Пуэ что это такое в электрике: ПУЭ-7 Правила устройства электроустановок — это основной нормативно-технический документ, которым руководствуются проектировщики при расчете электроустановок всех типов и модификаций.

Содержание

ПУЭ-7 Правила устройства электроустановок — это основной нормативно-технический документ, которым руководствуются проектировщики при расчете электроустановок всех типов и модификаций.

Правила устройства электроустановок (ПУЭ) — группа общесоюзных нормативных документов Минэнерго СССР, нормативных документов Минэнерго России и документов иных стран. ПУЭ не является единым документом и издавался отдельными главами, одна из которых называлась «Общая часть» и устанавливала общие требования. ПУЭ не является документом в области стандартизации. Сборники документов выпускались под названием «издания».

В данный момент различные версии документов действуют в России (6 и 7-е издания), на Украине (издание ПУЭ-2009), в Белоруссии (6-е издание). 

Раздел 1. ОБЩИЕ ПРАВИЛА

Глава 1.1. Общая часть

Глава 1.2. Электроснабжение и электрические сети

Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны

Глава 1. 4. Выбор электрических аппаратов и проводников по условиям короткого замыкания

Глава 1.5. Учет электроэнергии

Глава 1.6. Измерения электрических величин

Глава 1.7. Заземление и защитные меры электробезопасности

Глава 1.8. Нормы приемо-сдаточных испытаний

Глава 1.9. Изоляция электроустановок

Раздел 2. КАНАЛИЗАЦИЯ ЭЛЕКТРОЭНЕРГИИ

Глава 2.1 Электропроводки

Глава 2.2. Токопроводы напряжением до 35 кВ

Глава 2.3. Кабельные линии напряжением до 220 кВ

Глава 2.4. Воздушные линии электропередачи напряжением до 1 кВ

Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ

Раздел 3. ЗАЩИТА И АВТОМАТИКА

Глава 3.1 Защита электрических сетей напряжением до 1 кВ

Глава 3.2 Релейная защита

Глава 3.3 Автоматика и телемеханика

Глава 3.4 Вторичные цепи

Раздел 4. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И ПОДСТАНЦИИ

Глава 4.1 Распределительные устройства напряжением до 1 кВ переменного тока и до 1,5 кВ постоянного тока

Глава 4. 2 Распределительные устройства и подстанции напряжением выше 1 кВ

Глава 4.3 Преобразовательные подстанции и установки

Глава 4.4 Аккумуляторные установки

Раздел 5. ЭЛЕКТРОСИЛОВЫЕ УСТАНОВКИ

Глава 5.1. Электромашинные помещения

Глава 5.2. Генераторы и синхронные компенсаторы

Глава 5.3. Электродвигатели и их коммутационные аппараты

Глава 5.4. Электрооборудование кранов

Глава 5.5. Электрооборудование лифтов

Глава 5.6. Конденсаторные установки

Раздел 6. ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

Глава 6.1. Общая часть

Глава 6.2. Внутреннее освещение

Глава 6.3. Наружное освещение

Глава 6.4. Световая реклама, знаки и иллюминация

Глава 6.5 Управление освещением

Глава 6.6. Осветительные приборы и электроустановочные устройства

Раздел 7. ЭЛЕКТРООБОРУДОВАНИЕ СПЕЦИАЛЬНЫХ УСТАНОВОК

Глава 7.1. Электроустановки жилых, общественных, административных и бытовых зданий

Глава 7.2. Электроустановки зрелищных предприятий, клубных учреждений и спортивных сооружений

Глава 7. 3. Электроустановки во взрывоопасных зонах

Глава 7.4. Электроустановки в пожароопасных зонах

Глава 7.5. Электротермические установки

Глава 7.6. Электросварочные установки

Глава 7.7. Торфяные электроустановки

Глава 7.10. Электролизные установки и установки гальванических покрытий

Приложения

Приложение к главам 2.3, 2.4, 2.5 Требования к информационным знакам и их установке
Приложение 1 (справочное) к гл. 7.3 Категории и группы взрывоопасных смесей по ПИВРЭ и ПИВЭ
Приложение 2 (справочное) к гл. 7.3 Маркировка взрывозащищенного электрооборудования по ПИВРЭ
Приложение 3 (справочное) к гл. 7.3 Маркировка взрывозащищенного электрооборудования по ПИВЭ

История разработки и действие ПУЭ в РФ после 2000 года:

Шестое издание ПУЭ подготовили организации Министерства энергетики и электрификации СССР, начало действия — 1 июня 1985 года. Акты органов СССР, принятые до 1990 года, действовали на территории РСФСР непосредственно до приостановки.

В 1995 году ПУЭ были внесены в перечень ведомственных нормативно-технических документов, подлежащих утверждению Минтопэнерго России. Все нормативно-технические документы, ранее утвержденные министерствами СССР, правопреемником которых являлось Минтопэнерго России, признали действующими, если они не противоречили законодательству Российской Федерации.

В течение 2003 года Минэнерго России серией приказов фактически ввело в действие ПУЭ, и действие данных глав актуально на 2019 год:

  • Раздел 1. Общие правила (главы 1.1, 1.2, 1.7, 1.9) и Раздел 7. Электрооборудование специальных установок (главы 7.5, 7.6, 7.10).
  • Раздел 1 «Общие правила» (глава 1.8).
  • Раздел 2. Передача электроэнергии (главы 2.4, 2.5)
  • Раздел 4. Распределительные устройства и подстанции (главы 4.1, 4.2).

Действующая версия ПЭУ не учитывает одновременно действующие требования по защите электроустановок:

от пожаров (ГОСТ Р 50571.17-2000), http://docs.cntd.ru/document/1200007657

защите от перенапряжений, вызываемых замыканиями на землю в электроустановках выше 1 кВ, грозовыми разрядами и коммутационными переключениями, электромагнитными воздействиями (ГОСТ Р 50571-4-44-2011). http://docs.cntd.ru/document/1200087201

Помимо этого, после выхода закона «О техническом регулировании» от 27.12.2002 N 184-ФЗ Минюст отказал в регистрации двадцати трех новых глав ПУЭ седьмого издания.

В 2016 году был принят закон от 23.06.2016 № 196-ФЗ «О внесении изменений в Федеральный закон „Об электроэнергетике“ в части совершенствования требований к обеспечению надежности и безопасности электроэнергетических систем и объектов электроэнергетики». Устанавливаются требования к:

функционированию электроэнергетических систем, в том числе к обеспечению устойчивости и надежности электроэнергетических систем, режимам и параметрам работы объектов электроэнергетики и энергопринимающих установок, релейной защите и автоматике, включая противоаварийную и режимную автоматику;

функционированию объектов электроэнергетики и энергопринимающих установок;

планированию развития электроэнергетических систем;

безопасности объектов электроэнергетики и энергопринимающих установок;

подготовке работников в сфере электроэнергетики к работе на объектах электроэнергетики и энергопринимающих установках.

Также изменения предусматривают, что требования к оборудованию объектов электроэнергетики и энергопринимающих установок как к продукции устанавливаются в соответствии с правом Евразийского экономического союза и законодательством Российской Федерации.

Правила устройства электроустановок (ПУЭ) — это основной нормативно-технический документ, которым руководствуются проектировщики при расчете электроустановок всех типов и модификаций.

Другими словами, ПУЭ — это правила, в которых описаны принципы построения электрических устройств, а также основные требования к энергосистемам, электрическим узлам, элементам и коммуникациям.

По сути ПУЭ является Библией и главной настольной книгой любого квалифицированного электрика. Если к вам пришел мастер, не знающий, что такое 

Правила устройства электроустановок — это не электрик.

Описанные в ПУЭ правила распространяются на вновь сооружаемые или реконструируемые электроустановки постоянного и переменного тока напряжением до 750 (кВ), в том числе на специальные электроустановки.

ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК

ПУЭ Издание седьмое (последняя редакция по состоянию на февраль 2018)

Скачать PDF

5 важных правил ПУЭ, которые электрики нарушают чаще всего

Нарушение правил ПУЭ несет за собой не только материальные убытки, но и угрозу жизни/здоровью людей. Однако к сожалению, часто электрики грешат нарушением некоторых правил. Мы расскажем о 5 самых распространенных нарушениях, которые встречались в нашей практике.

1 Не обеспечен быстрый доступ для ремонта проводки

Наверняка вы задавались вопросом: зачем так много в доме распаечных коробок? Они нужны для того, чтобы обеспечить быстрый доступ к обслуживанию соединений проводки. Однако некоторые недобросовестные электрики соединяют провод обычными скрутками и замуровывают их в стены или закрывают коробами. Тем самым нарушается правило ПУЭ п.2.1.23:

Места соединения и ответвления проводов и кабелей должны быть доступны для осмотра и ремонта.

Поэтому если в вашей квартире электрики соединяют провода с помощью СИЗ, WAGO или другими разборными соединениями, проверяйте, чтобы они находились в распаечных коробках.

2 Не оставлен запас провода

При укладке проводки в распаечных коробках, розетках и электрощитовых необходимо оставлять запас провода для дальнейшего ремонта (если потребуется). Обычно оставляется по 10 см, не больше. Однако некоторые электрики грешат и не оставляют таких запасов, нарушая ПУЭ п. 2.1.22:

В местах соединения, ответвления и присоединения жил проводов или кабелей должен быть предусмотрен запас провода (кабеля), обеспечивающий возможность повторного соединения, ответвления или присоединения.

Зачастую данное требование нарушается из-за того, что электрику сложно укладывать «хвосты» провода в распаечных коробках. Обязательно следите за тем, чтобы мастера оставляли такой запас на случай будущего ремонта.

3 Подключение заземления шлейфом

В каждой квартире или доме должно быть правильно организовано заземление всех розеток. В некоторых квартирах к одной розетки заземление из щитка приходит напрямую, а дальше соединяется шлейфом с другими розетками. Таким образом нарушается следующее правило из ПУЭ 7.1.21:

Во всех случаях в цепях РЕ и PEN проводников запрещается иметь коммутирующие контактные и бесконтактные элементы. Допускаются соединения, которые могут быть разобраны при помощи инструмента, а также специально предназначенные для этих целей соединители.

В самой розетке провод заземления может быть откручен обычной отверткой. А вот соединение шлейфом не подпадает под определение правильного соединения, поэтому не может использовано для заземления розеток.

4 Заполнение кабель-канала на весь объем

Обычно вся проводка укладывается в кабель-каналы. В ПУЭ описано, каким образом должна выполняться укладка и на сколько заполняться кабель-канал. Во, что сказано в ПУЭ п.2.1.62:

В коробах провода и кабели допускается прокладывать многослойно с упорядоченным и произвольным (россыпью) взаимным расположением. Сумма сечений проводов и кабелей, рассчитанных по их наружным диаметрам, включая изоляцию и наружные оболочки, не должна превышать: для глухих коробов 35% сечения короба в свету; для коробов с открываемыми крышками 40%.

В целях экономии некоторые электрики заполняют кабель-каналы полностью, что может привести к избыточному нагреву проводки, и как следствие, пожару. Конечно, сложно определить, на сколько именно процентов заполнен канал, но хотя бы визуально прикинуть можно. Если занято больше половины пространства, это нарушение требований.

5 Неправильная цветовая маркировка проводов

В любом кабеле отдельные жилы имеют свою цветовую маркировку, которая упрощает монтаж проводки. В ПУЭ в п.1.1.29-30 приводится подробное описание цветовых решений жил. Мы не будем цитировать эти пункты полностью (так как они очень большие), а опишем лишь главные тезисы. Согласно этому документу расцветка жил должна быть такой:

  • Нулевой проводник — голубой (синий).
  • Заземление — желто-зеленый.
  • Фаза — чаще всего коричневый, но в пяти и более жильных кабелях она может быть черной, зеленой, белой, красной, оранжевой, розовой и т.д.

Шины трехфазной сети обозначаются следующими цветами:

  • Фаза А — желтый.
  • Фаза В — зеленый.
  • Фаза С — красный.

С подключением заземления обычно ни у кого проблем не возникает, а вот расцветку фазы и нуля часто путают. Конечно, работать сеть будет в любом случае (току не важно, какого цвета провод), но в случае ремонта другой электрик может случайно перепутать провода (хотя стоит всегда проверять фазу индикаторной отверткой или мультиметром), надеясь на добросовестность своего предшественника.

А какие вы встречали нарушения ПУЭ? Поделитесь опытом в комментариях!

Советы домашним электрикам:

  • Соединяем медный и алюминиевый провода: как правильно?
  • Как найти фазу и ноль: простые и действенные способы

Теги

электропроводка

Автор

Антон Гладышев

Калькулятор

PUE — что такое PUE и как его рассчитать

Сравнительный анализ энергоэффективности вашего центра обработки данных — это ключевой первый шаг к снижению энергопотребления и связанных с ним затрат на электроэнергию. Сравнительный анализ позволяет понять текущий уровень эффективности в центре обработки данных, а по мере внедрения дополнительных рекомендаций по повышению эффективности помогает оценить эффективность этих усилий по повышению эффективности.

Эффективность использования энергии (PUE) и связанная с ней Эффективность инфраструктуры центра обработки данных (DCiE) — это общепринятые стандарты сравнительного анализа, предложенные Green Grid, чтобы помочь ИТ-специалистам определить, насколько энергоэффективны центры обработки данных, и контролировать влияние их усилий по повышению эффективности. Uptime Institute также рекомендует комплексный эталонный показатель под названием «Средняя корпоративная эффективность центра обработки данных» (CADE). В феврале 2009 г.Технический форум, Green Grid представила новые контрольные показатели под названием «Производительность центра обработки данных» (DCP) и «Энергопроизводительность центра обработки данных» (DCeP), которые исследуют полезную работу, производимую вашим центром обработки данных. Все контрольные показатели имеют свою ценность, и при правильном использовании они могут стать полезным и важным инструментом для повышения энергоэффективности вашего центра обработки данных.

Калькулятор PUE и DCiE

Рассчитайте PUE (эффективность использования энергии) и DCiE и начните оценивать эффективность в своем центре обработки данных.


Введите общую ИТ-нагрузку

Введите общую нагрузку на объект

Выберите страну

 

Выберите штат

 

кВт/ч Стоимость

Текущее PUE

900:

Текущий DCiE:


Теперь, когда у нас есть контрольный показатель вашего текущего уровня эффективности, давайте продолжим и рассчитаем потенциальную экономию, если вы улучшите этот показатель.

Что такое ПУЭ? Что такое DCiE?

PUE / DCiE — это контрольные показатели эффективности, сравнивающие инфраструктуру вашего центра обработки данных с существующей ИТ-нагрузкой. Первоначальный бенчмаркинг PUE/DCiE дает оценку эффективности и устанавливает основу для повторного тестирования объекта. Сравнивая первоначальные и последующие оценки, руководители центров обработки данных могут оценить влияние того, что должно быть постоянной мерой по повышению эффективности. В любой момент времени они сравнивают мощность, используемую в настоящее время для ИТ-оборудования, в котором нуждается компания, с мощностью, используемой инфраструктурой, обеспечивающей охлаждение, питание, резервное копирование и защиту этого ИТ-оборудования.

PUE Пример:
Наличие объекта, который использует 100 000 кВт общей мощности, из которых 80 000 кВт используются для питания вашего ИТ-оборудования, будет генерировать PUE, равный 1,25. 100 000 кВт общей мощности объекта, разделенные на 80 000 кВт мощности ИТ.

DCiE Пример:
Наличие того же объекта, который использует 100 000 кВт общей мощности, из которых 80 000 кВт используются для питания вашего ИТ-оборудования, будет генерировать DCiE 0,8. 80 000 кВт ИТ-мощности разделить на 100 000 кВт общей мощности объекта.

Создание PUE/DCiE — это только начало пути к эффективности. Чтобы этот эталонный показатель был значимым, он должен генерироваться на регулярной основе и, желательно, также в разные дни недели и в разное время суток. Цель состоит в том, чтобы предпринять действенные действия по повышению эффективности на основе ваших фактических данных. Сравнивая ваш начальный тест с тестами, полученными после внесения изменений, вы сможете увидеть заметные улучшения в вашем PUE/DCiE.

Сократите эксплуатационные расходы за счет использования измерений, сравнительного анализа, моделирования и анализа для повышения энергоэффективности вашего центра обработки данных.

PUE = общая мощность оборудования / мощность ИТ-оборудования
DCiE = мощность ИТ-оборудования / общая мощность оборудования

PUE DCiE Уровень эффективности
3,0 33% Очень неэффективно
2,5 40% Неэффективный
2,0 50% Средний
1,5 67% Эффективный
1,2 83% Очень эффективный

DCiE и PUE Wars и Green Washing… чем PUE не является!

Возможно, вы слышали термины «PUE Wars» или «PUE Marketing». Компания Green Grid, автор как PUE, так и DCiE, не собиралась использовать какой-либо показатель для сравнения одного объекта с другим. К сожалению, это не помешало некоторым людям публиковать свои значения PUE в попытке продать свои объекты или стратегии проектирования. Хотя их усилия по повышению эффективности центров обработки данных следует приветствовать, этих показателей самих по себе недостаточно для определения эффективности центров обработки данных. Разговор должен включать продуктивность. Получаете ли вы максимальную отдачу от своих серверов и хранилища? Вы максимизируете вычислительную мощность? Удаление простаивающих серверов? Консолидация и виртуализация?

Многие в отрасли хотели бы иметь контрольный показатель для центров обработки данных, аналогичный корпоративному среднему расходу топлива (CAFE), принятому Конгрессом в 1970-х годах, который сравнивает количество миль на галлон (MPG) от одного автомобиля к другому. PUE в настоящее время не является такой метрикой. Быстрая иллюстрация продемонстрирует эту мысль:

В более ранних расчетах PUE и DCiE объект с общей мощностью 100 000 кВт и 80 000 кВт, предназначенными для ИТ-оборудования, имел PUE 1,25 и DCiE 0,8. Обычно это считается очень респектабельным эталоном. Но насколько значимо это измерение, если большая часть серверов просто простаивает или не очень продуктивна?

Сравнительный анализ PUE и DCiE с точки зрения неспециалистов:

Компаниям и организациям требуется ИТ-оборудование для предоставления своих продуктов и услуг, обработки транзакций, обеспечения безопасности, а также для ведения и развития своего бизнеса. Чем больше растет компания/организация, тем больше потребность в размещении их компьютерного оборудования в безопасной среде. ИТ-оборудование включает в себя компьютерные серверы, концентраторы, маршрутизаторы, коммутационные панели и другое сетевое оборудование. В зависимости от размера эта безопасная среда называется коммутационным шкафом, компьютерным залом, серверным помещением или центром обработки данных. В дополнение к энергии, необходимой для работы этого ИТ-оборудования, электроэнергия используется для освещения, безопасности, резервного питания и климат-контроля, чтобы поддерживать уровни температуры и влажности, которые минимизируют время простоя из-за проблем с нагревом. Сравнивая PUE или DCiE, вы сравниваете мощность, необходимую для критически важных для бизнеса ИТ, с мощностью, обеспечивающей работоспособность и защиту этого ИТ-оборудования.

Все ИТ-оборудование (и все, что работает на электричестве) выделяет тепло. В помещении, заполненном стойками с компьютерами и другим ИТ-оборудованием, значительная часть ваших затрат на электроэнергию приходится на специализированное оборудование для охлаждения и питания центра обработки данных, развернутое для поддержания работоспособности ваших серверов и другого ИТ-оборудования. Проблемы с перегревом в центрах обработки данных являются основной причиной простоев.

Центры обработки данных представляют собой большие сложные среды, в которых часто работают разные стратегические группы, управляющие ключевыми компонентами: одна группа занимается управлением объектами, а другая — ИТ-оборудованием, развернутым на объекте. В этих средах менеджеры объектов обычно определяют проблемы инфраструктуры, включая питание, охлаждение и воздушный поток, а ИТ-менеджеры определяют критически важные ИТ-системы, такие как серверы и сетевое оборудование.

Частота сравнительного анализа PUE / DCiE:
Чтобы иметь какое-либо истинное значение, PUE и DCiE также не являются эталонными тестами, которые можно проводить один раз или нечасто. Их следует измерять регулярно, если не в режиме реального времени, в разное время дня и недели. Чтобы подчеркнуть это значение, Green Grid вводит некоторые дополнительные идентификаторы, которые в сочетании с эталонным показателем PUE дадут вам гораздо лучшее представление о частоте и общей значимости результирующего показателя PUE или DCiE.

Вы не можете контролировать или управлять тем, что не измеряете
Наличие целостного понимания энергопотребления вашего компьютерного зала или центра обработки данных является ключевым первым шагом в способности определить соответствующие шаги, необходимые для повышения энергоэффективности. . Измерение следует использовать в качестве постоянного инструмента в общей стратегии вашего центра обработки данных. Измерение CFD на разных высотах в ряду стоек вместе с измерением давления воздуха под напольной плиткой может не только помочь вам убедиться, что вы получаете достаточно холодного воздуха на вход ваших серверов, но и поддерживать поток воздуха на рекомендованном уровне ASHRAE для для всего ИТ-оборудования (текущие рекомендации ASHRAE по воздуху на входе относятся к диапазону окружающей среды от 18°C ​​до 27°C (от 64,4°F до 80,6°F) и точке росы по влажности от 5,5°C до 15°C. Эти данные также могут помочь вам исключить горячий коридор / проблемы сдерживания холодных коридоров (утечка горячего воздуха в холодные коридоры и наоборот). При надлежащем измерении мощности всего ИТ-оборудования и инфраструктуры вашего центра обработки данных вы сможете определить свои PUE и DCiE. Поскольку PUE / DCiE являются отраслевыми стандартами , определение рейтинга энергоэффективности вашего центра обработки данных позволит вам сравнить эффективность вашего объекта с другими центрами обработки данных по всему миру. ве. Обеспечение энергоэффективности вашего центра обработки данных должно быть непрерывным процессом. После определения рейтинга эффективности вашего объекта вы внедряете передовые методы питания и охлаждения для повышения эффективности, а затем отслеживаете, как эти изменения улучшают ваш показатель PUE/DCIE. И по мере того, как вы добавляете дополнительные энергоэффективные ИТ-активы, процесс продолжает показывать, насколько меньше энергии потребляет ваше предприятие. Улучшения в ваших DCiE и PUE коррелируют с повышением эффективности, что, в свою очередь, демонстрирует измеримое сокращение счетов за электроэнергию вашей компании или организации.

Как рассчитать PUE и DCiE:

PUE и DCiE: что измерять

Понятия PUE и DCiE кажутся простыми. Тем не менее, запутанный лабиринт трансформаторов, PDU и охладителей делает измерения более чем простыми арифметическими действиями.

Расчет PUE или DCiE имеет большее значение, когда он становится повторяемым процессом, отслеживаемым во времени. Содержимое здесь предназначено для помощи профессионалам в области центров обработки данных при первом чтении, разработке протокола, который будет повторяться по мере продолжения усилий по повышению эффективности.

Шаг 1. Разработайте график тестирования

Частота измерения PUE/DCiE зависит от общей программы повышения эффективности. Если сбор данных автоматизирован с помощью программного обеспечения, должны быть возможны непрерывные измерения (час за часом, минута за минутой). Нагрузки могут колебаться в течение рабочего дня, и профессионалы могут найти ценность в сравнении PUE при пиковых нагрузках с измерениями в более медленные или холостые моменты дня.

Автор PUE и DCiE, The Green Grid дает следующие рекомендации по интервалам измерения:

  • Программа базовой эффективности: Ежемесячно/еженедельно
  • Программа средней эффективности: ежедневно
  • Программа повышенной эффективности: непрерывная (час за часом)

Независимо от того, выполняются ли расчеты раз в месяц или раз в час, любое регулярное измерение является шагом в правильном направлении.

Шаг 2. Планируйте цели повышения эффективности

Ваш план повышения эффективности может быть базовым или подробным по вашему желанию. Например, выделенный центр обработки данных может получать поступающую электроэнергию прямо на счетчике, а ИТ-нагрузку — прямо с ИБП. Отсюда простое деление дает оценку эффективности.

Базовый расчет
Общая ИТ-нагрузка 94 кВт
Общая нагрузка объекта 200 кВт
ПУЭ 2.13
DCiE 47%

Но на общую нагрузку объекта влияет ряд компонентов. Инфраструктура охлаждения может потреблять 40% поступающей электроэнергии, как в примере ниже. По этой причине пользователь может захотеть специально измерить и отследить потребление на центральном заводе.

Детальный расчет
Общая ИТ-нагрузка 94 кВт
Инфраструктура охлаждения 80 кВт
Нагрузка энергосистемы 24 кВт
Осветительная нагрузка 2 кВт
Общая нагрузка объекта 200 кВт
ПУЭ 2. 13
DCiE 47%

Современные технологии позволяют проводить очень точные измерения. Система управления зданием может отслеживать общее количество потребляемой электроэнергии, нагрузки на охладители и нагрузки на освещение. Технология Cisco EnergyWise, новые продукты для питания стоек и мониторинг ответвленных цепей позволяют отслеживать энергопотребление на уровне устройств. Удаленные датчики и программные продукты могут контролировать кВт и кВтч отдельных CRAC и CRAH. В результате пользователи могут нацеливаться и улучшать проблемные области центра обработки данных.

Этот уровень детализации в конечном счете зависит от ваших целей, возможностей и бюджета. Независимо от того, насколько проста или сложна программа, наиболее важной целью является последовательность. Вы не можете улучшить или контролировать то, что не измеряете.

Шаг 3: Знание компонентов распределения электроэнергии

Распределение электроэнергии занимает центральное место в этих измерениях. Энергия проходит через различные компоненты, и на пути от служебного входа к ИТ-оборудованию возникают потери. Вот некоторые из ключевых компонентов питания:

Трансформатор
Электричество проходит через служебный вход и поступает в трансформатор, который питает все, что ниже по потоку: распределительное устройство, ИБП, освещение, CRAC/CRAH и, наконец, ИТ-оборудование. Поднятая сторона этого трансформатора представляет собой потенциальную точку для измерения общей мощности объекта.

Источник бесперебойного питания (ИБП)
После трансформатора, безобрывных переключателей, распределительного устройства. Это представляет собой потенциальную точку для измерения общей ИТ-нагрузки.

Блок распределения питания (PDU)
В отличие от стоечных блоков питания (от которых фактически питается ИТ-оборудование), эти напольные блоки распределяют питание через автоматические выключатели на шкафы и стойки, в которых размещается ИТ-оборудование. Это местоположение, если оно доступно, представляет собой более полную точку для измерения ИТ-нагрузки, поскольку оно включает электрические потери как в ИБП, так и в PDU.

Шаг 4: Определите общую мощность объекта

Трансформаторы
Трансформаторы по своей природе не обладают интеллектом, поэтому измерение будет необходимо. Сложные портативные устройства могут обеспечить моментальное считывание поступающего электричества.

Однако цель состоит в том, чтобы отслеживать результаты и улучшения с течением времени. Накладные счетчики, установленные на верхней стороне трансформатора, могут количественно оценить повышение эффективности за счет непрерывных измерений. Устройства, размещенные в электрических коробках рядом с трансформатором, имеют выводы, которые устанавливаются вокруг каждого проводника и обеспечивают подробные показания каждой электрической фазы.

Трансформаторы чрезвычайно важны для работы центра обработки данных, и некоторые пользователи, обеспокоенные сложностью установки или восприятием времени простоя, могут не решиться устанавливать такие счетчики. Тем не менее, грамотная и опытная инженерия может развеять эти опасения и позволить пользователю сэкономить на затратах на электроэнергию в течение всего срока службы его объекта.

Автоматический/статический переключатель ввода резерва (ATS / STS)
Несмотря на то, что измерение нагрузки на специализированном трансформаторе обеспечивает наиболее точную нагрузку объекта, существуют ситуации, когда измерение на этом этапе цепочки поставок невозможно. Выход АВР/СТС обеспечивает оптимальную точку учета мощности объектов. В среде, включающей резервный генератор, измерение мощности объекта на выходе АВР/СТС является предпочтительной точкой для сбора нагрузки всего объекта, так как все системы, необходимые для критически важных операций, питаются от этой точки.

Программное обеспечение для управления зданием
Пользователи могут уже использовать систему управления зданием, которая постоянно отслеживает энергопотребление. Если это так, общая мощность объекта может быть немного больше, чем несколько кликов, представляя значения через веб-интерфейс.

Шаг 5. Найдите общую ИТ-нагрузку

Измерение ИТ-нагрузки с помощью PDU
Выход PDU — еще одна точка измерения. Более новые PDU с читаемыми панелями или автоматическим мониторингом ответвленных цепей делают ИТ-нагрузку очень доступной. Как упоминалось ранее, PDU могут содержать несколько 42-контактных панелей, и без автоматизации установка счетчиков на каждом полюсе и управление полученными данными может оказаться затруднительной.

Имейте в виду, что каждое показание зависит от электрических потерь из-за неэффективности ИБП и PDU. При желании вы можете рассчитать потери, сравнив входные и выходные значения каждого устройства.

  • Входная мощность ИБП (кВт) – Выходная мощность ИБП (кВт) = потери мощности ИБП (кВт)
  • Входная мощность PDU (кВт) – Выходная мощность PDU (кВт) = Потери мощности PDU (кВт)

Измерение ИТ-нагрузки через ИБП
Выход ИБП является первым логическим местом для сбора ИТ-нагрузки. Более новые системы ИБП могут включать читаемые передние панели или использовать веб-интерфейсы, которые упрощают любую детективную работу и предоставляют средство для отслеживания тенденций данных с течением времени. Более старые системы ИБП без передних панелей или возможностей SNMP могут использовать те же токоизмерительные клещи, которые обсуждались в разделе о трансформаторах.

Шаг 6. Предпримите осмысленные действия

После завершения начального чтения определите курс действий. Рассмотрите возможность использования инструментов моделирования или измерения для анализа воздушного потока на этаже центра обработки данных. Просмотрите взаимосвязанные настройки инфраструктуры охлаждения, начиная с температуры охлажденной воды и заканчивая температурой на входе в сервер. Устраните простаивающие серверы и по возможности используйте технологии виртуализации. Затем запустите тест еще раз.

Если ИТ поддерживает бизнес, в первую очередь улучшение PUE/DCiE имеет убедительный аргумент для бизнеса. Меньше потребляемой энергии, меньше счет за электричество. Хорошо для окружающей среды. Хорошо для итоговой суммы.

Как PUE или DCiE могут помочь вам сократить эксплуатационные расходы в вашем центре обработки данных?

Значительная экономия энергии для эффективного центра обработки данных! После расчета текущего эталонного значения PUE/DCiE нажмите здесь, чтобы воспользоваться нашим интерактивным калькулятором экономии для центра обработки данных, чтобы выбрать различные цели эффективности и посмотреть, сколько ваша организация может сэкономить на затратах на электроэнергию за счет повышения эффективности.

Сколько ваша организация может сэкономить, используя более энергоэффективный центр обработки данных?
До 50 % счетов за электроэнергию центра обработки данных приходится на инфраструктуру (энергетическое и охлаждающее оборудование). Воспользуйтесь нашим интерактивным калькулятором эффективности центра обработки данных и узнайте, как снижение PUE приведет к значительной экономии энергии и затрат! 42U Калькулятор экономии эффективности центра обработки данных помогает ИТ-специалистам и руководителям высшего звена оценить краткосрочную и долгосрочную экономию, которая может быть достигнута за счет повышения энергоэффективности инфраструктуры их центра обработки данных. Экономия за счет эффективности является как финансовой (капитальные затраты (CAPEX), так и эксплуатационные расходы (OPEX), а также сокращением выбросов углерода (углерода, выделяемого электричеством, используемым для питания оборудования в их центрах обработки данных). Также важно учитывать, но за рамками этого калькулятора находятся существенная экономия капитальных затрат за счет сокращения активов и отложенного строительства центра обработки данных, а также экономия других парниковых газов, отличных от CO2. комната, серверная или коммутационная

404: Страница не найдена

Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы приносим свои извинения за доставленные неудобства.

Что я могу сделать сейчас?

Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:

Поиск

  • Ознакомьтесь с последними новостями.
  • Наша домашняя страница содержит самую свежую информацию о Центре обработки данных.
  • Наша страница «О нас» содержит дополнительную информацию о сайте, на котором вы находитесь, SearchDataCenter.
  • Если вам нужно, свяжитесь с нами, мы будем рады услышать от вас.

Просмотр по категории

SearchWindowsServer


  • Учебник по языку запросов Kusto для ИТ-администраторов

    Администраторы, использующие облачные службы Майкрософт, такие как Microsoft Sentinel и Microsoft 365, могут научиться извлекать информацию …


  • Как создать домашнюю лабораторию Windows Server 2022 и почему

    Можно узнать о функциях последней серверной ОС Microsoft в облачной среде, но есть несколько …


  • Как выполнить резервное копирование и восстановление членства в группе AD

    Вы можете решить некоторые проблемы с Active Directory несколькими щелчками мыши, но все становится сложнее, когда они включают много уровней . ..

SearchCloudComputing


  • 8 ключевых характеристик облачных вычислений

    Компании полагаются на облако для разработки современных приложений. Узнайте об основных функциях, которые отличают облачные вычисления от …


  • Проверьте себя по основам облачных вычислений

    Чтобы понять технологию, лучше всего начать с основ. Пройдите этот краткий тест по облачным вычислениям, чтобы оценить свои знания о …


  • С помощью этого руководства настройте базовый рабочий процесс AWS Batch

    AWS Batch позволяет разработчикам запускать тысячи пакетов в AWS. Следуйте этому руководству, чтобы настроить этот сервис, создать свой собственный…

ПоискХранилище


  • Обещания, потенциальные подводные камни программной флэш-памяти

    Проект с открытым исходным кодом направлен на то, чтобы перевернуть принципы работы архитектуры хранения, но для того, чтобы разработчики увидели потенциальные выгоды, у них будет .


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *