Eng Ru
Отправить письмо

Принцип действия полупроводникового диода:. Принцип действия полупроводникового диода


Принцип действия полупроводникового диода:

Поиск Лекций

В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя, сопротивление очень велико и ток перекрыт.

Применение диодов:

1.Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (50-100 000 Гц). В настоящее время широко применяются кремниевые выпрямительные диоды с р-n-переходом плоскостного типа, имеющие во много раз меньшие обратные токи и большие обратные напряжения по сравнению с германиевыми.

2. Высокочастотные диоды являются приборами универсального назначения. Они могут работать в выпрямителях переменного тока широкого диапазона частот (до нескольких сотен мегагерц), а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов. Высокочастотные диоды содержат, как правило, точечный р-n-переход и поэтому называются точечными.

3. Импульсные диоды являются разновидностью высокочастотных диодов и предназначены для использования в качестве ключевых элементов в быстродействующих импульсных схемах.

4. Стабилитроны – это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя.

5. Варикапом называется специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью его р-n-перехода и изменяется при изменении приложенного к переходу (диоду) напряжения.

6. Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Основой светодиода является р-n-переход, смещаемый внешним источником напряжения в проводящем направлении. Светодиоды применяются для индикации и вывода информации в микроэлектронных устройствах. Управляемые светодиоды (с подвижной границей светящегося поля) используются для замены стрелочных приборов как аналоги оптических индикаторов настройки радиоаппаратуры. Светодиоды с несколькими светящимися полями позволяют воспроизводить цифры от 0 до 9. Кроме того, светодиоды применяются как источники излучения в оптронах – приборах бурно развивающейся оптоэлектроники.

7. Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении. Общая емкость диода в точке минимума характеристики составляет 0,8…1,9 пФ. Туннельные диоды могут работать на очень высоких частотах – более 1 ГГц. Наличие участка с отрицательным дифференциальным сопротивлением на вольтамперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов. В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Классификация тиристоров:

1. тиристор диодный (доп. название "динистор") - тиристор, имеющий два вывода:

1.1 тиристор диодный, не проводящий в обратном направлении

1.2 тиристор диодный, проводящий в обратном направлении

1.3 тиристор диодный симметричный (доп. название "диак")

2. тиристор триодный (доп. название "тринистор") - тиристор, имеющий три вывода

2.1 тиристор триодный, не проводящий в обратном направлении (доп. название "тиристор")

2.2 тиристор триодный, проводящий в обратном направлении (доп. название "тиристор-диод")

2.3 тиристор триодный симметричный (доп. название "триак", неоф. название "симистор")

2.4 тиристор триодный асимметричный

2.5 запираемый тиристор (доп. название "тиристор триодный выключаемый")

 

Характеристики тиристоров:

Современные тиристоры изготовляют на токи от 1 мА до 10 кА; на напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 109 А/с, напряжения — 109 В/с, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения — от нескольких единиц до нескольких сотен мкс; КПД достигает 99 %.

Принцип действия:

Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

Применение:

1.Применение

2.Электронные ключи

3.Управляемые выпрямители

4.Преобразователи (инверторы)

5.Регуляторы мощности (диммеры)

6.CDI (безконтактное зажигание в автомобилях)

 

poisk-ru.ru

Полупроводниковые диоды, принцип действия и типы

Электронно-дырочный переход представляет собой полупроводниковый диод. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси. Полупроводниковые диоды изготовляют из германия, кремния. селена и других веществ.

На рисунке 1 показано прямое (б) и обратное (a) подсоеденение диода. Вольт-амперная характеристика при прямом и обратном соединении показана на рисунке 1.

Нелинейные свойства диода видны при рассмотрении его вольт-амперной характеристики. Прямой ток в десятки миллиампер получается при прямом напряжении порядка десятых долей вольта. Поэтому прямое сопротивление имеет величину не выше десятков Ом. Для более мощных диодов прямой ток составляет сотни миллиампер и больше при таком же малом напряжении, а R соответственно снижается до единиц Ом и меньше. Обратный ток при обратном напряжении до сотен вольт у диодов небольшой мощности составляет лишь единицы или десятки микроампер. Это соответствует обратному сопротивлению до сотен кОм и больше.

Полупроводниковые диоды подразделяются по многим признакам. Прежде всего следует различать точечные, плоскостные и поликристаллические диоды. У точечных диодов линейные размеры, определяющие площадь p-n перехода, такого же порядка как толщина перехода, или меньше ее. У плоскостных диодов эти размеры значительно больше толщины перехода.

Точечные диоды имеют малую емкость p-n перехода и поэтому применяются на любых частотах вплоть до СВЧ. Но они могут пропускать токи не более единиц или нескольких десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад и более. Поэтому их применяют на частотах не более десятков килогерц. Допустимый ток в плоскостных диодах бывает от десятков миллиампер до сотен ампер и больше.

Основой точечных и плоскостных диодов являются пластинки полупроводника, вырезанные из монокристалла, имеющего во всем своем объеме правильное кристаллическое строение. В качестве полупроводниковых веществ для точечных и плоскостных диодов применяют чаще всего германий и кремний, а в последнее время также и арсенид галлия и карбид кремния.

Поликристаллические диоды имеют p-n переход, образованный полупроводниковыми слоями, состоящими из большого количества кристаллов малого размера, различно ориентированных друг относительно друга и поэтому не представляющих собой единого монокристалла. Эти диоды бывают селеновыми, меднозакисными (купроксными) и титановыми.

Рис. 2.

Принцип устройства точечного диода показан на рисунке 3(а). В нем тонкая заостренная проволочка (игла) с нанесенной на нее примесью приваривается при помощи импульса тока к пластинке полупроводника с определенным типом электропроводности. При этом из иглы в основной полупроводник диффундируют примеси которые создают в нем область с другим типом проводимости. Это процесс называется формовкой диода. Таким образом, около иглы получается мини p-n переход полусферической формы. Следовательно, принципиальной разницы между точечными и плоскостными диодами нет. Позже появились еще так называемые микро-плоскостные или микросплавные диоды, которые имеют несколько больший по плоскости p-n переход, чем точечные диоды(б).

Рис. 3.

Плоскостные диоды изготавливаются, главным образом, методами сплавления диффузии. Для примера на рисунке 4.а) показан принцип устройства сплавного германиевого диода. В пластинку германия n-типа вплавляют при температуре около 500 градусов каплю индия, которая сплавляясь с германием, образует слой германия p-типа.

Область с электропроводностью p-типа имеет более высокую концентрацию примеси, нежели основная пластинка сравнительно высокоомного германия, и поэтому является эмитером. К основной пластинке германия и к индию припаиваются выводные проволочки, обычно из никеля. Если за исходный материал взят высокоомный германий p-типа, то в него вплавляют сурьму и тогда получается эмитерная область n-типа.

Следует отметить, что сплавным методом получают так называемые резкие или ступенчатые p-n переходы, в которых толщина области изменения концентрации примесей значительно меньше толщины области объёмных зарядов, существующих в переходе.

Типы диодов

По назначению полупроводниковые диоды подразделяются на выпрямительные диоды малой, средней и большой мощности, импульсные диоды и полупроводниковые стабилитроны.

Выпрямительные диоды малой мощности. К ним относятся диоды, поставляемые промышленностью на прямой ток до 300мА. Справочным параметром выпрямительных диодов малой мощности является допустимый выпрямительный ток (допустимой среднее значение прямого тока), который определяет в заданном диапазоне температур допустимое среднее за период значение длительно протекающих через диод импульсов прямого тока синусоидальной формы при паузах в 180 (полупериод) и частоте 50 Гц. Максимальное обратное напряжения этих диодов лежит в диапазоне от десятков до 1200В.

Выпрямительные диоды средней мощности. К этому типу относятся диоды, допустимое среднее значение прямого тока которых лежит в пределах 300мА-10мА. Большой прямой ток этих по сравнению с маломощными диодами достигается увеличением размеров кристалла, в частности рабочей площади p-n перехода. Диоды средней мощности выпускаются преимущественно кремниевыми. В связи с этим обратный ток этих диодов при сравнительно большой плоскости p-n перехода достаточно мал(несколько десятков микроампер). Теплота, выделяемая в кристалле от протекания прямого и обратного токов в диодах средней мощности, уже не может быть рассеяна корпусом прибора.

Мощные (силовые) диоды. К данному типа относятся диоды на токи от 10А и выше. Промышленность выпускает силовые диоды на токи 100 - 100 000 А и обратные напряжения до 6000 В. Силовые диоды имеют градацию по частоте охватывают частотный диапазон до десятков килогерц. Мощные диоды изготовляют преимущественно из кремния. Кремниевая пластинка с p-n переходом, создаваемым диффузным методом, для таких диодов представляет собой диск диаметром 10-100мм и толщиной 0,3-0,6 мм.

 

Похожие статьи:

poznayka.org

Полупроводниковый диод устройство, принцип действия

ПОЛУПРОВОДНИКОВЫЙ ДИОД - полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл - полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов. Принцип действия полупроводникового диода: В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Условное изображение на схемах: <img src="//otvet.imgsmail.ru/download/693d114dda56d0343a35c52629e865a2_i-25.jpg" >

В одну сторону пущает, а в другую- нифига.

touch.otvet.mail.ru

Полупроводниковый диод. ВАХ специальных диодов. - Help for engineer

Полупроводниковый диод. ВАХ специальных диодов.

Существует три вида диодов:

- газонаполненные;

- электровакуумные;

- полупроводниковые диоды, про которые и будет идти речь дальше.

В чистом полупроводнике отсутствуют свободные электроны, поэтому его электропроводность, как и у диэлектрика крайне мала. Если добавить в полупроводник примесь, то проводимость увеличится. Для того чтоб заметить изменение электропроводимости, достаточно в чистый полупроводник добавить очень малое количество примеси – 1 атом примеси на 106 атомов полупроводника. Электрическая проводимость любого вещества зависит от наличия в атоме свободных, слабо связанных электронов на внешней орбите.

Если электрон освободился от соседнего атома, то на месте оборванного электрона появилась новая дырка. Электроны двигаются от отрицательного к положительному потенциалу, а дырки можно рассматривать как такие, что двигаются в обратном направлении. Также дырки можно рассматривать как элемент положительного заряда. Примеси, которые образовывают свободные электроны в полупроводнике, называются донорными, а которые делают дырки – акцепторными. Процесс заполнения неполных валентных связей называется рекомбинация.

Проводимость диода

Рисунок 1 – Проводимость полупроводникового диода

p-n переход – это переходной слой, полученный на границе полупроводников разной проводимости.

Различают два типа перехода:

- плоскостной;

- точечный.

Принцип работы полупроводникового диода основан на особенности p-n перехода - ярко выраженная проводимость, которая зависит от полярности приложенного напряжения (рисунок 1).

На основании представленных характеристик материалов создан полупроводниковый прибор – диод.

Обозначение диода

Рисунок 2 – Обозначение диода

Обозначение диода в электрических схемах – VD.

Основные электрические параметры диода:

1. Іном – максимальное значение действующего тока через диод, которое его не перегревает.

2. Максимальный импульсный ток – Іі.max.

3. Обратное максимальное напряжение Uобр.

Прямое и обратное напряжение диода

Все полупроводниковые приборы очень чувствительны к примесям в воздухе, поэтому их размещают в герметичном корпусе из стекла или керамики.

Работа диода при прямом приложенном напряжении имеет следующий вид (ток - черная кривая, напряжение - красная):

Ток и напряжение на диоде

Рисунок 3 – Ток и напряжение на диоде

С рисунка видно, что при положительном напряжении диод VD открывается и напряжение имеет малое значение, при отрицательном напряжении диод закрывает мгновенно, переставая пропускать через себя ток.

Широко применяются при необходимости преобразования переменного напряжения в постоянное. Выпрямленное напряжение будет иметь пульсирующий вид, как изображено на рисунке 3 – однополупериодное выпрямление, если же применять диодный мост, то будет осуществлено двухполупериодное выпрямление. В полученном пульсирующем напряжении для электрических приборов будет важно действующее значение напряжения. Для трехфазных сетей применяют выпрямитель Ларионова.

Специальные диоды

Стабилитрон – разновидность диода, которому характерна вертикально спадающая ВАХ, на которой стабилитрон предназначен продолжительно работать.

Стабилитрон

ВАХ стабилитрона

Рисунок 4 – Вольт-амперная характеристика (ВАХ) стабилитрона

Предназначается для работы в источниках питания для стабилизации напряжения.

Основные характеристики: Uстабилизации, Іmin, Imax– граничные значения тока через стабилитрон.

Туннельный диод – это диод, которому характерно наличие в прямой ветке вольт-амперной характеристики участок с обратным сопротивлением. При увеличении прямого напряжения монотонно увеличивается выходное значение тока. Напряжение пробоя такого полупроводника практически равно нулю.

Туннельный диод

ВАХ туннельного диода

Рисунок 5 – ВАХ туннельного диода

Используются в схемах переключения и генераторах электрических колебаний.

Динистор – специальный диод, который сохраняет высокое сопротивление до определенного значения прямого напряжения, после чего сопротивление резко спадает и равно величине сопротивления открытого диода.

Динистор

Вольтамперная характеристика динистора

Рисунок 6 – Вольт-амперная характеристика динистора

Используют в схемах автоматики и генераторах переменно-линейного напряжения.

Варикап – диод, у которого изменяется емкость в зависимости от значения приложенного обратного напряжения.

Варикап

ВАХ варикапа

Рисунок 7 – ВАХ варикапа

Применяются в электрических схемах, где необходима настройка частоты контура колебания, деление или умножение частоты.

Характерные для варикапа параметры:

- общая емкость – измеренная емкость при определенном обратном напряжении;

- коэффициент перекрытия по емкости – при двух некоторых значениях напряжения отношения емкостей варикапа.

- температурный коэффициент емкости – относительное изменение емкости, вызванное сменой температуры.

- предельная частота – та, на которой реактивная составляющая варикапа становится равна активной.

Фотодиод – спец диод, обратная проводимость которого изменяется от величины светового потока Ф.

Фотодиод

ВАХ фотодиода

Рисунок 8 – ВАХ фотодиода

Используются в измерителях светового потока и приборах автоматики.

Светодиод излучает свет при прохождении через него в прямом направлении электрического тока, цвет свечения определяется химическим составом кристалла.

Отличительной особенностью светодиода является экономичность – очень малое потребление тока (2-5мА).

Добавить комментарий

h4e.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта