beattie MacCready совершил полет на самолёте Solar Challenger[en], питающемся только солнечной энергией, преодолев расстояние в 258 километров со скоростью 48 км/час[22]. В 2010 году солнечный пилотируемый самолет Solar Impulse продержался в воздухе 24 часа. Военные испытывают большой интерес к беспилотным летательным аппаратам (БПЛА) на солнечной энергии, способным держаться в воздухе чрезвычайно долго — месяцы и годы. Такие системы могли бы заменить или дополнить спутники. См. такжеИсточники
СсылкиЛитература
ru-wiki.org Солнечная энергия Википедия
Со́лнечная эне́ргия — энергия от Солнца в форме радиации и света. Эта энергия в значительной мере управляет климатом и погодой, и является основой жизни. Технология, контролирующая солнечную энергию называется солнечной энергетикой. Солнечная энергия и Земля[ | код]В верхние слои атмосферы Земли постоянно поступает 174 PW солнечного излучения (инсоляции)[1]. Около 6 % инсоляции отражается атмосферы, 16 % поглощается ею. Средние слои атмосферы в зависимости от погодных условий (облака, пыль, атмосферные загрязнения) отражают до 20 % инсоляции и поглощают 3 %. Атмосфера не только уменьшает количество солнечной энергии, достигающей поверхности Земли, но и дифузує около 20 % с того что поступает, и фильтрует часть его спектра. После прохождения атмосферы около половины инсоляции находится в видимой части спектр. Вторая половина находится преимущественно в инфракрасной части спектра. Только незначительная часть этой инсоляции приходится на ультрафиолетовое излучение[2][3]. Солнечное излучение поглощается поверхностью суши, океанами (покрывают около 71 % поверхности земного шара) и атмосферой. Абсорбция солнечной энергии через атмосферную конвекцию, испарение и конденсация водяного пара является движущей силой круговорота воды и управляет ветрами. Солнечные лучи абсорбоване океаном и сушей поддерживает среднюю температуру на поверхности Земли, что ныне составляет 14 °C[4]. Благодаря фотосинтезу растений солнечная энергия может превращаться в химическую, которая хранится в виде пищи, древесины и биомассы, которая в конце концов превращается в ископаемое топливо[5]. Перспективы использования[ | код]Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах. Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 ексаджоулів (Эдж) в год[6]. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год[7][8]. Фотосинтез забирает около 3 000 Эдж в год на производство биомассы[9]. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд[10].
Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачност ru-wiki.ru Солнечная энергияКоличество традиционных источников энергии на планете постепенно уменьшается. Нефть, газ и уголь постепенно истощаются и надеяться на них неразумно. Если к тому моменту, как углеводороды закончатся, не будет найдено альтернативных источников энергии, то может случиться катастрофа планетарного масштаба. Поэтому ученые различных стран постепенно исследуют, открывают и разрабатывают новые направления получения энергии. В большинстве случаев они обращают свое внимание на солнечный свет. Этот вид альтернативной энергии люди использовали с давних времен, сами не осознавая того. Например, это освещение жилища, сушка одежды, продуктов и других предметов быта. Поэтому в альтернативной энергетике солнце считается одним из наиболее перспективных видов. Специалисты уже разработали немало установок для преобразования солнечной энергии. В том числе, промышленного масштаба. В этой заметке мы коротко поговорим о солнечной энергии, а полную версию статьи Вы можете прочитать по ссылке http://akbinfo.ru/alternativa/solnechnaja-jenergija.html. Проблемы при использовании солнечной энергииОсновные проблемой при сборе и преобразовании солнечного света является само солнце. Это прерывистый источник энергии, что требует накопления полученной энергии. Солнечную энергию часто используют в сочетании с другими источниками. Еще одной проблемой в этой сфере является низкая эффективность оборудования для преобразования солнечного света в тепловую и электрическую. В настоящее время все усилия специалистов направлены на увеличение коэффициента полезного действия энергетических установок. А также работы ведутся в направлении уменьшения стоимости подобных систем. Большинство прочих альтернативных источников энергии являются производными от Солнца. Например, ветер, испарение воды, крупные течения и накопление воды в реках. Все эти источники так или иначе зависят от Солнца. От звезды в нашей системе отправляется широкий спектр излучения. До поверхности земли доходит 3 основных типа волн:
Способы преобразованияСреди наиболее распространённых установок для преобразования солнечного света можно назвать коллекторы и панели. Солнечные электрические панели преобразуют энергию солнца в электричество. Коллекторы используют для преобразования солнечной энергии в тепловую. Кроме того, существует гибридные модели этих устройств, которые объединяют в себе два этих способа. Среди распространенных методов преобразования можно отметить гелиотермальный, термовоздушный, фотоэлектрический, аэростатные электростанции и т. п. Наибольшее распространение получили фотоэлектрические панели, основу которых составляет кремний. Толщина таких панелей несколько десятых долей миллиметра. Из них составляются фотоэлектрические модули, которые устанавливаются на освещаемых солнцем местах. Например, на фасадах и крышах домов. При термовоздушном способе используется поток воздуха, который направляется на турбогенератор. Гелиотермальный метод основывается на том, что нагревается поверхность энергоносителя. К примеру, за счет солнечной энергии может нагреваться вода для отопления жилого или производственного здания. Роль теплоносителя в таких системах может играть воздух или вода. Стоит отметить, что практически все системы для преобразования стоят довольно дорого. Многие из них постоянно совершенствуются целью снижения себестоимости и увеличения КПД. __________________________________________________Почитать еще:uef.ru |