Прямое прикосновение в электроустановках это: . . . ( .1.7.11, .1.7.50)

Содержание

Защита при косвенном прикосновении

Содержание

Меры защиты от прямого прикосновения

1.7.67. Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током, за исключением случаев, специально оговоренных техническими условиями на конкретные изделия. При выполнении изоляции во время монтажа она должна быть испытана в соответствии с требованиями гл.1.8.

В случаях, когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, в том числе в электроустановках напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.

1.7.68. Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.

Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.

Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2X, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.

1.7.69. Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключают преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.

1.7.70. Размещение вне зоны досягаемости для защиты от прямого прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ может быть применено при невозможности выполнения мер, указанных в 1.7.68-1.7.69, или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.

В вертикальном направлении зона досягаемости в электроустановках напряжением до 1 кВ должна составлять 2,5 м от поверхности, на которой находятся люди (рис.1.7.6).

Рис.1.7.6. Зона досягаемости в электроустановках до 1 кВ: S — поверхность, на которой может находиться человек; B — основание поверхности S;

— граница зоны досягаемости токоведущих частей рукой человека, находящегося на поверхности S; 0,75; 1,25; 2,50 м — расстояния от края поверхности S до границы зоны досягаемости.

Указанные размеры даны без учета применения вспомогательных средств (например, инструмента, лестниц, длинных предметов).

1.7.71. Установка барьеров и размещение вне зоны досягаемости допускается только в помещениях, доступных квалифицированному персоналу.

1.7.72. В электропомещениях электроустановок напряжением до 1 кВ не требуется защита от прямого прикосновения при одновременном выполнении следующих условий:

  • эти помещения отчетливо обозначены, и доступ в них возможен только с помощью ключа;
  • обеспечена возможность свободного выхода из помещения без ключа, даже если оно заперто на ключ снаружи;
  • минимальные размеры проходов обслуживания соответствуют гл.4.1.

1.7.78

При выполнении автоматического отключения питания в
электроустановках напряжением до 1 кВ все открытые проводящие части должны быть
присоединены к глухозаземленной нейтрали источника питания, если применена
система TN, и
заземлены, если применены системы IT или TT. При этом характеристики защитных аппаратов
и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось
нормированное время отключения поврежденной цепи защитно-коммутационным
аппаратом в соответствии с номинальным фазным напряжением питающей сети.

В электроустановках, в которых в качестве защитной меры
применено автоматическое отключение питания, должно быть выполнено уравнивание
потенциалов.

Для автоматического отключения питания могут быть применены
защитно-коммутационные аппараты, реагирующие на сверхтоки или на
дифференциальный ток.

Защита от косвенного прикосновения: основные меры защиты с пояснениями

В прошлой статье мы говорили о понятии косвенное прикосновение. Напомню, косвенным называют прикосновение к частям электроустановки, которые не должны быть под напряжением в рабочем режиме, но оказались под напряжением в результате аварийной ситуации.

Примером из быта, может послужить, так называемый, пробой изоляции проводки холодильника на корпус. Касаясь такого корпуса, человек попадает под напряжение с протеканием тока через руку-ногу в пол.

При малых токах, результатом такой аварийной ситуации может стать проблема «холодильник бьет током», а при больших токах, если не выполнена защита от косвенного прикосновения, может быть серьезное поражение электрическим током.

Защита от косвенного прикосновения

Защита от косвенного прикосновения должна применяться во всех электроустановках напряжением 50В (переменное напряжение) и 120В (постоянное напряжение).

Основная задача защиты от косвенного прикосновения это выполнения основного правила зашиты от поражений элеткротоком, вовремя отключить питание опасной цепи, чтобы избежать поражения.

По нормативам ПУЭ изд.7 (раздел1 ,глава 1.7.) и МЭК 60 364_4_41(раздел 413), защитой от косвенного прикосновения являются следующие меры:

1. Автоматическое отключение электрического питания за безопасное время. Это значит, что в цепи, должны быть предусмотрены все меры, чтобы электропитание цепи отключилось автоматически при аварии или опасной ситуации. На практике это установка устройств автоматического отключения (автоматов защиты) и устройств защитного отключения (УЗО).2. Создание систем уравнивания и выравнивания электрических потенциалов токопроводящих приборов и устройств. Иначе, физическое соединение всех частей, которые могут проводить ток, с заземляющей шиной. 3. Использование кабелей и шнуров с двойной или усиленной изоляцией;4. Применение малых (сверх низких) напряжений. Данная мера направлена на намеренное снижение напряжения цепи в целях безопасности. Например, использование понижающих трансформаторов 220/40В на стройплощадках.  Изделия из нержавейки

Следующие меры

5. Защитное разделение электроцепей. Эта мера предполагает, установку разделяющих трансформаторов для цепей в опасных зонах. Например, установка разделяющего трансформатора на электрическую цепь в ванной (мокрой) комнате.

Важная мера защиты

6. Электроустановка и её части должны быть заземлены. Иначе, соединение частей установки, проводящих ток, с потенциалом земли. В качестве заземлителей могут использоваться и применяться искусственные и естественные заземлители.

Схемы заземления выбираются по типу электропитания и обозначаются, как системы заземления:

TN (TN-C, TN-S, TN-C-S) – питание от источника с глухозаземленной нейтралью и с заземлителями присоединенными к нейтрали.

Данные системы заземления исторически наиболее применяемые в России и СНГ. Более подробно обсудим их в следующих статьях. Здесь кратко, система TN предполагает, что электропитание осуществляется от трансформатора, общая точка обмоток которого  заземлена.

Заземление частей самой электроустановки (дома, подъезда, квартиры, производства) осуществляется подсоединением провода заземления к нейтрали трансформатора. В зависимости от фактической точки подсоединения к нейтрали разделяют схемы TN-C, TN-S, TN-C-S.

TT – питание от источника с глухозаземленной нейтралью и с заземлителями не присоединенными к нейтрали;

Данная система не характерна для нашей страны. Однако, находит применение в загородном строительстве индивидуального домостроения.

IT – система заземления питание от источника с изолированной нейтралью.

Данная система заземления, по своей автономности, стоит рядом с системой TT. Во всех документах они так и описываются в паре, отдельно от системы TN.

Стоит отметить, что системы TT и IT более широко распространены на западе, именно по этому, им больше внимание уделяется в МЭК, чем в ПУЭ

Похожие посты:

  • Шкафы распределительные электрические ШР и ШРС, Рубрика Электрощиток
  • Техническое обслуживание высоковольтного оборудования, Рубрика Ремонт электрики
  • Что влияет на стоимость электромонтажных работ, Рубрика Ремонт электрики
  • Какие бывают бензиновые генераторы, Рубрика Строительство
  • Внутренние электросети: устройство и правила монтажа, Рубрика Монтаж электрики
  • Техническое обслуживание силовых трансформаторов, Рубрика Справочник электрика
  • Светодиодные светильники уличного освещения, Рубрика Строительство

 

 

Помогла ли вам статья?

Задать вопрос

Пишите ваши рекомендации и задавайте вопросы в комментариях

【Защитные меры в электроустановках.

Меры защиты от прямого прикосновения 】

войти в систему

Добро пожаловат!Войдите в свой аккаунт

Ваше имя пользователя

Ваш пароль

Вы забыли свой пароль?

восстановление пароля

Восстановите свой пароль

Ваш адрес электронной почты

Студентам

Содержание:

Основная изоляция токоведущих частей

Основная изоляция является важнейшим элементом электроустановок, определяющим надежность работы и безопасность людей. Изоляция токоведущих частей имеет основную функцию – препятствовать прохождению электрического тока нежелательными путями. В то же время она зачастую обеспечивает защиту от случайного (прямого) прикосновения к токоведущим частям. Это касается в первую очередь проводов и кабелей, прокладываемых в жилых, общественных и производственных зданиях, а также различного рода устройств и аппаратов, применяемых в осветительных сетях и электроприборах (штепсельных розеток, выключателей, предохранителей, патронов для ламп и т. п.).

Основная изоляция токоведущих частей в электрооборудовании до 1 кВ должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она подвергается в процессе эксплуатации. Удаление основной изоляции, как правило, должно быть, возможно, только путём её разрушения.

Состояние изоляции характеризуется её электрической прочностью, диэлектрическими потерями и электрическим сопротивлением.

Электрическая прочность изоляции определяется испытанием её на пробой повышенным (против рабочего) напряжением, диэлектрические потери – специальными испытаниями, а сопротивление – измерениями с помощью специальных приборов (например: мегаомметром).

Состояние изоляции проверяется перед вводом в эксплуатацию и после ремонта электроустановки, а также периодически в межремонтные периоды.

Существует и так называемый непрерывный (постоянный) контроль за состоянием изоляции электрооборудования, находящегося под рабочим напряжением. Как правило, непрерывный контроль сопротивления изоляции осуществляется в электроустановках до 1 кВ с изолированной нейтралью.

Периодичность и объёмы профилактических испытаний изоляции электрооборудования определяются специальными Правилами – «Объёмами и нормами испытания электрооборудования».

Ограждения и оболочки

К ограждениям и оболочкам относятся защитные устройства, предназначенные для предотвращения прикосновения и приближения людей к токоведущим частям, находящимся под напряжением.

Ограждение токоведущих частей, как правило, предусматривается конструкцией электрооборудования.

Электрические машины, аппараты и приборы имеют корпуса, кожухи и оболочки, надёжно защищающие токоведущие части от прямого (случайного) прикосновения.

Голые провода и шины, а также приборы, аппараты, распределительные щиты, клеммники и т.п. конструктивно имеющие незащищенные и доступные прикосновению токоведущие части помещают в специальные шкафы, камеры, ящики, закрывающиеся сплошными или сетчатыми ограждениями.

Сплошные ограждения обязательны для электроустановок, размещённых в местах, где могут находиться люди, не связанные с обслуживанием электроустановок – в бытовых, общественных и производственных (не электротехнических помещениях).

Сетчатые ограждения применяются в электроустановках доступных только квалифицированному электротехническому персоналу. В закрытых электроустановках ограждения должны иметь высоту не менее 1,7 м, а в открытых – не менее 2,0 м.

Барьеры

Барьеры предназначены для защиты персонала от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ. При обходе барьера не исключается преднамеренное или случайное прикосновение и приближение человека к токоведущим частям.

Для удаления барьеров не требуется применять ключи и инструменты; однако барьеры должны закрепляться так, чтобы их невозможно было снять непреднамеренно. Как правило, барьеры выполняются из изолирующего материала.

Размещение вне зоны досягаемости

Размещение электрооборудования и открытых токоведущих частей вне зоны досягаемости, применяется для защиты людей от прямого прикосновения к токоведущим частям в электроустановках до 1 кВ или приближения к ним на опасное расстояние в электроустановках выше 1 кВ, выполняется в случаях, когда невозможно применить ограждения, оболочки и барьеры.

При этом расстояние между доступными одновременному прикосновению токоведущими частями в электроустановках до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не должно быть частей, имеющих разные потенциалы и доступных одновременному прикосновению.

В вертикальном направлении зона досягаемости в электроустановках напряжением до 1 кВ должна составлять 2,5 м от поверхности, на которой находится человек.

Указанные размеры приведены без учета применения вспомогательных средств (инструмента, приспособлений, лестниц).

Установка барьеров и размещение открытых токоведущих частей в электроустановках допускается только в помещениях доступных квалифицированному (электротехническому) персоналу. Эти помещения отчетливо обозначены, и доступ в них возможен только с помощью ключа, даже если они заперты на ключ снаружи.

Применение сверхнизкого (малого) напряжения для защиты от прямого и косвенного прикосновений

При выполнении работ с применением переносных ручных электрифицированных инструментов (дрели, рубанка, гайковёрта и т. п.), а также при пользовании ручными переносными светильниками человек имеет длительный контакт с корпусами этого электрооборудования. В результате резко повышается опасность поражения электрическим током в случае повреждения изоляции и появления напряжения на корпусе, особенно в случаях, когда работа производится в помещениях с повышенной опасностью, особо опасных или вне помещений.

Наиболее эффективной мерой устраняющей эту опасность является применением для питания ручного электрифицированного инструмента и переносных светильников сверхнизкого (малого) напряжения.

Сверхнизкое (малое) напряжение (СНН) – напряжение, не превышающее 50 В переменного и 120 В постоянного тока.

Малое напряжение в электроустановках до 1 кВ применяется для защиты от поражения электрическим током при прямом или косвенном прикосновениях в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания.

Малые напряжения применяются для питания ручного электрифицированного инструмента и переносных ламп (светильников) в любых помещениях, а также вне помещений. Кроме того, они применяются в помещениях с повышенной опасностью и особо опасных для питания светильников местного стационарного освещения, если они размещены над полом на высоте не менее 2,5 м.

В качестве источников питания цепей СНН применяется безопасный разделительный трансформатор или другой источник СНН, обеспечивающий равноценную степень опасности (батареи гальванических элементов, аккумуляторов, выпрямительные, преобразовательные установки, понижающие трансформаторы).

Безопасный разделительный трансформатор – разделительный трансформатор, предназначенный для питания цепей сверхнизким напряжением (первичная обмотка которого отделена от вторичной обмотки при помощи защитного электрического разделения цепей).

Цепи СНН, как правило, прокладываются отдельно от цепей более высоких напряжений и защитных проводников, либо отделяются от них заземленным металлическим экраном (оболочкой), либо заключаются в оболочку, дополнительно к основной изоляции.

Вилки и розетки штепсельных соединений в цепях СНН отличаются от вилок и розеток других напряжений. Штепсельные розетки должны быть без защитного контакта.

При значениях СНН выше 25 В переменного и 60 В постоянного тока дополнительно к применению разделения цепей должна также быть выполнена защита от прямого прикосновения при помощи ограждений или оболочек или изоляции с испытательным напряжением 500 В переменного тока в течение 1 мин.

При применении СНН в сочетании с электрическим разделением цепей – открытые проводящие части СНН не должны быть преднамеренно присоединяться к заземлителю, защитным проводникам или к открытым проводящим частям других цепей.

При применении СНН в сочетании с автоматическим отключением питания один из выводов источника малого напряжения и его корпус должны быть присоединены к защитному проводнику цепи, питающей источник.

Схемы применения СНН приведены на рис.4.6.

Рис.4.6 Применение СНН в сочетании с электрическим разделением цепей (а) и в сочетании с автоматическим отключением питания. Тр — однофазный разделительный понижающий трансформатор АВ — автоматический выключатель УЗО — устройство защитного отключения

Партнеры проекта — в помощь студентам

Предоставление практической помощи в написании студентам, работающим над курсовыми, рефератами и дипломными работами. Поисковая помощь, редактирование, корректура, форматирование, проверка на плагиат.

Перейти к верхней панели

Прямой и непрямой контакт – защита от поражения электрическим током

Прямой контакт — это любой контакт с системой, находящейся под напряжением, который, как нам известно, опасен. Косвенный контакт относится к контакту с корпусом устройства или, иногда, даже с другим соседним устройством, которое должно быть безопасным, но перестает быть таковым в результате неисправности. Контакт может привести к поражению электрическим током, но что именно?

Характер поражения электрическим током

Нервная система человека контролирует все движения мышц, как произвольные, так и непроизвольные. Нервная система передает электрические сигналы между мозгом и мышцами, которые, таким образом, стимулируются к сокращению. Сигналы электрохимические по своей природе, с величиной напряжения всего в несколько милливольт. Таким образом, когда человеческое тело подключено к гораздо более мощной внешней цепи, его нормальные функции подавляются этими внешними сигналами. Принудительный ток, протекающий через нервную систему организма, называется «электрическим ударом», который может представлять смертельную опасность.

Все мышцы получают гораздо более сильные сигналы, чем они обычно получают в физиологических условиях, и в результате сокращаются гораздо сильнее. Это вызывает неконтролируемые движения и боль. Даже реакции человека, находящегося в сознании, обычно недостаточно для предотвращения последствий шока. Это потому, что сигналы от мозга, пытающегося уравновесить ударные токи, теряются в силе наложенных сигналов.

Хорошим примером является шоковый эффект «не отпускай». Когда человек прикасается к проводнику, который посылает ударные токи через его руку, мышцы реагируют, смыкая пальцы на проводнике таким образом, что он в конечном итоге крепко сжимается. В этой ситуации человек не может отпустить провод и разорвать цепь.

Последствия поражения электрическим током сильно различаются в зависимости от силы тока, протекающего через нервную систему, и пути, пройденного через тело. Тема очень сложная, но мы знаем, что вред для организма зависит от двух факторов:

  • величина тока, протекающего через тело, и
  • время экспозиции.

Тело человека состоит в основном из воды и имеет очень низкое сопротивление. Однако кожа обладает очень высоким сопротивлением, которое зависит от многих факторов — от возможного присутствия воды (или пота) до ожогов кожи. Таким образом, наибольшее сопротивление оказывается в местах входа и выхода тока из организма через кожу. Человек с жесткой и сухой от природы кожей обладает гораздо большей устойчивостью к ударному току, чем человек с мягкой и влажной кожей. Сопротивление кожи резко снижается, если она была обожжена из-за присутствия электропроводящих углеродных частиц.

На самом деле ток ограничен импедансом человеческого тела, т. е. его емкостью и сопротивлением. Импеданс трудно предсказать, так как он зависит от многих факторов, в том числе от приложенного напряжения, уровня тока и времени воздействия, площади контакта с цепью под напряжением, силы прижатия кожи к проводнику, состояния кожа, температура окружающей среды и тела и т.д.

Обратите внимание, что схема очень приблизительная. Поток тока через тело, например, вызывает потоотделение жертвы, что быстро снижает сопротивление кожи после начала удара током. К счастью, люди, пользующиеся электроустановками, редко ходят босиком, поэтому электрическое сопротивление обуви и напольных покрытий часто увеличивает общее сопротивление пути удара и снижает ударный ток до более безопасного уровня.

Имеется очень мало достоверных данных о воздействии ударных токов, поскольку они варьируются от человека к человеку и даже для конкретного человека с течением времени. Однако мы знаем, что ток силой более одного миллиампера в организме вызывает ощущение удара. Сто миллиампер, вероятно, быстро станут смертельными, особенно если такой ток протекает через сердце.

Если шок продолжится, его последствия могут оказаться еще более опасными. Например, импульсный ток 500 мА может не иметь долговременных последствий, если он длится менее 20 мс, но 50 мА в течение 10 с может привести к летальному исходу. Последствия шока могут быть разными, но наиболее опасным исходом является фибрилляция желудочков (нарушение последовательности сердечных сокращений) и сужение грудной клетки, приводящее к остановке дыхания.

Первым условием для поражения электрическим током является контакт с проводником, находящимся под напряжением. Контакт подразделяется на два типа.

Прямой контакт

Поражение электрическим током происходит в результате контакта с проводником, т. е. с проводником под напряжением, являющимся частью цепи. Пример: кто-то снимает крышку с электрического выключателя и касается проводов внутри. Также это может произойти в результате повреждения изоляции проводов. В этом случае системы защиты от перенапряжения не обеспечивают никакой защиты, но ее может обеспечить УЗО с током срабатывания до 30 мА.

Шнуры питания в TME

Защита от прямого прикосновения

Средства защиты от прямого прикосновения в основном предназначены для сведения к минимуму возможности прикосновения к проводам под напряжением. К этим мерам безопасности относятся:

  1. Изоляция частей под напряжением – это стандартная процедура. Провода часто имеют двойную изоляцию, а изоляцию дополнительно усиливают для повышения устойчивости к перепадам температуры или изгибам.
  2. Обеспечение физических барьеров или кожухов, защищающих от прикосновения (IP2X) – при наличии горизонтальных поверхностей применяется защита IP4X (за исключением твердых тел шириной более 1 мм).
  3. Размещение провода вне досягаемости или создание барьеров, препятствующих доступу людей к частям, находящимся под напряжением (находящимся под напряжением). Для этого используются различные виды ограждений, шкафов или страховочных сеток.
  4. УЗО

  5. обеспечивают дополнительную защиту, но только при контакте токоведущей (находящейся под напряжением) части с заземленной частью.

Что такое непрямой контакт – электротехника

Поражение электрическим током от непрямого контакта происходит, когда объект, который не должен находиться под напряжением, становится таким, например, как из-за неисправности (повреждения изоляции) или неисправности электропроводки. Таким образом, контакт с внешними корпусами, монтажными/фиксирующими деталями или переключателями может представлять опасность. Люди, подвергающиеся наибольшему риску такого удара, — электротехники и инженеры.

Защита от косвенного контакта

Существуют три меры безопасности, обеспечивающие защиту от поражения электрическим током при контакте с проводником или компонентом, который не должен находиться под напряжением в нормальных условиях: лимит времени. На практике это включает уменьшение импеданса контура замыкания на землю.

  • Использование УЗО, отключающего электропитание в случае остаточного тока (утечки).
  • УЗО на TME

    3.Использование локального дополнительного эквипотенциального соединения для обеспечения того, чтобы сопротивление между частями, к которым можно прикасаться одновременно, было настолько низким, что между ними не может возникнуть опасная разность потенциалов. Обратите внимание, что хотя такие меры предосторожности устраняют опасность непрямого контакта, все же необходимо убедиться, что источник питания отключен, чтобы обеспечить защиту от других неисправностей, таких как перегрев.

    1. Иногда опасное напряжение можно поддерживать, если использовать источник бесперебойного питания (ИБП) или резервный генератор с автоматическим запуском.

    Одновременная защита от прямого и непрямого контакта

    Чаще всего для всех установок используются меры защиты как от прямого, так и от прямого контакта. Кроме того, также применяются многие нетехнические меры, например. добросовестное образование в области охраны труда. Здравый смысл и подход «безопасность превыше всего» могут в значительной степени свести к минимуму риск поражения электрическим током. При работе с электрическими установками не забывайте использовать должным образом изолированные инструменты и средства защиты, которые сводят к минимуму риск несчастных случаев, такие как предохранители Panduit, входящие в наше предложение.

    Вы интересуетесь электроникой? Посетите Tech Master Event

    Если вы новичок в мире электроники и делаете свои первые схемы, Tech Master Event — это веб-сайт, который вам нужен! Платформа предназначена для того, чтобы вы могли публиковать свои собственные проекты и черпать вдохновение в работах других пользователей.

    Tech Master Event также является местом проведения множества конкурсов для молодых инженеров-электронщиков со всего мира.

    Посетите мероприятие Tech Master Event

    Поделитесь этой статьей

    Раздел 7: Электробезопасность | Охрана окружающей среды и безопасность

    Baylor>Библиотеки Moody/Jones>Учебное пособие по технике безопасности> Раздел 7: Электробезопасность

      ► Предотвращение поражения электрическим током

      ► Безопасные методы работы


    Основными опасностями, связанными с электричеством, являются поражение электрическим током и пожар. Поражение электрическим током происходит, когда тело становится частью электрической цепи, либо когда человек соприкасается с обоими проводами электрической цепи, одним проводом цепи под напряжением и землей, либо с металлической частью, которая оказалась под напряжением в результате контакта с электрический проводник.

    Тяжесть и последствия поражения электрическим током зависят от ряда факторов, таких как путь прохождения через тело, сила тока, продолжительность воздействия, а также от того, влажная или сухая кожа. Вода является отличным проводником электричества, позволяя току легче течь во влажных условиях и через мокрую кожу. Эффект шока может варьироваться от легкого покалывания до сильных ожогов и остановки сердца. На приведенной ниже диаграмме показана общая взаимосвязь между степенью травмы и силой тока для 60-циклового пути от руки к ноге при продолжительности разряда в одну секунду. Читая эту таблицу, имейте в виду, что большинство электрических цепей в нормальных условиях могут обеспечить ток до 20 000 мА.

    Текущий
    Реакция
    1 Миллиампер Уровень восприятия
    5 миллиампер Легкий ударопрочный войлок; не больно, но тревожно
    6-30 миллиампер Болевой шок; диапазон отпускания
    50-150 миллиампер Сильная боль, остановка дыхания, сильное мышечное сокращение
    1000-4300 миллиампер Фибрилляция желудочков
    10 000+ миллиампер Остановка сердца, тяжелые ожоги и вероятная смерть

    Предотвращение поражения электрическим током

    Существуют различные способы защиты людей от опасностей, связанных с электричеством, включая изоляцию, ограждение, заземление и электрозащитные устройства. Рабочие могут значительно снизить опасность поражения электрическим током, соблюдая некоторые основные меры предосторожности:

    • Проверяйте проводку оборудования перед каждым использованием. Немедленно замените поврежденные или изношенные электрические шнуры.
    • Используйте безопасные методы работы при каждом использовании электрического оборудования.
    • Знайте местонахождение и как управлять выключателями и/или панелями автоматических выключателей. Используйте эти устройства для отключения оборудования в случае пожара или поражения электрическим током.
    • Ограничьте использование удлинителей. Используйте только для временных операций.
    • Используйте только адаптеры с несколькими вилками, оснащенные автоматическими выключателями или предохранителями.
    • Сведите к минимуму возможность разлива воды или химикатов на электрическое оборудование или рядом с ним.

    Изоляция

    Все электрические шнуры должны иметь достаточную изоляцию для предотвращения прямого контакта с проводами. Особенно важно проверять все шнуры перед каждым использованием, так как агрессивные химикаты или пары растворителей могут разрушить изоляцию.

    Поврежденные шнуры следует немедленно отремонтировать или вывести из эксплуатации, особенно во влажной среде.

    Заземление

    Следует использовать только оборудование с трехштырьковыми вилками. Третий штырь обеспечивает путь к земле, что помогает предотвратить накопление напряжения, которое может привести к поражению электрическим током или искре. Это не гарантирует, что никто не получит удар током, не будет ранен или убит. Однако это значительно снизит вероятность таких происшествий, особенно в сочетании с другими мерами безопасности.

    Устройства защиты цепи

    Устройства защиты цепи предназначены для автоматического ограничения или отключения подачи электроэнергии в случае замыкания на землю, перегрузки или короткого замыкания в системе электропроводки. Плавкие предохранители, автоматические выключатели и прерыватели цепи замыкания на землю являются тремя хорошо известными примерами таких устройств.

    Предохранители и автоматические выключатели предотвращают перегрев проводов и компонентов, который в противном случае может представлять опасность для операторов. Они отключают

    цепь, когда она становится перегруженной.

    Прерыватель цепи замыкания на землю, или GFCI, предназначен для отключения электроэнергии при обнаружении замыкания на землю. GFCI особенно полезен рядом с раковинами и влажными местами.


    Безопасные методы работы

    Следующие действия могут снизить риск травм или возгорания при работе с электрическим оборудованием:

    • При работе с подключенным к сети оборудованием руки должны быть сухими. Если это небезопасно, работайте только одной рукой, держа другую руку сбоку или в кармане, подальше от всех токопроводящих материалов.
    • Если вода или химикат пролиты на оборудование, отключите питание с помощью главного выключателя или автоматического выключателя и отключите оборудование от сети.
    • Если человек вступает в контакт с проводником под напряжением, не прикасайтесь к оборудованию, шнуру или человеку.

    Опубликовано

    в

    от

    Метки:

    Комментарии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *