Содержание
Что такое конденсатор, типы конденсаторов и их обозначение на схемах
Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.
Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.
Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.
Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.
Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.
Конденсаторы постоянной емкости
Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).
Рис. 1. Конденсаторы постоянной емкости и их обозначение.
Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.
Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.
Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).
Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.
Обозначение емкости на конденсаторах
Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.
В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.
Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).
В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).
При этом емкость от 0 до 100 пФ обозначают в пикофарадах, помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).
Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах, а от 0,1 мкФ и выше — в микрофарадах.
В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).
Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.
Особенности и требования к конденсаторам
В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования. Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.
Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.
Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.
В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.
Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.
Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.
Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.
Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.
Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).
Проходные и опорные конденсаторы
Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы. Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.
К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.
Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.
На высоких частотах применяют керамические проходные конденсаторы, в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).
Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.
Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.
С той же целью, что и проходные, применяют опорные конденсаторы, представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).
Оксидные конденсаторы
Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.
Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.
В отличие от других большинство типов оксидных конденсаторов полярны, т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.
Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!
Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).
Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак ?+» в этом случае можно не указывать.
Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.
В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).
Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.
С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).
Конденсаторы переменной емкости (КПЕ)
Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.
Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).
Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.
С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).
Рис. 5. Обозначение конденсаторов переменной емкости.
Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.
В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.
Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.
Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.
Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.
При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).
В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).
У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.
При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.
Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.
Подстроечные конденсаторы. Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).
Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.
Рис. 8. Подстроечные конденсаторы и их обозначение.
Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).
Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.
Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).
Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).
Саморегулируемые конденсаторы
Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.
Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.
Рис. 9. Вариконд и его обозначение на схемах.
Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.
Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).
Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут что такое резистор?
Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.
Что такое конденсатор, как обозначается на схемах, единицы емкости
Знакомство с конденсатором для тех кто только начинает знакомиться с радиоэлектроникой и радиолюбительством. Что такое конденсатор. какие бывают конденсаторы, как они обозначаются на принципиальных схемах, единицы измерения емкости конденсаторов, включение конденсаторов.
Что такое конденсатор
Конденсатор, это радиодеталь, обладающая электрической емкостью. Конденсатор можно зарядить и он будет хранить заряд, апотом готов отдать его «по первому требованию». На первый взгляд это похоже на работу аккумулятора, но только на первый взгляд.
Конденсатор не является химическим источником тока, да и вообще источником тока. Конденсатор можно назвать временным хранилищем заряда. Заряд в нем можно пополнять и забирать. Во время зарядки и разрядки конденсатора через него протекает ток.
Напряжение на разряженном конденсаторе равно нулю. Но в процессе зарядки напряжение увеличивается, и как только достигает величины напряжения источника тока, заряд прекращается. С нарастанием напряжения на конденсаторе 8 процессе его зарядки ток зарядки уменьшается.
Физически конденсатор это две металлические пластины, разделенные тонким слоем изолятора. Так и есть. Выходит, что конденсатор пропускать электрический ток не может. Но в процессе зарядки и разрядки ток есть.
То есть, можно сказать, что конденсатор может пропускать изменяющийся ток. то есть, переменный. А постоянный он не пропускает. Это свойство широко используется в электронике и радиотехники для разделения переменного и постоянного токов, которые есть в одной и той же цепи.
Если сопротивление конденсатора постоянному току бесконечно (активное сопротивление), то на переменном токе он обладает весьма определенным реактивным сопротивлением, зависящим от емкости конденсатора и частоты переменного тока.
Еще конденсаторы применяют для задержки подачи напряжения, в таймерах. Там используется то свойство конденсатора, что скорость его заряда или разряда зависит от силы тока заряда или разряда. А если этот ток ограничить резистором, то чем больше будет сопротивление этого резистора, тем дольше будет процесс заряда или разряда.
Если у резистора основным параметром является сопротивление, то у конденсатора -емкость, которая выражается 8 фарадах. Величина 1F (одна фарада) довольно велика, поэтому чаще всего речь идет о микрофарадах, нанофарадах, пикофарадах. Конденсаторы так же как и резисторы бывают постоянные (емкость которых не измена), переменные и подстроечные (с ручкой для регулировки емкости).
Обозначение конденсатора на схемах
В отличие от постоянных резисторов, которые в большинстве своем похожи на бочонок с двумя выводами, постоянные конденсаторы бывают самых разных форм и размеров. Но разделить их можно на две группы, — полярные и неполярные. Разница в том, что у полярного конденсатора есть плюс и минус и подключать в схему его нужно с учетом полярности.
А у неполярного конденсатора выводы равнозначны. На рисунке 1 показаны обозначения конденсаторов, А — неполярный, Б — полярный. В -переменный, Г — подстроечный.
Рис. 1. Обозначение конденсаторов на принципиальных схемах.
Кроме емкости, выраженной, чаще всего в пикофарадах или микрофарадах (иногда и в нанофарадах), другим важным параметром является максимально допустимое напряжение. Если к обкладкам (выводам) конденсатора приложить напряжение выше этой величины может произойти пробой изолятора и конденсатор выйдет из строя.
Если говорят что «конденсатор на 250V», это значит, что на конденсатор нельзя подавать напряжение больше 250V. Меньше -пожалуйста, начиная от нуля. Но больше этой величины, — ни в коем случае!
Таким образом, у конденсатора есть два основных параметра, — емкость, выраженная 8 десятичных долях Фарады (микрофарады, нанофарады, пикофарады), и максимальное напряжение, выраженное в Вольтах.
На схемах значение емкости обычно пишут 8 пикофарадах (р, pF, пФ) и микрофарадах (pF, м, мкФ). 1 мкФ = 1000000 пФ. Но встречаются обозначения и в нанофарадах (nF, п) обычно на зарубежных схемах. 1nF = 1000pF. Бывает что на схемах буква, обозначающая кратную приставку используется как децимальная запятая, например, 1500 р = 1,5n = 1N5 или 1n5.
На многих схемах зарубежной аппаратуры встречается замена греческой буквы «р» на латинскую «и». То есть, 10 микрофарад у них будет так: «10uF». Возможно, это связано с отсутствием греческого шрифта в программе с помощью которой нарисована схема.
Включение конденсаторов
Для получения нужной емкости иногда приходится соединять два конденсатора параллельно или последовательно (рис.2.). При параллельном соединении общая емкость рассчитывается как сумма емкостей:
Собщ = С1 + С2.
При последовательном соединении приходится пользоваться более сложной формулой: Собщ = (С1«С2) / (С1+С2) .
Рис. 2. Параллельное и последовательное включение конденсаторов, формулы для расчета емкости.
Маркировка конденсаторов
Теперь о маркировке конденсаторов. Здесь как и у резисторов есть несколько стандартов. Если конденсатор достаточно больших размеров, то на нем емкость может быть так и указана, например, на стакане оксидного конденсатора емкостью 10 мкФ так и будет написано: 10 pF или 10 мкФ, далее будет указано напряжение, например, 25V, и отмечена полярность выводов, у отечественных конденсаторов возле положительного вывода будет «+», а у иностранных возле отрицательного вывода будет «-» или полоска.
На крупных неполярных конденсаторах тоже все будет написано просто и ясно, например, на конденсаторе типа К73-14 емкостью 0,22 мкФ на максимальное напряжение 250V будет так и написано: 0,22pF 250V.
Сложнее с маленькими керамическими или слюдяными неполярными конденсаторами. Места здесь для маркировки мало, поэтому придумывают сокращения. Например, на конденсаторах типа К10-7 в виде пластинок емкость указывается с использованием кратной приставки как децимальной запятой, вот несколько примеров такой маркировки:
- 150 пФ — «150р» или «150п»
- 1500 пФ — «1N5» или «1Н5»
- 15000пФ (0,015 мкФ) — «15N» или «15Н» .
У зарубежных керамических конденсаторов используется такая же маркировка как у резисторов, только за основу идет не единицы Ом, а единицы Пикофарад. Обозначение состоит из трех цифр. Первые две —
значение в пФ, а третья — множитель, практически численно показывающая сколько нулей нужно приписать, чтобы получилось значение выраженное в пФ. Вот несколько примеров такого обозначения:
- 15 пФ — «150» (к 15 приписать 0 нолей)
- 150 пФ — «151»(к 15 приписать 1 ноль)
- 1500 пф — «152» (к 15 приписать 2 ноля)
- 0,015 мкФ (15000 пФ) — «153» (к 15 приписать 3 нуля).
- 0,15 мкФ (150000 пФ) — «154» (к 15 приписать 4 нуля).
Эксперимент с конденсатором
Чтобы практически познакомиться со способностью конденсатора накапливать заряд можно провести один эксперимент. Возьмем оксидный конденсатор типа К50-35 емкостью 2200 мкФ и соберем схему, показанную на рисунке 3. Здесь мы будем заряжать конденсатор от батарейки, и разряжать через лампочку от карманного фонаря.
Когда переключатель S1 находится в показанном на схеме положении, через него и резистор R1 конденсатор С1 заряжается. Переключаем S1 в нижнее по схеме положение, и конденсатор С1 разряжается через лампочку Н1.
Рис. 3. Схема простого эксперимента с конденсатором.
Теперь приступаем к делу. Переключаем S1 вниз по схеме и лампочка вспыхивает. Горит она недолго. Затем, возвращаем S1 в исходное положение. Конденсатор заряжается от батарейки. И снова переключаем S1 вниз по схеме.
Лампочка опять вспыхивает, так как на неё поступает заряд, накопленный конденсатором. Если слишком быстро переключать S1 лампа будет вспыхивать слабее, или вообще не будет вспыхивать, так как С1 не успевает зарядиться через R1.
РК-2010-04.
Конденсаторы 101 — iFixit
Вот немного сухой информации, просто чтобы помочь понять, что такое конденсатор и как он вообще работает. Конденсатор — это небольшой (чаще всего) электрический/электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный течет к положительному, поэтому отрицательный является активным выводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может их удерживать, они вытесняются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь. Это называется разрядкой. Электрические компоненты очень чувствительны к перепадам напряжения, поэтому скачок напряжения может вывести из строя эти дорогие детали. Конденсаторы передают постоянное напряжение другим компонентам и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии электропередач подключен к земле, постоянный ток не будет проходить, но по мере того, как импульс заполняет конденсатор, он уменьшает протекающий ток и действующее напряжение. Пока напряжение питания падает до нуля, конденсатор начинает вытекать свое содержимое, это сгладит выходное напряжение и ток. Поэтому конденсатор помещается в компонент, что позволяет поглощать всплески и дополнять провалы, что, в свою очередь, поддерживает постоянную подачу питания на компонент.
Существует множество различных типов конденсаторов. Они часто используются по-разному в схемах. Слишком знакомые круглые конденсаторы в виде жестяных банок обычно представляют собой электролитические конденсаторы. Изготавливаются из одного или двух листов металла, разделенных диэлектриком. Диэлектриком может быть воздух (простейший конденсатор) или другие непроводящие материалы. Металлические пластины из фольги, разделенные диэлектриком, затем сворачиваются, как фруктовый рулет, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.
Вот конденсатор, который некоторые еще помнят со времен старого радио. Это многосекционный консервный конденсатор. Этот конкретный конденсатор представляет собой счетверенный (4) секционный конденсатор. Все это означает, что в одной банке содержится четыре отдельных конденсатора с разными номиналами.
Дисковые керамические конденсаторы идеально подходят для высоких частот, но не годятся для объемной фильтрации, поскольку керамические дисковые конденсаторы имеют большие размеры при более высоких значениях емкости. В цепях, где жизненно важно поддерживать стабильность источника напряжения, обычно параллельно с керамическим дисковым конденсатором используется большой электролитический конденсатор. Электролитический будет выполнять большую часть работы, в то время как маленький керамический дисковый конденсатор будет отфильтровывать высокие частоты, которые пропускает большой электролитический конденсатор.
Затем идут танталовые конденсаторы. Они маленькие, но имеют большую емкость по отношению к их размеру, чем керамические дисковые конденсаторы. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.
Несмотря на то, что старые бумажные конденсаторы неполярные, они имели черные полосы на одном конце. Черная полоса указывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или наименьшему напряжению). Основная цель экрана из фольги заключалась в том, чтобы продлить срок службы бумажного конденсатора.
Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень малы по сравнению с ранее перечисленными конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается прежней. Одним из важных, помимо номиналов этих конденсаторов, является их «упаковка». Размер этих компонентов стандартизирован, т. е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических SMD-конденсаторов такой же, как у SMD-резисторов. Это делает почти невозможным визуально определить, конденсатор это или резистор. Вот хорошее описание индивидуального размера на основе номеров пакетов.
SMD на печатной плате
Большие SMD
Определение емкости конденсатора может быть выполнено несколькими способами. Номер один, конечно, маркировка на самом конденсаторе.
Емкость этого конкретного конденсатора составляет 220 мкФ (микрофарад) с допуском 20%. Это означает, что она может быть где-то между 176 мкФ и 264 мкФ. Он имеет номинальное напряжение 160В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны по сравнению с осевым расположением, когда один вывод выходит с любой стороны корпуса конденсатора. Также полоска со стрелкой сбоку конденсатора указывает на полярность, стрелки указывают на отрицательный контакт .
Теперь главный вопрос, как проверить конденсатор на предмет замены.
Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из цепи, то можно использовать мультиметр, настроенный как омметр, , но только для выполнения проверки по принципу «все или ничего» . Этот тест покажет только, полностью ли разряжен конденсатор или нет. Он , а не определит, в хорошем или плохом состоянии находится конденсатор. Чтобы определить, работает ли конденсатор с правильным значением (емкостью), потребуется тестер конденсатора. Конечно, это справедливо и для определения номинала неизвестного конденсатора.
Счетчик, используемый для этой Wiki, самый дешевый из доступных в любом универмаге. Для этих тестов также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, который отображает только быстро меняющиеся числа. Это должно позволить любому выполнить эти тесты, не тратя целое состояние на что-то вроде измерителя Fluke.
Всегда разряжайте конденсатор перед его проверкой, если этого не сделать, это будет шокирующим сюрпризом. Очень маленькие конденсаторы можно разрядить, соединив оба провода отверткой. Лучший способ сделать это — разрядить конденсатор через нагрузку. В этом случае для этого подойдут кабели типа «крокодил» и резистор. Вот отличный сайт, показывающий, как сконструировать разгрузочные инструменты.
Чтобы проверить конденсатор с помощью мультиметра, установите мультиметр на показания в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь измерительными проводами к соответствующим выводам на конденсаторе, красный к положительному, а черный к отрицательному. Индикатор должен начинаться с нуля, а затем медленно двигаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.
Также совместим с крышками SMD. Тот же тест со стрелкой мультиметра, медленно движущейся в том же направлении.
Еще один тест, который можно провести с конденсатором, — это тест напряжения. Мы знаем, что конденсаторы хранят разность потенциалов зарядов на своей пластине, то есть напряжения. Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — зарядить его напряжением, а затем считать напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением, а на выводы конденсатора подать постоянное напряжение. В этом случае очень важна полярность. Если этот конденсатор имеет положительный и отрицательный выводы, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное на катод конденсатора. Не забудьте проверить маркировку на проверяемом конденсаторе. Затем подайте напряжение, которое должно быть меньше напряжения, на которое рассчитан конденсатор, на несколько секунд. В этом примере конденсатор на 160 В будет заряжаться током 9V постоянного тока на несколько секунд.
После завершения зарядки отсоедините батарею от конденсатора. Используйте мультиметр и измерьте напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение быстро разряжается до 0 В, потому что конденсатор разряжается через мультиметр. Если конденсатор не удерживает это напряжение, он неисправен и должен быть заменен.
Проще всего конечно будет проверить конденсатор с помощью измерителя емкости. Вот осевой GPF FRAKO 1000 мкФ 40 В с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости несложно. На этих конденсаторах плюсовой вывод помечен. Подсоедините положительный (красный) провод от мультиметра к нему, а отрицательный (черный) к противоположному. Этот конденсатор показывает 1038 мкФ, явно в пределах допуска.
Проверка конденсатора SMD может быть затруднена громоздкими щупами. Можно либо припаять иглы к концам этих зондов, либо вложиться в какой-нибудь умный пинцет. Предпочтительным способом будет использование умного пинцета.
Для некоторых конденсаторов не требуется никаких испытаний для определения неисправности. Если при визуальном осмотре конденсаторов обнаружены какие-либо признаки вздутия, их необходимо заменить. Это самая распространенная неисправность в блоках питания. При замене конденсатора крайне важно заменить его конденсатором того же или большего номинала. Никогда не заменяйте его конденсатором меньшей емкости.
Если конденсатор, подлежащий замене или проверке, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов для конденсаторов, которые используются на схеме.
Этот отрывок из схемы iPhone показывает символ для конденсаторов, а также значения для этих конденсаторов.
Эта Вики содержит лишь основные сведения о том, что нужно искать в конденсаторе, она никоим образом не является полной. Чтобы узнать больше о любом из распространенных электронных компонентов, существует множество хороших онлайн-курсов и офлайн-курсов.
Eaton Electronics
Maxwell
Digikey
Mouser
Конденсатор на печатной плате: подробное руководство
Конденсатор на печатной плате является одним из основных пассивных компонентов, которые мы используем в процессе проектирования. Это влияет на производительность и качество схемы. Точное знание свойств и характеристик конденсаторов при сборке и изготовлении печатных плат гарантирует успех при проектировании печатной платы конденсаторов.
Кроме того, конденсатор в вашем гаджете может выйти из строя из-за слишком сильного нагрева и напряжения. В этом случае требуется замена, которую вы можете сделать самостоятельно. В этой статье более подробно рассказывается о конденсаторах, от их основ до сборки на печатной плате (печатной плате).
Содержание
Что такое конденсатор для печатных плат?
Конденсатор на печатной плате представляет собой электронный компонент на печатной плате, который накапливает электрический заряд и разряжает его в цепи. Он способствует бесперебойной работе электронного устройства, контролируя электрический поток по всей печатной плате.
Емкость печатной платы показывает, сколько электроэнергии может нести конденсатор. В своей самой простой форме конденсатор на печатной плате состоит из двух проводящих пластин с диэлектрическим материалом.
Конденсаторы различных типов имеют множество применений. Они могут быстро разряжаться, что характерно для лазеров и вспышек с емкостными датчиками.
Конденсаторы на печатной плате
Как работают конденсаторы на печатной плате?
Для работы конденсаторов на печатной плате требуется заряд. Первая пластина конденсатора печатной платы принимает электрический ток. Заряд накапливается на проводнике, вызывая накопление электрического заряда на электродах.
По мере накопления электронов первая металлическая пластина становится отрицательно заряженной. Затем лишние электроны перемещаются на соседнюю пластину. Результатом является положительный заряд на второй пластине.
Электроны на электродах пытаются объединиться. Тем не менее, изолятор между двумя пластинами препятствует этому. Диэлектрик представляет собой непроводящий материал, который препятствует перемещению заряда между проводниками.
Две металлические пластины продолжают заряжаться, сохраняя электрический заряд в конденсаторе. В конце концов, металлические пластины потеряют способность удерживать заряд. Все электроны в конденсаторе будут разряжаться, если на печатной плате есть канал для движения электрического заряда.
Различные типы конденсаторов
Типы конденсаторов
Конденсаторы можно разделить на две категории — постоянные и переменные. Постоянные конденсаторы имеют фиксированные значения емкости, а переменные конденсаторы имеют переменные значения емкости.
Кроме того, постоянные конденсаторы содержат неполяризованные и поляризованные конденсаторы, а переменная группа содержит подстроечные и подстроечные конденсаторы. Вот основной обзор различных типов конденсаторов и их характеристик.
Типы конденсаторов
Керамические конденсаторы
Керамические конденсаторы имеют изоляционный материал из керамических материалов. Имеют низкую емкость. Обычно это значение лежит в пределах от 1F до 1µF.
Эти конденсаторы имеют меньшую утечку тока и высокую диэлектрическую проницаемость. Керамические конденсаторы полезны в различных приложениях, включая ВЧ и аудио.
Керамический конденсатор, используемый в электронике (общий конденсатор)
Пленочные конденсаторы.
Эти конденсаторы имеют высокое сопротивление изоляции, хорошие температурные характеристики и отсутствие диэлектрических потерь. Пленочные конденсаторы имеют низкую индуктивность, стабильны и доступны по цене.
Два пленочных конденсатора
Электролитические конденсаторы
Внешне эти конденсаторы напоминают маленькие консервные банки. Электролитические конденсаторы распространены в цепях, требующих большей емкости. Это потому, что они хранят много электрических токов. Диэлектрический материал представляет собой тонкий слой оксида, заключенный в маленькие банки.
Это полярные конденсаторы, поэтому они работают при правильном подключении; иначе риск взрыва при другом подключении.
Электролитические конденсаторы
Слюдяные конденсаторы
Конденсаторы из серебряной слюды состоят из листов слюды с металлическим эпоксидным покрытием и защищенной оболочкой. Слюдяные конденсаторы необходимы для проектирования печатных плат, когда компактность, температурная стабильность и точность имеют решающее значение.
Они имеют низкую потерю электрического заряда и часто используются на высоких частотах. Они также исключительно химически, электрически и физически стабильны благодаря своей уникальной кристаллической структуре, обычно слоистой.
Роль встроенных конденсаторов в конструкции печатных плат
Встроенные конденсаторы обладают большими возможностями, чем обычные конденсаторы. Их небольшие размеры идеально подходят для использования в качестве конденсаторов для поверхностного монтажа на печатных платах.
В процессе производства тонкий диэлектрический материал закрепляется между двумя слоями меди. Затем эпоксидная смола ламинирует медную фольгу. Благодаря этому диэлектрический материал во встроенных конденсаторах имеет высокую плотность емкости.
Встраиваемые конденсаторы имеют автоматизированную сборку и малую паразитную индуктивность. Они функционируют как развязывающие конденсаторы и имеют невероятно короткие электрические каналы. Кроме того, эти конденсаторы уменьшают шум шины питания и уменьшают электромагнитные помехи (EMI). Таким образом, паразитная емкость и индуктивность минимальны.
Встроенные конденсаторы используются в телекоммуникационных, вычислительных, медицинских и мобильных электронных устройствах. Они функционируют как фильтры систем электропитания, которые минимизируют свободную емкость.
Как уменьшить паразитную емкость на печатной плате
Паразитная емкость проявляется между проводниками на печатной плате. Это происходит из-за прохождения высокочастотных сигналов через печатную плату. Затем паразитная емкость создает электромагнитные помехи, которые распространяются на соседние дорожки.
Следующие способы помогут избежать паразитной емкости;
- Вы можете использовать экран Фарадея между дорожками. Защитное кольцо уменьшает емкостное влияние между двумя дорожками.
- Вы также можете увеличить расстояние между соседними дорожками.
Вы можете применить правило 2W или 3W.
- Кроме того, используйте диэлектрические материалы с низкой диэлектрической проницаемостью, поскольку они создают меньшую паразитную емкость в цепи.
- Избегайте параллельной прокладки дорожек, так как это оставляет максимальную площадь между двумя дорожками, что приводит к максимальной емкости между дорожками.
Советы по размещению обходного конденсатора на печатной плате
Одним из важных этапов процесса проектирования является размещение обходных конденсаторов. Обратите внимание, что неправильное размещение шунтирующих конденсаторов полностью снижает их производительность. Вот несколько советов о том, как следует размещать обходные конденсаторы на печатной плате.
- Было бы лучше, если бы вы закрепили конденсаторы обхода печатной платы под контактными площадками компонентов SMD на верхней стороне. Это помогает создать больше места для дорожек разветвления и переходных отверстий.
- При работе с большими неполярными конденсаторами их следует располагать в порядке возрастания номинала рядом с контактом.
- Для устройств с большим количеством выводов питания требуется как минимум один шунтирующий конденсатор для каждого контакта питания.
- Наконец, при установке шунтирующих конденсаторов всегда сверяйтесь со схемой, поскольку многие логические входные контакты цифровых устройств имеют «высокий уровень».
Печатная плата SMD
Факторы, которые следует учитывать при выборе конденсатора на печатной плате
- Срок службы конденсатора: это период, в течение которого конденсатор будет продолжать нормально функционировать и обеспечивать заданную емкость.
- Стресс напряжения: более высокое (чем номинальное) напряжение может повредить конденсаторы. Таким образом, конденсатор должен иметь буфер напряжения на 50% больше ожидаемого падения напряжения.
- Тип диэлектрического материала в конденсаторе: диэлектрический материал конденсатора определяет его емкость и термическую стабильность.
- Диапазон рабочих температур конденсатора: Обычно рекомендуется учитывать буферную температуру на уровне 50 % от максимальной температуры окружающей среды.
- Допуск: значение допуска показывает, насколько конденсатор может отклоняться от своего номинального значения в обоих направлениях.
Как заменить конденсатор на печатной плате
Шаг 1. Когда следует заменять конденсатор?
Перегоревший конденсатор может привести к отказу системы из-за отказа компонента. Типичные признаки перегоревшего конденсатора:
- Устройство не включается
- Периодически включается и выключается
- Экран мерцает или искажается
Стоит потратить несколько минут на проверку конденсаторов на печатной плате, если вы столкнулись с какой-либо из этих проблем. Самое главное, выключите и отключите устройство от питания!
Шаг 2. Подготовьте инструменты для замены конденсатора
Для замены конденсатора необходимы следующие инструменты:
- Отвертка
- Паяльник
- Сменные конденсаторы
- Фитиль для пайки
Шаг 3. Получите доступ к поврежденному конденсатору
Откройте электронный корпус с помощью отвертки, чтобы получить доступ к печатной плате. Чтобы открыть корпус, вам нужно найти множество винтов и язычков.
Вершина перегоревшего или поврежденного конденсатора будет несколько изогнута наружу выпуклой формой. Обратите внимание на эти признаки, поскольку они указывают на перегоревший конденсатор.
Шаг 4. Извлеките поврежденный конденсатор
Обнаружив перегоревший конденсатор, наложите оплетку для пайки на основание выводов. Прижмите нагретый паяльник к оплетке, когда она полностью нагрета, чтобы припой нагрелся и втянулся в оплетку.
Снимите конденсатор с печатной платы, потянув его до тех пор, пока выводы конденсатора не освободятся от припоя. Удалите остатки припоя с контактных точек печатной платы с помощью паяльного фитиля.
Удалите поврежденный конденсатор на печатной плате.
Шаг 5. Установите новый конденсатор
Для установки нового конденсатора необходимо обрезать выводы нового конденсатора, чтобы они были ровными и располагались на той же высоте, что и предыдущий конденсатор. Затем поместите выводы нового конденсатора в отверстия, где раньше стоял старый конденсатор.
Следовательно, поместите жало паяльника прямо на соединение на обратной стороне печатной платы. Протолкните провод через отверстие, как только кончик утюга коснется отверстия, затем выньте его. Старый припой затвердеет и закрепит новую часть внутри него.
Утилизация конденсатора для печатных плат
Измельчение и измельчение больше не являются приемлемыми заменителями утилизации конденсаторов для печатных плат.
Добавить комментарий