Простой датчик температуры с аналоговым выходом 0-10В. Схема подключения датчика температурыПодключение датчиков температурыПодключение датчиков температуры При использовании термопреобразователей сопротивления для измерения температуры внести дополнительную погрешность могут провода подключения датчиков, так как провода также имеют свое собственное сопротивление, которое зависит от температуры окружающей среды. Термопреобразователи сопротивления подключаются по двухпроводной и по трехпроводной схеме. Термопреобразователи сопротивления подключаются медными проводами, т.к. медные провода имеют низкое удельное сопротивление. При двухпроводной схеме подключения сопротивление датчика температуры и сопротивление проводов складываются, что вносит погрешность в результат измерения: Rизм= Rt+ r1+ r2, где: Rизм - измеренное сопротивление; Rt - сопротивление датчика; r1, r2 - сопротивления проводов подключения. Сопротивление проводов подключения датчиков зависит от температуры, окружающей среды, поэтому эта погрешность зависит от температуры. Поэтому двухпроводную схему подключения используют только при небольшой длине проводов, в тех случаях, когда сопротивление проводов намного меньше погрешности измерительного преобразователя. При удалении датчика на большие расстояния следует применять трехпроводную схему подключения. Все три провода должны быть выполнены из одного и того же медного кабеля с одинаковым сечением и длиной. Максимальная длина проводов не должна превышать 150 м. При трехпроводной схеме подключения измерительный преобразователь по очереди измеряет сопротивление цепи «датчик+ провода подключения» (Rt+r2+r3) и цепи «провода подключения» (r1+r2), вычисляет разность этих значений и получает точное значение сопротивления датчика. Иногда заказчики стараются сэкономить на стоимости проводов подключения и подключают датчики двумя проводами, даже если оборудование поддерживает трехпроводную схему подключения. Рассмотрим на примере, к чему это может привести. Предположим, датчик температуры расположен в центре помещения, где диапазон изменения температур небольшой. Длина провода подключения составляет 20 м, удельное сопротивление провода 0,1 Ом/м, относительное изменение сопротивления меди равно примерно 0,004/°С. Сопротивление проводов подключения будет равно r1+r2 = 20*0,1+20*0,1 = 4,0 Ом при 20 °С; 3,92 Ом при 15 ° С; 4,08 Ом при 25 ° С. Это приведет к погрешности, вносимой проводами: 10,0 ° С при 20 ° С; 9,8 ° С при 15 ° С; 10,2 ° С при 25 ° С. Если же провода или часть проводов проходят по помещению, в котором температуры не регулируется, погрешность из-за двухпроводной схемы подключения будет еще выше. Как правило, приборы позволяют ввести коррекцию показаний датчика температуры, в наших приборах это называется «смещение характеристики преобразования». В вышеизложенном случае при использовании двухпроводной схемы подключения следует ввести в прибор коррекцию показаний датчика на 10 °С, но погрешность, вызванная температурными изменениями сопротивления проводов подключения, останется и составит 0,2 °С. Все приборы, изготавливаемые нашим предприятием, позволяют выполнять преобразование сопротивления в температуру с погрешностью не больше 0,1°С. Это позволяет после окончания монтажа системы ввести в прибор поправки, компенсирующие как погрешность датчика, так и погрешность, вносимую проводами подключения. Для этого после окончания прокладки кабелей подключения датчиков следует выполнить сравнение показаний прибора по каждому каналу с показанием образцового термометра (см. “Проверка правильности показаний датчиков температуры” ). Полученные поправки нужно ввести в прибор и убедиться, что отклонение показаний датчиков от показаний образцового термометра не превышает 0,1 °С. www.ao-tera.com.ua Принцип работы датчиков температурыОпубликовано 22.05.2016Принцип работыТермометры сопротивления (терморезисторы, термосопротивления)Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры. Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые. Для большинства металлов температурный коэффициент сопротивления положителен - их сопротивление растёт с ростом температуры. Для полупроводников без примесей он отрицателен - их сопротивление с ростом температуры падает. ТермисторыТермисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.
PT100, PT1000Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения. KTYКремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью. Схемы включения термосопротивления в измерительную цепь
Сравнение термометров сопротивления с термопарамиПреимущества:
Недостатки:
ТермопарыТермопара (Thermocouple) - это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется - рабочий спай. Свободные концы называются холодным спаем. Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур. Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре. Подключение к ПЛКХолодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения. При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера. Типы термопар
Термопары отличаются диапазоном измеряемых температур и погрешностью измерений. Преимущества термопар
Недостатки
ТермостатыТермостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения. www.maxplant.ru Схема датчика температуры и его компонентыВсе приборы, в которых используются проводники, требуют соблюдения определенного температурного режима. Очень часто, при повышении тока и напряжения, такие устройства перестают работать. Для того, чтобы избежать неприятных ситуаций, существует схема датчика температуры, применяемая в составе многих электронных приборов и устройств. Использование термодатчикаОсновной функцией датчика является своевременное обнаружение отклонений от температурного режима. При наступлении критического перегрева, термодатчик подает световой сигнал. Действие прибора основано на сравнении нормального напряжения с повышенным напряжением, возникающим при увеличении температуры. Устройство оборудовано инвертирующим входом, соединенным через анод с кремниевым диодом, непосредственно выполняющим функцию термодатчика. Кроме того, здесь имеется неинвертирующий вход, подключенный к переменному резистору. Он предназначен для установки температурного порога, когда происходит срабатывание сигнализатора. В случае изменения температуры в сторону увеличения, происходит падение напряжения на диоде. В этом случае, значение температурного коэффициента сопротивления будет отрицательным. Физические свойства датчика позволяют обнаруживать даже незначительные колебания температуры. Дополнительные компоненты и схема датчикаКроме основных диодных устройств, схема датчика температуры включает в себя ряд дополнительных элементов. Прежде всего, это конденсатор, позволяющий защитить прибор от посторонних влияний. Дело в том, что операционный усилитель обладает повышенной чувствительностью на воздействие переменных электромагнитных полей. Конденсатор снимает эту зависимость с помощью наведения отрицательной обратной связи. При участии транзистора и стабилитрона образуется опорное стабилизированное напряжение. Здесь используются резисторы с повышенным классом точности при низком значении температурного коэффициента сопротивления. Тем самым, вся схема приобретает дополнительную стабильность. В случае возможных значительных изменений температурного режима, прецизионные резисторы можно не применять. Они используются только для контроля небольших перегревов. При расположении датчика на дальнем расстоянии от сигнализатора, они должны соединяться между собой двухжильным экранированным проводом. При этом, выводы датчика не должны касаться металлических частей устройства, находящегося под контролем. Регулятор оборотов вентилятора с датчиком температурыelectric-220.ru Указатель температуры охлаждающей жидкости 14.3807, проверкаУказатель температуры охлаждающей жидкости 14.3807 электромагнитный, логометрического типа. Предназначен для контроля температуры охлаждающей жидкости в двигателе. Оснащен сигнализатором перегрева. На автомобилях УАЗ входит в состав щитка приборов 14.3805 или КП116-3805010. Работает совместно с датчиком температуры ТМ100. Указатель температуры охлаждающей жидкости 14.3807, характеристики.Указатель температуры охлаждающей жидкости 14.3807 представляет собой электромагнитный логометр с неподвижными катушками и подвижным постоянным магнитом связанным со стрелкой. Кроме автомобилей семейства УАЗ-31512, фургонов УАЗ-3741 и УАЗ-3909, санитарных УАЗ-3962, автобусов УАЗ-2206, грузовых УАЗ-3303 и УАЗ-39091, указатель температуры охлаждающей жидкости 14.3807 применяется на автомобилях ГАЗ, ЗИЛ, УРАЛ, ЛУАЗ, и автобусах ПАЗ, ЕРАЗ, КАВЗ. Основные характеристики указателя 14.3807 :— Диапазон показаний, градусов Цельсия : 40-120— Цена деления, градусов Цельсия : 20— Тип измерительного механизма : магнитоэлектрический— Номинальное напряжение, В : 12— Посадочный диаметр кожуха, мм : 60— Посадочный диаметр для ламподержателя подсветки и сигнализатора, мм : 11,5— Конструкция электрического соединения : штекер 6,35 мм— Масса, кг : 0,18 Датчик температуры охлаждающей жидкости ТМ100, характеристики.Указателя 14.3807 получает показания от датчика температуры ТМ100, который установлен в головке блока цилиндров двигателя. Рабочим элементом датчика является термистор помещенный в металлический корпус. Основные характеристики датчика температуры ТМ100 :— Пределы измерения температуры, градусов : 40-120— Номинальное напряжение, В : 12, 24— Ток нагрузки, А : 0,1— Присоединение : винт М3— Размер под ключ : S19— Резьба : K3/8— Вес, г : 45 Схема подключения указателя температуры 14.3807 и датчика температуры ТМ100.Контрольная лампа предельной температуры охлаждающей жидкости в радиаторе и датчики температуры ТМ104 или ТМ111-09.Контрольная лампа расположена на панели приборов УАЗ и работает совместно с датчиком температуры ТМ104 или ТМ111-09, который расположен в верхней части радиатора. Биметаллическая пластина внутри датчика замыкает контакты и контрольная лампа загорается при температуре охлаждающей жидкости в радиаторе в пределах 91-98 градусов. Во время эксплуатации автомобиля не допускается значительное понижение уровня охлаждающей жидкости в системе охлаждения двигателя и как следствие обнажение трубок в верхнем бачке радиатора, так как от перегрева датчик температуры может выйти из строя. Перестановка местами датчика ТМ100 указателя температуры охлаждающей жидкости и датчика ТМ104 или ТМ111-09 контрольной лампы аварийного перегрева охлаждающей жидкости не допускается, так как указатель и лампа в таком случае работать не будут. Схема подключения и работы аварийного датчика температуры ТМ104 или ТМ111-09. Расположение датчиков температуры ТМ100 и ТМ104 в автомобилях семейства УАЗ-31512. Расположение датчиков температуры ТМ100 и ТМ111-09 в автомобилях семейства УАЗ-3741.Проверка исправности указателя температуры 14.3807 и датчика температуры ТМ100.Указатель температуры охлаждающей жидкости 14.3807 проверяется путем сравнения его показаний с показаниями термометра. Для этого надо вывернуть датчик температуры ТМ100, при необходимости удлинить его провод, соедините датчик отдельным проводом с массой автомобиля и поместите вместе с термометром в середину сосуда с водой нагретой до кипения. Клемму датчика погружать в воду не следует. Затем остается сравнивать показания указателя температуры 14.3807 и термометра. Температура воды до требуемой величины доводится путем долива в сосуд холодной воды. При температуре воды в 100 и 80 градусов погрешность показаний указателя не должна превышать +-5 градусов, а при температуре воды в 40 градусов погрешность не должна превышать +4 или -12 градусов. Если показания указателя превышают указанные пределы, то сначала надо попробовать заменить датчик ТМ100, а если это не даст положительных результатов, то заменить указатель температуры охлаждающей жидкости 14.3807. Если стрелка указателя постоянно находится в начале шкалы.То при включенном зажигании отсоединить провод от датчика указателя и соединить его наконечник с массой. Если стрелка отклонится, то следовательно неисправен датчик и его необходимо заменить. Если стрелка не отклоняется, снять щиток приборов и при включенном зажигании соедините с массой клемму «Д» указателя. Отклонение стрелки в этом случае укажет на его исправность и на повреждение провода, соединяющего датчик с указателем. Если стрелка не отклоняется, то неисправен сам указатель. Если стрелка указателя постоянно находится в конце шкалы.То при включенном зажигании отсоединить провод от датчика. При неисправном датчике стрелка должна вернуться в начало шкалы. Если стрелка остается в конце шкалы, то провод имеет замыкание на массу или неисправен указатель. Его исправность можно проверить, отсоединив провод от клеммы «Д». При включенном зажигании стрелка должна находиться в начале шкалы. Проверка указателя температуры 14.3807 при помощи контрольного реостата.Для проверки указателя 14.3807 таким способом, его надо подсоединить к контрольному реостату. При сопротивлении контрольного реостата в 400-530 Ом стрелка должна находиться около отметки 40 градусов. При сопротивлении 80-95 Ом — около отметки 80 градусов. При сопротивлении 51-63 Ом — около отметки 120 градусов. Диагностика исправности датчика температуры ТМ100 по его сопротивлению.При температуре 40 градусов сопротивление на датчике должно быть в пределах 400-530 Ом, при температуре 80 градусов — в пределах 130-157 Ом, при температуре 100 градусов — в пределах 80-95 Ом, а при температуре 120 градусов — в пределах 51-63 Ом. Ремонт указателя температуры охлаждающей жидкости и его датчика.Указатель температуры охлаждающей жидкости 14.3807 и датчики ТМ100, ТМ104 и ТМ111-09 ремонту не подлежат. Поэтому в случае их неисправности следует проверить только электрические соединения и исправность проводки, и если они в порядке, то заменить указатель или датчики на новые. Рекомендуется сначала попробовать заменить датчики, так как они обычно чаще выходят из строя. Похожие Статьи : auto.kombat.com.ua Схема подключения и настройка температурного реле ТР-100Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика». В сегодняшней статье я расскажу Вам про подключение и настройку цифрового температурного реле ТР-100 от Новатек Электро. Реле ТР-100 предназначено для измерения температуры и выдачи сигналов при выходе ее за установленные значения. Область применения реле может быть самой широкой и разнообразной. Вот например, в моем случае реле ТР-100 применяется для измерения и контроля температуры трехфазного сухого трансформатора ТСЛ 10/0,4 (кВ) мощностью 1000 (кВА). Напомню, что трансформатор ТСЛ имеет обмотки с литой изоляцией с естественным воздушным охлаждением и его максимальная температура не должна превышать значения, указанные в руководстве по эксплуатации на трансформатор, в зависимости от класса нагревостойкости его изоляции. В данном случае трансформатор имеет класс нагревостойкости F, а температура его нагрева не должна превышать 145°С. Вот внешний вид реле ТР-100 и его габаритные размеры (90х139х63 мм). Реле ТР-100 устанавливается на стандартной DIN-рейке, причем в любом пространственном положении, и имеет универсальное питание, находящееся в пределах от 24 (В) до 260 (В), причем как переменного, так и постоянного напряжения. Основные технические характеристики реле ТР-100: Характеристики контактов выходных реле:
В моем примере реле подключено к дифференциальному автомату АД12 (SF6) с номинальным током 16 (А) и током утечки 30 (мА), к которому помимо реле подключена еще и розетка (XS1). А вообще, для индивидуального питания реле ТР-100 необходим автомат с номинальным током 1 (А) или 2 (А). К данному реле можно подключить до 4 датчиков температуры. В качестве датчиков температуры в моем примере используются резистивные платиновые датчики РТ100 с номинальным сопротивлением 100 (Ом) при 0°С. Датчики устанавливаются в верхней части обмоток НН каждой фазы трансформатора, т.е. всего на трансформаторе установлено 3 температурных датчика РТ100, кабели от которых выведены к реле ТР-100. Кабели от датчиков должны быть изготовлены из экранированного кабеля типа витая пара (или тройка) и иметь одинаковую длину, а экраны кабелей должны быть обязательно заземлены. В данном примере применены трехжильные кабели, правда вот заземление экранов монтажники почему-то не выполнили. В общем как всегда, придется самому за ними все доделывать, т.е. разделать кабели и заземлить их экраны. Кстати, это не единственная не доработка поставщика данной КТПН. Помимо этого, есть еще ряд замечаний, о которых я расскажу в самое ближайшее время. Датчики к реле можно подключить, как по двухпроводной схеме, так и по трехпроводной. В моем случае используется трехпроводная схема подключения датчиков температуры, т.к. при двухпроводной схеме длина кабелей ограничена 5 метрами. При трехпроводной схеме расстояние кабелей может достигать вплоть до 100 метров. На каждый канал подключается кабель от температурных датчиков. По возможности, определите для себя откуда проложен тот или иной кабель, чтобы ориентироваться на случай перегрева обмоток трансформатора. Например, кабель от датчика обмотки фазы А подключен к первому каналу следующим образом:
Остальные кабели подключаются аналогично, только на второй и третий каналы. При повышении температуры обмоток трансформатора сопротивление датчиков увеличивается. Сигнал от датчиков температуры преобразуется в электрический сигнал и передается на наше цифровое температурное реле ТР-100. Кстати, нередко для подобных целей применяется реле Т154 от TecSystem, но не в этот раз. Для правильной защиты нашего сухого трансформатора от перегрева и исключения выхода его из строя, рекомендуется использовать 3 пары выходных контактов:
Температурное реле ТР-100 как раз таки имеет 4 выходных реле, что удовлетворяет вышеприведенным рекомендациям. Но в моем случае контакты выходных реле никуда использоваться не будут. Согласно проекта, в КТПН не предусмотрена система вентиляции, а также не проложены контрольные кабели для выдачи сигналов при перегреве трансформатора. В таком случае оперативный персонал будет производить ежедневные осмотры данного трансформатора и контролировать температуру его нагрева по дисплею реле ТР-100. Тем не менее я расскажу вкратце про выходные реле. Как я уже говорил, ТР-100 имеет 4 выходных реле:
Реле К1 (расцепление), К2 (тревога) и К3 (вентиляция) включаются только при достижении заданной уставки. Уставки каждого реле (Alr, trP и FAn) настраиваются индивидуально. Реле К4 (отказ) находится всегда во включенном положении и отключается при снятии напряжения питания с ТР-100 или при неисправности температурных датчиков. Во втором случае, индикаторы «расцепление», «тревога» и «отказ» будут мигать, а ошибка на дисплее будет символизировать характер неисправности датчиков (Fcc — замыкание датчика, Foc — обрыв датчика). На лицевой панели реле ТР-100 расположены индикаторы включения всех выходных реле, а также индикаторы подключения к ПК и номера каналов отображения температуры. Помимо индикаторов, на лицевой панели расположены кнопки управления, с помощью которых происходит управление и задание параметров реле. У реле ТР-100 имеется два режима управления параметрами:
Надеюсь, что по кнопкам управления Вам все понятно из выше прикрепленного изображения, единственное добавлю, что для входа в режим настройки параметров необходимо нажать и удержать кнопку «Меню» около 7 секунд. Кстати, для доступа к настройке можно установить пароль, изменив параметр PAS (см. таблицу ниже). Тогда каждый раз при входе в режим настройки, нужно будет вводить заданный пароль. Ниже я приведу таблицу с настраиваемыми параметрами реле ТР-100, взятую из руководства по эксплуатации. По этим таблицам все вполне наглядно и информативно понятно, чтобы самостоятельно произвести настройку реле должным образом. В таблице указаны параметры, их обозначение (мнемоника), пределы регулирования, заводская установка и действия, за которое отвечает тот или иной параметр. Чуть выше я говорил, что согласно проекта, в КТПН не предусмотрена система вентиляции, а также не проложены контрольные кабели для выдачи сигналов на отключение трансформатора при перегреве его обмоток. Поэтому практически все параметры я оставил без изменений (заводские настройки), отключив лишь режим работы вентиляции (FAn). В остальном заводские настройки мне полностью подходили по количеству задействованных каналов, типу подключенных температурных датчиков (РТ100), режиму индикации с поочередным 4-секундным интервалом отображения температуры каналов, действие прибора при неисправности датчиков и т.д. Да, кстати, реле ТР-100 фиксирует максимальную температуру по каждому каналу, которую можно посмотреть в соответствующих параметрах cn1, cn2, cn3 и cn4. Для этого необходимо зайти в меню, пролистать с помощью кнопок управления, например, до параметра максимальной температуры канала 1 (cn1) и нажать «Меню». Если Вы хотите сбросить зафиксированную температуру, то можно нажать на «Ввод», правда для этого необходимо зайти не в режим просмотра, а в режим изменения настроек реле. Реле ТР-100 можно подключать к ПК или прочим устройствам по интерфейсу RS-485 (протокол MODBUS RTU). Программу можно скачать с официального сайта Новатек Электро. С помощью программы можно дистанционно посмотреть текущее состояние реле и выполнить его настройки:
Адреса регистров настраиваемых параметров hex приведены в выше размещенных таблицах. Дополнительные регистры и их предназначение приведены в таблице ниже. Вот например, ТР-100 можно перевести в режим удаленного управления его выходными реле, установив параметр rSA в положение «2», а в регистрах 0х200 — 0х206 перезаписать значение «0» на «1». При этом, если связь ПК-реле будет утеряна больше заданного таймаута (параметр rSL), то управление выходными реле передается автоматически ТР-100. А в завершении статьи, предлагаю Вам посмотреть видеоролик по подключению и настройке реле ТР-100: P.S. На этом, пожалуй, все. Если есть вопросы по настройке или подключению температурного реле ТР-100, то задавайте их в комментариях. Всем спасибо за внимание, до новых встреч. Если статья была Вам полезна, то поделитесь ей со своими друзьями: zametkielectrika.ru ДАТЧИКИ ТЕМПЕРАТУРЫВ этой статье мы обсудим различные типы датчиков температуры и возможность их использования в каждом конкретном случае. Температура - это физический параметр, который измеряется в градусах. Она является важнейшей частью любого измерительного процесса. К областям требующим точных измерений температуры относится медицина, биологические исследования, электроника, исследования различных материалов, и тепловых характеристик электротехнической продукции. Устройство, используемое для измерения количества тепловой энергии, позволяющее нам обнаружить физические изменения температуры известно как датчик температуры. Они бывают цифровые и аналоговые. Основные типы датчиковВ целом, существует два методы получения данных: 1. Контактный. Контактные датчики температуры находятся в физическом контакте с объектом или веществом. Они могут быть использованы для измерения температуры твердых тел, жидкостей или газов. 2. Бесконтактный. Бесконтактные датчики температуры производят обнаружение температуры, перехватывая часть инфракрасной энергии, излучаемой объектом или веществом и чувствуя его интенсивность. Они могут быть использованы для измерения температуры только в твердых телах и жидкостях. Измерять температуру газов они не в состоянии из-за их бесцветности (прозрачности). Типы датчиков температурыЕсть много различных типов датчиков температуры. От простых контролирующих процесс вкл/выкл термостатического устройства, до сложных контролирующих системы водоснабжения, с функцией её нагрева применяемых в процессах выращивания растений. Два основных типа датчиков, контактные и бесконтактные далее подразделяются на резистивные, датчики напряжения и электромеханические датчики. Три наиболее часто используемых датчика температуры это:
Эти датчики температуры отличаются друг от друга с точки зрения эксплуатационных параметров. ТермисторТермистор - это чувствительный резистор, изменяющий свое физическое сопротивление с изменением температуры. Как правило, термисторы изготавливаются из керамического полупроводникового материала, такого как кобальт, марганец или оксид никеля и покрываются стеклом. Они представляют собой небольшие плоские герметичные диски, которые сравнительно быстрое реагируют на любые изменения температуры. За счет полупроводниковых свойств материала, термисторы имеют отрицательный температурный коэффициент (NTC), т.е. сопротивление уменьшается с увеличением температуры. Однако, есть также термисторы, с положительным температурным коэффициентом (ПТК), их сопротивление возрастает с увеличением температуры. График работы термистораПреимущества термисторов
Зависимости сопротивления от температурыЗависимость сопротивления от температуры выражается следующим уравнением: где A, B, C - это константы (предоставляются условиями расчёта), R - сопротивление в Омах, T - температура в Кельвинах. Вы можете легко рассчитать изменение температуры от изменения сопротивления или наоборот. Как использовать термистор?Термисторы оцениваются по их резистивному значению при комнатной температуре (25°C). Термистор-это пассивное резистивное устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети. Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание. Следовательно, его выходное напряжение может быть рассчитано следующим образом: При 25°C, RNTC = 2200 Ом; При 80°C, RNTC = 50 Ом; Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры. Выходное напряжение на резисторе и температура линейно связаны. Резистивные датчики температурыТемпературно-резистивные датчики (термопреобразователи сопротивления) изготовлены из редких металлов, например платины, чье электрическое сопротивление изменяется от соответственно изменению температуры. Резистивный детектор температуры имеет положительный температурный коэффициент и в отличие от термисторов, обеспечивает высокую точность измерения температуры. Однако, у них слабая чувствительность. Pt100 являются наиболее широко доступным датчиком со стандартным значение сопротивления 100 Ом при 0°C. Основным недостатком является высокая стоимость. Преимущества таких датчиков
ТермопарыНаиболее часто используются датчики температуры-термопары, потому что они точны, работают в широком диапазоне температур от -200°C до 2000°C, и стоят сравнительно недорого. Термопара с проводом и штепсельной вилкой на фото далее: Работа термопарТермопара изготовляется из двух разнородных металлов, сваренных вместе, что даёт эффект разности потенциалов от температуры. От разницы температур между двумя спаями, образуется напряжение, которое используется для измерения температуры. Разность напряжений между двумя спаями называется “эффект Зеебека”. Если оба соединения имеют одинаковую температуру, потенциал различия в разных соединениях равен нулю, т.е. V1 = V2. Однако, если спаи имеют разную температуру, выходное напряжение относительно разности температур между двумя спаями будет равно их разности V1 - V2. Типы термопарВ зависимости от конструкции и назначения различают термопары погружаемые и поверхностные; с обыкновенной, взрывобезопасной, влагонепроницаемой или иной оболочкой (герметичной или негерметичной), а также без оболочки; обыкновенные, виброустойчивые и ударопрочные; стационарные и переносные и другие. el-shema.ru Простой датчик температуры с аналоговым выходом 0-10ВДатчик температуры может использоваться в различных условиях окружающей среды. Датчик предназначен для измерения температуры в градусах Цельсия и преобразовании его в напряжение. Датчик температуры подходит для работы на общих промышленных зонах и на открытой местности. В датчике установлен термометр типа LM35, что обеспечивает надежность и точность при измерениях температуры. Благодаря герметизации датчика с измерительным элементом, обеспечивается высокая вибростойкость и влагостойкость. Основные технические характеристики: • Подходит для использования в газообразных средах, а также измерения температуры окружающей среды и температуры предметов и исследуемой поверхности • Возможность крепления с помощью болтового соединение непосредственно к поверхности измеряемой температуры • Защита от инверсной подачи питания • Рабочая температура достигает +100 °C • Диапазон измеряемых температур: -50...+80 • Напряжение питания: постоянный ток 12В • Потребляемый ток: 10мА • Напряжение выходного сигнала: 0-10В • Выходной ток: 20мА Конструкция датчика позволяет крепить его непосредственно к площади поверхности для измерения температуры ее поверхности или компенсации температурных изменений (для лучшего эффекта, на место контакта нанести небольшой слой теплопроводной пасты, например КПТ-8 или КПТ-19), возможно так же крепить таким способом датчик температуры на пластиковые, поливинилхлоридные и прочие поверхности изготовленные из материалов с низкой теплопроводностью.Предыстория: Обратился как-то ко мне знакомый, который работал инженером в фирме — интеграторе GPS/Глонасс оборудования. Один из их клиентов захотел измерять температуру окружающей среды за бортом очередного трактора. На этой технике уже стояли GPS — терминалы, отечественные, ADM600, какой-то пермской конторы. Спросил меня, какой лучше датчик применить, недорогой. У меня сразу возникла мысль, почему бы не применить DS18B20, на что коллега мне ответил: «у треккера нет 1wire», есть только 2 АЦП, один канал от 0-13, второй от 0 — 36, ну и плюс еще всякие входа дискретные и протокольные интерфейсы. Странно думаю, как так-то? В общем нужно было срочно решить его проблему, причем еще и как обычно — недорого. Придя домой сразу же открыл ящик стола. В кассетнице лежало с десяток DS18b20 и LM35. Откуда LM 35, я даже и не вспомнил. Никогда их не применял. Открыв ДШ по GPS треккеру и вправду не обнаружил у него шину Dallas а. Решено, делать датчик на том что есть — LM35. В ДШ написанно, что при базовом подключении, цена деления 10мВ на 1 градус С. И при этом нет возможности измерить отрицательную температуру. Исходя из этого, требуется усилить сигнал и сделать смещение на датчике, что бы была возможность измерения отрицательных температур. Полазив в интернете, нашел схему смещения на двух диодах. Решил поставить транзистор. В качестве усилителя применен низковольтный ОУ LM358: Дальше решил промоделировать схему со смещением: Как видно из рисунка, выходной сигнал измеряется (вольтметром) относительно общего провода. Резистор R1 и транзистор Q1(включенный как диод) образуют схему смещения уровня вывода GND датчика температуры. При этом потенциал нижнего вывода резистора R4 оказывается отрицательным по отношению к GND LM35 и, датчик может работать как с положительными, так и с отрицательными температурами. Измерение выходного сигнала, как уже говорилось выше, осуществляется относительного общего провода питания. При нулевом значении температуры выходное напряжение составляет 0.6В (при использовании транзистора MMBT3906). Снижение температуры ниже нуля вызывает уменьшение выходного напряжения (10 мВ на 1С на выходе LM35). Подъем температуры выше нуля приводит к росту выходного напряжения. Далее вопрос стал о конструктиве. Набросал 3D в Proteus, дабы визуально оценить размеры (решил плату усилителя совместить с головкой датчика в единую конструкцию, ибо линии на этом тракторе могут достигать длины и более 2х метров). В DIPe сразу не понравилось, громоздко. Решил использовать планарные элементы. В качестве элемента для головки термодатчика использовал медный наконечник с отверстием под болт, решил обжать им LM35, предварительно промазав КПТ-8. Обжал при помощи специальной обжимки от Phoenix contact, брал у коллеги, поэтому не удалось сфотографировать. Далее аккуратно обработал простыми плоскогубцами. Нарисовал плату в sLayot, получилась достаточно компактна: Ну дальше сборка, решил сделать сразу 10 штук: После сборки, обжал аккуратно наконечником корпус термодатчика и хорошо припаял с обратной стороны печатной платы… Конечно лучше было сделать прорези и пропаять с обеих сторон, но времени не было. Плату аккуратно обмакнул в Казанский герметик и поместил в термоусадочную трубку с клеем, провода от датчика поместил в пластиковый гофрорукав с авторынка, диаметром 6мм. Питание датчика осуществляет отдельный параметрический стабилизатор на TL431 и МДП транзисторе и в данном случае не рассматривается. Попробовал я откалибровать датчик. Калибровал при помощи спиртового градусника и своего самодельного термометра на DS18B20: Калибровал так: холодильник, улица, фен. Хотя можно было применить чашку со льдом и комфорку плиты. Но так как термодатчик линеен, не стал сильно заморачиваться и сделал несколько замеров: Сопоставляя данные с разных термометров сделал вывод: датчик получился достаточно точным. Схема подключения датчика к прибору ADM600: Передал датчики товарищу. Который через неделю после инсталяции термометров скинул мне отчет из програмного комплекса Fort Monitor, все работало =) PS: По оси Y указана температура, а не напряжение. Так устроен программный комплекс… we.easyelectronics.ru |