Проводят электрический ток: «Что проводит электрический ток?» — Яндекс Кью

Российские ученые выяснили, почему «жидкие соли» проводят ток

https://ria.ru/20190610/1555447481.html

Российские ученые выяснили, почему «жидкие соли» проводят ток

Российские ученые выяснили, почему «жидкие соли» проводят ток — РИА Новости, 10.06.2019

Российские ученые выяснили, почему «жидкие соли» проводят ток

Ученые из «Сколтеха» и зарубежных научных центров выяснили, как так называемые ионные жидкости, жидкие соли, могут проводить электрический ток. Их выводы и… РИА Новости, 10.06.2019

2019-06-10T15:20

2019-06-10T15:20

2019-06-10T15:20

наука

москва

открытия — риа наука

сколковский институт науки и технологий

химия

физика

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21.img.ria.ru/images/150834/40/1508344063_0:3:1036:586_1920x0_80_0_0_c87168730dc7aa80130e729bd5a39cf8.jpg

МОСКВА, 10 июн – РИА Новости. Ученые из «Сколтеха» и зарубежных научных центров выяснили, как так называемые ионные жидкости, жидкие соли, могут проводить электрический ток. Их выводы и возможные применения подобных соединений были представлены в журнале Physical Review X.Ионные жидкости, по сути, представляют собой жидкие соли. В то время как их обычные «кузены», такие как вода или бензин, состоят из электрически нейтральных молекул, молекулы ионных жидкостей несут электрические заряды.Неорганические соли переходят в подобное состояние только при высоких температурах, однако в последние годы химики открыли сразу несколько сложных органических веществ с подобным устройством, которые остаются жидкими при комнатной температуре. Ионные жидкости обладают массой интересных свойств, которые позволят в будущем использовать их для создания нетоксичных, но при этом жидких проводников, экзотических растворителей, суперконденсаторов и различных компонентов электроники и электрических сетей, в том числе движущихся частей роботов.Проблема, как отмечает Бриллиантов, заключается в том, что ученые до сих пор не до конца понимают и спорят о том, как именно ионные жидкости проводят ток. Дело в том, что подобные соединения должны содержать в себе равное число положительно и отрицательно заряженных ионов, нейтрализующих друг друга при сближении.Иными словами, свободных носителей заряда в подобной жидкости не должно быть и она должна быть изолятором, а не проводником, однако в реальности наблюдается совершенно обратная картина. Российские физики и их зарубежные коллеги, как сообщает пресс-служба «Сколтеха», нашли объяснение этому, создав математическую модель «жидкой соли».Как оказалось, механизм электропроводности в таких жидкостях весьма необычен. Большую часть времени ионы внутри них действительно проводят в нейтральном состоянии, объединяясь в пары с носителями противоположного заряда или в более крупные структуры.С другой стороны, как показали расчеты ученых, почти незаметные тепловые флуктуации, неизбежно возникающие в разных частях жидкости, заставляют подобные структуры распадаться на очень короткое время и потом заново соединяться.В результате этого, электричество движется через «жидкие соли», подобно атлетам, участвующим в своеобразном многоборье. Пока ионы находятся в свободном состоянии, они поддерживают электрический ток, а затем «передают эстафету» следующей партии частиц. Нечто похожее, как отмечают ученые, происходит в полупроводниках, через которые электричество движется благодаря взаимодействию «дырок» и электронов.С другой стороны, как отмечает Бриллиантов, эта идея не может объяснить всех парадоксов ионных жидкостей. Дело в том, что число свободных ионов, которые фиксируются внутри жидких солей во время экспериментов с ними, значительно ниже, чем предсказывает данная теория. Почему это так, ученым еще предстоит выяснить.

https://ria.ru/20190418/1552813187.html

https://ria.ru/20190530/1555114436.html

москва

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2019

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

1920

1080

true

1920

1440

true

https://cdnn21.img.ria.ru/images/150834/40/1508344063_127:0:911:588_1920x0_80_0_0_89b069094b73f65c85a42e2b260520d8.jpg

1920

1920

true

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

1

5

4.7

96

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

москва, открытия — риа наука, сколковский институт науки и технологий, химия, физика

Наука, Москва, Открытия — РИА Наука, Сколковский институт науки и технологий, Химия, Физика

МОСКВА, 10 июн – РИА Новости. Ученые из «Сколтеха» и зарубежных научных центров выяснили, как так называемые ионные жидкости, жидкие соли, могут проводить электрический ток. Их выводы и возможные применения подобных соединений были представлены в журнале Physical Review X.

«Мы с коллегами ожидаем, что явления, наблюдаемые в полупроводниках, будут обнаружены в ионных жидкостях комнатной температуры. Нам кажется, что они найдут множество важных применений», — заявил Николай Бриллиантов, профессор Сколковского института науки и технологий.

Ионные жидкости, по сути, представляют собой жидкие соли. В то время как их обычные «кузены», такие как вода или бензин, состоят из электрически нейтральных молекул, молекулы ионных жидкостей несут электрические заряды.

Неорганические соли переходят в подобное состояние только при высоких температурах, однако в последние годы химики открыли сразу несколько сложных органических веществ с подобным устройством, которые остаются жидкими при комнатной температуре.

18 апреля 2019, 14:24Наука

Российские физики подобрали идеальный материал для создания лазеров

Ионные жидкости обладают массой интересных свойств, которые позволят в будущем использовать их для создания нетоксичных, но при этом жидких проводников, экзотических растворителей, суперконденсаторов и различных компонентов электроники и электрических сетей, в том числе движущихся частей роботов.

Проблема, как отмечает Бриллиантов, заключается в том, что ученые до сих пор не до конца понимают и спорят о том, как именно ионные жидкости проводят ток. Дело в том, что подобные соединения должны содержать в себе равное число положительно и отрицательно заряженных ионов, нейтрализующих друг друга при сближении.

Иными словами, свободных носителей заряда в подобной жидкости не должно быть и она должна быть изолятором, а не проводником, однако в реальности наблюдается совершенно обратная картина. Российские физики и их зарубежные коллеги, как сообщает пресс-служба «Сколтеха», нашли объяснение этому, создав математическую модель «жидкой соли».

Как оказалось, механизм электропроводности в таких жидкостях весьма необычен. Большую часть времени ионы внутри них действительно проводят в нейтральном состоянии, объединяясь в пары с носителями противоположного заряда или в более крупные структуры.

С другой стороны, как показали расчеты ученых, почти незаметные тепловые флуктуации, неизбежно возникающие в разных частях жидкости, заставляют подобные структуры распадаться на очень короткое время и потом заново соединяться.

30 мая 2019, 16:40Наука

Ученые из МФТИ превратили кинескоп телевизора в «вечную» лампочку

В результате этого, электричество движется через «жидкие соли», подобно атлетам, участвующим в своеобразном многоборье. Пока ионы находятся в свободном состоянии, они поддерживают электрический ток, а затем «передают эстафету» следующей партии частиц. Нечто похожее, как отмечают ученые, происходит в полупроводниках, через которые электричество движется благодаря взаимодействию «дырок» и электронов.

С другой стороны, как отмечает Бриллиантов, эта идея не может объяснить всех парадоксов ионных жидкостей. Дело в том, что число свободных ионов, которые фиксируются внутри жидких солей во время экспериментов с ними, значительно ниже, чем предсказывает данная теория. Почему это так, ученым еще предстоит выяснить.

Электробезопасность

ИНФОРМАЦИОННАЯ СПРАВКА

об опасности электрического тока

Электричество прочно вошло в наш быт. Мы уже не можем представить жизнь без электрических приборов, аппаратов и механизмов, значительно облегчающих труд, создающих удобства для населения. Нет такого дома, где не было бы осветительных и бытовых электроприборов — холодильника, телевизора, стиральной машины, пылесоса, утюга, электроплиты и т. д.

При нормальной работе и правильной эксплуатации электрических приборов, аппаратов и механизмов они безопасны. Но электрическая энергия таит в себе смертельную опасность для жизни, если нарушаются правила её использования. Опасность усугубляется тем, что при пользовании электрическим оборудованием на угрозу опасности органы чувств человека не реагируют. Если вид приближающегося транспорта, запах газа, вращающиеся части машины обычно вынуждают нас принять необходимые меры предосторожности, то для обнаружения на расстоянии электрического тока у человека нет специального органа чувств.

ОПАСНОСТЬ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА

Тело человека является проводником электрического тока. Электрический ток имеет существенные особенности, отличающие его от других вредных и опасных производственных факторов.

Первая особенность электрического тока в том, что он не обладает цветом, запахом, звуком, а поэтому человек не может с помощью собственных органов чувств определить наличие электрического тока.

Вторая особенность электрического тока в том, что получить электротравму можно без непосредственного контакта с токоведущими частями (например, при перемещении по земле, токопроводящему полу) вблизи поврежденной электроустановки, электроприемника (в случае замыкания на землю, пол), а также через электрическую дугу, разряд молнии.

Третья особенность электрического тока в том, что проходя через тело человека, электрический ток оказывает свое действие не только в местах контактов и на пути прохождения через организм, но и вызывает рефлекторное воздействие, нарушая нормальную деятельность отдельных органов и систем организма человека (нервной, сердечно-сосудистой, органов дыхания и др. ).

Электрический ток, проходя через организм человека, оказывает биологическое, электрохимическое, тепловое и механическое действие.

ЭЛЕКТРИЧЕСКИЙ ТОК ПОРАЖАЕТ ВНЕЗАПНО. Здесь угроза дает о себе знать только после того, как человек оказался под воздействием электрического тока. Пренебрежение правилами безопасности при пользовании электрическими приборами, аппаратами и механизмами приводит к несчастным случаям.

Воздействия тока на организм человека, при поражении, можно разделить на следующие пять степеней:

I — судорожное, едва ощутимое сокращение мышц;

II — судорожное сокращение мышц, сопровождающееся сильными болями, без потери сознания;

III — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;

IV — потеря сознания и нарушение сердечной деятельности и дыхания;

V — отсутствие дыхания и остановка деятельности сердца (клиническая смерть).

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СТЕПЕНЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Тяжесть поражения электрическим током зависит от ряда факторов: величины силы, вида (рода) и частоты электрического тока, длительности его воздействия и пути прохождения через человека, условий окружающей среды, электрического сопротивления тела человека и его индивидуальных свойств.

Сила тока

Для характеристики воздействия электрического тока на человека установлены три критерия:

— пороговый ощутимый ток — наименьшее значение силы электрического тока, вызывающего при прохождении через организм человека ощутимые раздражения. Человек начинает ощущать ток малого значения (0,6-1,5 мА при переменном токе с частотой 50 Гц и 5-7 мА при постоянном токе) — происходит легкое дрожание рук;

— пороговый неотпускающий ток — наименьшее значение силы электрического тока (10-15 мА при частоте 50 Гц и 50-80 мА при постоянном токе), при котором человек не в состоянии преодолеть судороги мышц и не может разжать руку, в которой зажат проводник, или нарушить контакт с токоведущей частью;

— пороговый фибрилляционный ток — наименьшее значение силы тока (от 100 мА до 5 А при частоте 50 Гц и от 300 мА до 5 А при постоянном токе), вызывающего при прохождении через тело человека фибрилляцию сердца — хаотические и разновременные сокращения волокон сердечной мышцы, что может привести к его остановке

Принято считать, что электрический ток величиной 100 мА и выше является смертельным.

Вид тока

Предельно допустимое значение постоянного тока в 3-4 раза выше допустимого значения переменного, но только при напряжении не выше 260-300 В. При больших величинах напряжения постоянный ток более опасен для человека вследствие его электролитического действия; он также воздействует на сердечную деятельность человека.

Частота электрического тока

Принятая в энергетике частота электрического тока (50 Гц) представляет большую опасность возникновения судорог и фибрилляции желудочков сердца. Фибрилляция не является мускульной реакцией, она вызывается повторяющейся стимуляцией с максимальной чувствительностью при частоте 10 Гц. Кроме того, на производстве используется электрический ток других (не 50 Гц) частот. Опасность действия тока снижается с увеличением частоты, но это не значит, что ток частотой 500 Гц менее опасен, чем 50 Гц.

Продолжительность действия тока

Тяжесть поражения зависит от продолжительности действия электрического тока. Время прохождения электрического тока имеет решающее значение для определения степени поражения.

При длительном действии электрического тока снижается сопротивление кожи (из-за потовыделения) в местах контактов и внутренних органов вследствие электротехнических процессов, повышается вероятность прохождения тока в особенно опасный период сердечного цикла (фаза Т расслабления сердечной мышцы). Человек может выдержать смертельно опасный переменный ток 100 мА, если продолжительность действия тока не превысит 0,5 с.

Путь электрического тока через тело человека

Важнейшим условием поражения человека электрическим током является путь этого тока. Если на пути тока оказываются жизненно важные органы (сердце, легкие, головной мозг), то опасность смертельного поражения очень велика. Если же ток проходит иными путями, то воздействие его на жизненно важные органы может быть лишь рефлекторным. При этом опасность смертельного поражения хотя и сохраняется, но вероятность ее резко снижается.

Возможных путей прохождения тока в теле человека большое количество. Однако характерными можно считать следующие:

рука — рука;

рука — нога;

нога — нога;

голова — рука;

голова — нога.

Наиболее опасными являются петли «голова — рука» и «голова — нога», когда ток может проходить не только через сердце, но и через головной и спинной мозг.

Электропроводность различных тканей организма неодинакова. Наибольшую электропроводность имеют спинномозговая жидкость, сыворотка крови и лимфа, затем — цельная кровь и мышечная ткань. Плохо проводят электрический ток внутренние органы, имеющие плотную белковую основу, вещество мозга и жировая ткань. Наибольшим сопротивлением обладает кожа и, главным образом, ее верхний слой (эпидермис).

Сопротивление тела человека зависит от пола возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей меньше, чем у взрослых. Это объясняется толщиной и степенью огрубления верхнего слоя кожи.

Участки тела с наименьшим сопротивлением (т. е. более уязвимые):

— боковые поверхности шеи, виски;

— тыльная сторона ладони, поверхность ладони между большим и указательным пальцами;

— рука на участке выше кисти:

— плечо, спина;

— передняя часть ноги:

— акупунктурные точки, расположенные в разных местах тела.

ОБЩИЕ ТРЕБОВАНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ

Для обеспечения сохранности, создания нормальных условий эксплуатации электроустановок и предотвращения несчастных случаев отводятся земельные участки, устанавливаются охранные зоны, минимально допустимые расстояния от электрических сетей до зданий, сооружений, земной и водной поверхностей, прокладываются просеки в лесных массивах и зеленых насаждениях.

Для предупреждения людей об опасности на наружных частях электроустановок укрепляются (или наносятся краской) следующие предостерегающие плакаты:

ЭЛЕКТРОБЕЗОПАСНОСТЬ ВНЕ ПОМЕЩЕНИЙ

Необходимо помнить

Угрозу жизни представляют не только свисающие или оборванные провода линий электропередачи, но и провода линий связи, которые могут соприкасаться (схлестываться) с проводами воздушных линий электропередачи.

По данным статистики примерно треть всех случаев электротравматизма, в том числе со смертельным исходом, происходит из-за соприкосновения людей с воздушными линиями электропередач и токоведущим частям, находящимися под напряжением в трансформаторных подстанциях.

Большую опасность представляют провода воздушных линий электропередачи, расположенных в кроне деревьев. После бурь, сильных гроз, после гололеда, провода также часто провисают и могут подвергаться обрывам.

НЕОБХОДИМО ЗНАТЬ, что смертельно опасно не только касаться, но и подходить ближе, чем на 8 метров к лежащему на земле оборванному проводу линии электропередачи. При выполнении работ в лабораториях, физических кабинетах и мастерских необходимо строго выполнять инструкции по технике безопасности и указания преподавателя.

НЕЛЬЗЯ ВКЛЮЧАТЬ в сеть и пользоваться на открытом воздухе стиральными машинами, радиоприёмниками, магнитофонами, магнитофонами и другими электроприборами, так как земля — хороший проводник электричества и при каких-либо неисправностях прибора можно оказаться под действием электрического тока.

СЛЕДУЕТ ЗНАТЬ, что бытовые приборы и переносные светильники напряжением 220 вольт предназначены только для использования в помещениях с токонепроводящими полами (сухими деревянными) и вдали от металлических труб и конструкций, имеющих связь с землёй. Поэтому в ванных комнатах, туалетах., помещениях с земляными и бетонными полами, на балконах опасно пользоваться плитками, каминами, переносными электроинструментам и, утюгами, электрочайниками, торшерами, настольными лампами;

нельзя касаться одновременно электроприборов и каких-либо трубопроводов, батарей отопления, металлических конструкций, соединенных с землёй.

НЕ РЕКОМЕНДУЕТСЯ использовать электропровода всех видов, а также проволоку для сушки белья, так как на проволоку или провод может случайно попасть напряжение (например, от неисправной воздушной линии).

Нельзя что-либо вешать на электропроводку, закрашивать и забеливать шнуры и провода, заклеивать их бумагой, обоями, закреплять провода гвоздями- это может привести к нарушению изоляции.

ЗАПРЕЩАЕТСЯ пользование приборами с поврежденной изоляцией. Не допускается соприкосновение электропроводов с телефонными и радиотрансляционными проводами, радио и телеантеннами, ветками деревьев и кровля ми строений.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ

— Играть вблизи воздушных линий электропередачи и подстанций;

— Делать набросы на провода воздушных линий, запускать вблизи них воздушного змея;

— Влезать на опоры воздушных линий и мачтовых подстанций;

— Проникать за ограждения и внутрь подстанций;

— Открывать дверцы электрических щитов:

— Вскрывать крышки на опорах освещения;

— Залезать на крыши домов, а также на деревья, если вблизи проходят линии электропередачи:

— Прикасаться к любым провисшим или оборванным проводам, подходить ближе, чем на 8-10 метров к лежащим на земле оборванным проводам воздушных линий электропередачи;

— Разводить костры под проводами линий электропередач, проникать в технические подвалы жилых домов, где находятся провода и коммуникации.

ЭЛЕКТРОБЕЗОПАСНОСТЬ В ПОМЕЩЕНИИ

Необходимо помнить

В домах со скрытой электропроводкой; в том числе и в панельных домах, запрещается в произвольных местах вбивать гвозди, дюбеля, пробивать отверстия и борозды, так как это может привести к повреждению скрытой электропроводки и поражению электрическим током.

Осветительную арматуру, светильники, люстры можно очищать от пыли и грязи только при выключенном выключателе (при этом кроме отключения выключателя желательно отключить автоматы или вывернуть пробочные предохранители).

Не очищайте от загрязнения и пыли осветительную арматуру и электролампы люстр и светильников при включенном выключателе, а также мокрыми или влажными тряпками.

Поврежденные выключатели, ламповые патроны, штепсельные розетки, электроприборы и аппараты нельзя заменять или ремонтировать под напряжением. Приборы или светильники следует отключать от электросети, а при ремонте электропроводки — вывернуть пробки или отключить автомат.

Во время пользования переносными светильниками, приборами, переносным электроинструментом опасно касаться батарей отопления, водопроводных труб и других заземленных металлических конструкций, находящихся в квартире, так как при повреждении изоляции электрического прибора или светильника через тело человека, прикоснувшегося к указанным металлическим конструкциям, пройдет опасный для организма ток.

Запрещается пользоваться электроприборами с нарушенной изоляцией, электроплитками с открытой спиралью; самодельными электропечами, электроводонагревателями.

Особую осторожность при пользовании электроэнергией надо соблюдать в сырых помещениях, в помещениях с земляными, кирпичными и бетонными полами (подвалы, ванная комната, туалеты и др.), являющимися хорошими проводниками тока, так как при этих условиях опасность поражения электрическим током увеличивается. Поэтому в ванных комнатах, санузлах и других подобных помещениях не допускается устанавливать выключатели и штепсельные розетки, пользоваться включенными в электросеть различными электронагревательными приборами (плиткам и, каминами, электробритвам и, рефлекторами), стиральными машинами и переносными светильниками, а также использовать стационарные светильники без предохранительной арматуры.

Нельзя надолго оставлять без присмотра включенные электроприборы: электроплиты, стиральные машины, самовары, электроводонагреватели и др. оборудование.

НЕЛЬЗЯ пользоваться выключателями, штепсельными розетками, вилками, кнопками звонков с повреждёнными корпусами.

Во всех случаях категорически запрещается производить какие-либо работы с электроприборами — замену электроламп, ремонт выключателей, розеток, звонков, электроплиток, электропроводки без отключения их от электросети.

НЕДОПУСТИМО оставлять без присмотра включенные электронагревательные приборы, устанавливать их вблизи легковоспламеняющихся предметов: столов, скатертей, штор, занавесок.

ОПАСНО ДЛЯ ЖИЗНИ переставлять холодильники, стиральные машины, торшеры, телевизоры без отключения их от электрической сети (вынимание вилки электроприбора из розетки).

ОСОБУЮ ОПАСНОСТЬ представляет прикосновение к осветительной арматуре мокрыми руками.

Так как маленькие дети, не понимая опасности, прикасаются к электроприборам, включенным в сеть, и часто получают ожоги и более серьезные травмы, необходимо исключить возможность доступа детей к электроприбором и открытым розеткам.

Не оставлять маленьких детей без присмотра, так как они могут засунуть в розетки мелкие детали от игрушек, мелкие металлические предметы и даже пальцы. В таких случаях на розетки устанавливают специальные заглушки или магнитные «шторки».

Исправное состояние изоляции электропроводки, электроприборов, выключателей, розеток, ламповых патронов, светильников, а также шнуров и удлинителей, с помощью которых включаются в электросеть электроприборы, является основным условием безопасного применения электроэнергии в быту. Возникающие неисправности следует устранять с помощью специалистов.

Во избежание повреждения изоляции запрещается:

— подвешивать электропровод на гвоздях, металлических и деревянных предметах;

— перекручивать провода и вешать что-либо на них;

— закладывать провода и шнуры за газовые и водопроводные трубы, за батареи отопления;

— вытягивать за шнур вилку из розетки;

— закрашивать и белить шнуры и провода.

Уважаемые взрослые!

Пожалуйста, берегите своих детей!

Обучайте их безопасному поведению на улице и дома!

Предупреждайте детей об опасности поражения электрическим током! Запрещайте им играть под проводами воздушных линий, вблизи подстанций, влезать на опоры линий электропередачи, проникать в трансформаторные подстанции или в технические подвалы жилых домов, где находятся провода и коммуникации.

Как правило, в этих местах нанесены предупредительные специальные знаки или укреплены соответствующие плакаты. Все эти знаки и плакаты предупреждают человека об опасности поражения электрическим током, и пренебрегать ими, а тем более снимать их — недопустимо.

Внушите своим детям всю опасность попадания под действие электрического тока. Действующие электроустановки — не место для игр и развлечений.

Дети — это наше будущее! Не оставляйте детей без присмотра. Не проходите мимо, когда дети нарушают указанные меры предосторожности.

Будьте внимательны при пользовании электрической энергией и строго соблюдайте правила электробезопасности, где бы вы ни находились.

Не подвергайте опасности свою жизнь и требуйте соблюдения мер предосторожности от всех окружающих.

ПОМНИТЕ! НЕВЫПОЛНЕНИЕ ВЫШЕУКАЗАННЫХ ТРЕБОВАНИЙ МОЖЕТ ПРИВЕСТИ К НЕСЧАСТНОМУ СЛУЧАЮ.

ПОМНИТЕ! ТОЛЬКО ПРАВИЛЬНОЕ ОБРАЩЕНИЕ С ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИЕЙ ГАРАНТИРУЕТ БЕЗОПАСНОСТЬ ЖИЗНИ.

Какой металл является лучшим проводником электричества?

Давайте вернемся к периодической таблице, чтобы объяснить, какие металлы лучше всего проводят электричество. Количество валентных электронов в атоме — это то, что делает материал способным проводить электричество. Внешняя оболочка атома – это валентность. В большинстве случаев проводники имеют один или два (иногда три) валентных электрона.

Металлы с ОДНИМ валентным электроном: медь, золото, платина и серебро. У железа два валентных электрона. Несмотря на то, что алюминий имеет три валентных электрона, он также является отличным проводником. Полупроводник — это материал, который имеет четыре валентных электрона.

Электропроводность

Металлическая связь заставляет металлы проводить электричество. В металлической связи атомы металла окружены постоянно движущимся «морем электронов». Это движущееся море электронов позволяет металлу проводить электричество и свободно перемещаться среди ионов.

Большинство металлов в определенной степени проводят электричество. Некоторые металлы обладают более высокой проводимостью, чем другие. Медь, серебро, алюминий, золото, сталь и латунь являются обычными проводниками электричества. Наиболее проводящими металлами являются серебро, медь и золото.

Какой металл является лучшим проводником электричества?

Этот список электропроводности включает сплавы, а также чистые элементы. Поскольку размер и форма вещества влияют на его проводимость, в списке предполагается, что все образцы имеют одинаковый размер. Вот основные типы металлов и некоторые распространенные сплавы в порядке от лучших к худшим проводникам электричества:

От лучших к худшим (одинакового размера):

  1. Серебро
  2. Медь
  3. Золото
  4. Алюминий
  5. Цинк
  6. Никель
  7. Латунь
  8. Бронза
  9. Железо
  10. Платина
  11. Сталь
  12. Свинец
  13. Нержавеющая сталь

Проводимость серебра

«Серебро — лучший проводник электричества, поскольку оно содержит большее количество подвижных атомов (свободных электронов). Чтобы материал был хорошим проводником, электричество, проходящее через него, должно перемещать электроны; чем больше в металле свободных электронов, тем больше его проводимость. Однако серебро дороже других материалов и обычно не используется, если только оно не требуется для специализированного оборудования, такого как спутники или печатные платы», — поясняет Sciencing.com.

Проводимость меди

«Медь обладает меньшей проводимостью, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовых приборах. Большинство проводов покрыты медью, а сердечники электромагнитов обычно обмотаны медной проволокой. Медь также легко паять и наматывать на провода, поэтому ее часто используют, когда требуется большое количество проводящего материала», — сообщает Sciencing.com. подвергается воздействию воздуха, это слишком дорого для обычного использования. Индивидуальные свойства делают его идеальным для конкретных целей.

Проводимость алюминия

Алюминий может проводить электричество, но он проводит меньше электричества, чем медь. Алюминий образует электростойкую оксидную поверхность в электрических соединениях, что может привести к перегреву соединения. В высоковольтных линиях электропередач, заключенных в стальной корпус для дополнительной защиты, используется алюминий.

Цинк Проводимость

На сайте ScienceViews.com поясняется, что «цинк — это металлический элемент серо-голубого цвета с атомным номером 30. При комнатной температуре цинк хрупок, но становится ковким при 100 C. Податливость означает, что его можно согнуть. и формируется без разрыва. Цинк — умеренно хороший проводник электричества».

Никель Проводимость

Большинство металлов проводят электричество. Никель является элементом с высокой электропроводностью.

Латунь Проводимость

Латунь — это устойчивый к растяжению металл, используемый для небольших машин, поскольку его легко сгибать и формовать из него различные детали. Его преимущества перед сталью заключаются в том, что он немного более проводящий, дешевле в покупке, менее коррозионно-активен, чем сталь, и сохраняет ценность после использования. Латунь — это сплав.

Бронза Проводимость

Бронза представляет собой электропроводный сплав, а не элемент.

Проводимость железа

Железо имеет металлические связи, благодаря которым электроны могут свободно перемещаться вокруг более чем одного атома. Это называется делокализацией. Из-за этого железо является хорошим проводником.

Платина Проводимость

Платина является элементом с высокой электропроводностью и более пластична, чем золото, серебро или медь. Он менее пластичен, чем золото. Металл обладает отличной коррозионной стойкостью, стабилен при высоких температурах и обладает стабильными электрическими свойствами.

Проводимость стали

Сталь — это проводник и сплав железа. Сталь обычно используется для покрытия других проводников, потому что это негибкий и очень коррозионный металл при воздействии воздуха.

Проводимость свинца

«Хотя соединения свинца могут быть хорошими изоляторами, чистый свинец — это металл, проводящий электричество, что делает его плохим изолятором. Удельное сопротивление свинца составляет 22 миллиардных доли метра. Он находит применение в электрических контактах, потому что, будучи относительно мягким металлом, легко деформируется при затягивании и обеспечивает прочное соединение. Например, разъемы для автомобильных аккумуляторов обычно изготавливаются из свинца. Стартер автомобиля кратковременно потребляет более 100 ампер тока, что требует надежного подключения к аккумулятору», — поясняет сайт Sciencing.com.

Проводимость нержавеющей стали

Нержавеющая сталь является относительно хорошим проводником электричества, как и все металлы.

Факторы, влияющие на электропроводность

Некоторые факторы могут влиять на то, насколько хорошо материал проводит электричество. ThoughtCo объясняет эти факторы здесь:

  • Температура:  Изменение температуры серебра или любого другого проводника изменяет его проводимость. Как правило, повышение температуры вызывает тепловое возбуждение атомов и снижает проводимость при одновременном увеличении удельного сопротивления. Зависимость линейна, но нарушается при низких температурах.
  • Примеси: Добавление примеси в проводник снижает его проводимость. Например, стерлинговое серебро не является таким хорошим проводником, как чистое серебро. Окисленное серебро не является таким хорошим проводником, как незапятнанное серебро. Примеси препятствуют потоку электронов.
  • Кристаллическая структура и фазы:  При наличии разных фаз материала проводимость немного замедляется на границе раздела и может отличаться от одной структуры к другой. Способ обработки материала может повлиять на то, насколько хорошо он проводит электричество.
  • Электромагнитные поля:  Проводники генерируют свои собственные электромагнитные поля, когда через них проходит электричество, при этом магнитное поле перпендикулярно электрическому полю. Внешние электромагнитные поля могут создавать магнитосопротивление, которое может замедлять течение тока.
  • Частота:  Число циклов колебаний переменного электрического тока в секунду равно его частоте в герцах. Выше определенного уровня высокая частота может привести к тому, что ток будет течь вокруг проводника, а не через него (скин-эффект). Поскольку нет колебаний и, следовательно, нет частоты, скин-эффект не возникает при постоянном токе.

Посетите Tampa Steel & Supply для качественной стали и алюминия

Вам нужны поставки стали? Не ищите ничего, кроме профессионалов Tampa Steel & Supply. У нас есть обширный список металлопродукции для любого проекта, который вам нужен. Мы гордимся тем, что обслуживаем наших клиентов почти четыре десятилетия, и готовы помочь вам с вашими потребностями в стали. Есть вопросы? Позвоните нам сегодня, чтобы узнать больше, или зайдите в наш прекрасный выставочный зал в Тампе.

Запросите расценки онлайн
Или позвоните в Tampa Steel & Supply по телефону (813) 241-2801

Лучший проводник электричества: выбор подходящих металлов

В Quest-Tech мы используем различные марки углерода, нержавеющей стали, алюминия, латуни и меди, и иметь производственные мощности для удовлетворения ваших производственных потребностей под одной крышей. Хотя все металлы (и некоторые металлические сплавы) в определенной степени проводят электричество, некоторые из них обладают большей проводимостью, чем другие. Лучший проводник электричества может вас удивить!

Какой металл является лучшим проводником электричества?

Серебро

Лучшим проводником электричества является чистое серебро, но неудивительно, что это не один из наиболее часто используемых металлов для проведения электричества.

Широкое использование чистого серебра имеет несколько недостатков. Во-первых, он имеет тенденцию тускнеть при использовании, что вызывает проблемы, связанные с «скин-эффектом», т. е. неравномерным распределением тока, которое может возникать в высокочастотных токах. Второй недостаток является наиболее очевидным — просто слишком дорого прокладывать серебряный провод через здание — гораздо дороже, чем алюминиевый или медный.

Медь

Одним из наиболее часто используемых металлов для проведения электричества является медь. Как материал, медь податлива, ее легко наматывать или паять, что делает ее лучшим выбором, когда требуется большое количество проводки. Основная электрическая функция меди связана с передачей электроэнергии и выработкой электроэнергии. Он используется в двигателях, генераторах, трансформаторах и втулках. При правильной установке это самый безопасный и эффективный металл для производства электроэнергии.

Медь обычно используется в качестве эффективного проводника в бытовых приборах и электрическом оборудовании в целом. Из-за низкой стоимости большинство проводов имеют медное покрытие. Часто можно встретить сердечники электромагнитов, обычно обмотанные медной проволокой. Медь также используется в микроэлектронных проводниках, электрических схемах и микропроцессорах из-за ее высокой проводимости и низкого сопротивления джоулеву нагреву. Он также используется в мобильных телефонах, телевизорах и компьютерах.

Алюминий

Алюминий — еще один металл, известный своей высокой электропроводностью. Хотя по объему его проводимость составляет всего 60% от меди, по весу один фунт алюминия имеет электрическую токонесущую способность двух фунтов меди. Это делает его очень экономичным материалом, и из-за этого он все чаще заменяет медь в некоторых приложениях, связанных с электричеством.

Алюминий используется в линиях электропередач на большие расстояния, при передаче и распределении электроэнергии высокого напряжения в коммунальной сети; и, в служебном узле, служебный вход и устройство подачи проволоки. Его плотность и исключительно низкая стоимость делают его очень разумным выбором для многих крупномасштабных электрических приложений, таких как электрические силовые кабели, электрические разъемы и даже электрические контакты автоматических выключателей. Алюминий часто используется в спутниковых антеннах.

Золото

Золото также известно своей высокой проводимостью, но из-за его стоимости его используют в умеренных количествах. Микрочипы могут иметь золотые провода для соединений, а там, где требуется высокая стойкость к окислению и коррозии наряду с высокой проводимостью, используется очень тонкое золотое покрытие.

Когда речь идет о металлических сплавах, их физические свойства могут улучшить основной металл в таких областях, как прочность, долговечность, устойчивость к условиям окружающей среды и применение в электротехнике.

Например, латунь — сплав меди — также используется для проведения электричества. Это делается путем добавления примерно 30% цинка в чистую медь. Хотя электрическая и теплопроводность латунного сплава составляет всего 28% от проводимости меди, его немагнитные свойства делают его идеальным для электрических и электронных клемм и разъемов.

Какой металл является самым плохим проводником электричества?

Нержавеющая сталь

Несмотря на то, что электропроводность неизвестна, различные марки нержавеющей стали по-прежнему используются в электротехнике. Тип 304 и тип 316 являются наиболее распространенными марками, используемыми в электротехнической промышленности из-за их превосходной коррозионной стойкости. Электрические шкафы для настенного и напольного монтажа и отдельно стоящие распределительные коробки изготовлены из нержавеющей стали.


Опубликовано

в

от

Метки:

Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *